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Defining Optimal Soybean Sowing 
Dates across the US
Spyridon Mourtzinis1, James E. Specht2 & Shawn P. Conley1

Global crop demand is expected to increase by 60–110% by 2050. Climate change has already affected 
crop yields in some countries, and these effects are expected to continue. Identification of weather-
related yield-limiting conditions and development of strategies for agricultural adaptation to climate 
change is essential to mitigate food security concerns. Here we used machine learning on US soybean 
yield data, collected from cultivar trials conducted in 27 states from 2007 to 2016, to examine crop 
sensitivity to varying in-season weather conditions. We identified the month-specific negative effect 
of drought via increased water vapor pressure deficit. Excluding Texas and Mississippi, where later 
sowing increased yield, sowing 12 days earlier than what was practiced during this decade across the US 
would have resulted in 10% greater total yield and a cumulative monetary gain of ca. US$9 billion. Our 
data show the substantial nation- and region-specific yield and monetary effects of adjusting sowing 
timing and highlight the importance of continuously quantifying and adapting to climate change. The 
magnitude of impact estimated in our study suggest that policy makers (e.g., federal crop insurance) 
and laggards (farmers that are slow to adopt) that fail to acknowledge and adapt to climate change will 
impact the national food security and economy of the US.

The United States is a major soybean producing country that supplies 34% of global annual soybean produc-
tion1. Most US soybean-producing regions are rainfed, and thus are highly vulnerable to extreme weather events. 
From 1994 to 2013, variability in growing season precipitation and temperature induced by climate change was 
estimated to have suppressed soybean seed yield gain ca. 30%, effectively a loss of US$11 billion2. Drought and 
elevated air temperatures, now more increasingly frequent due to climate change, are important constraints in 
crop production across major agricultural areas globally. Thus, the challenge to increase crop yields to meet future 
demand can be achieved by increasing the rate at which climate change adaptation practices are identified and 
adopted.

Vapor pressure deficit (Vpd) is a measure of atmospheric water demand with a strong influence on plant tran-
spiratory water loss3,4. Increasing Vpd values are generally associated with drought and heat. Improved genetic 
traits and crop management strategies could help mitigate the projected negative impacts of climate change on 
crop yields. For example, drought-tolerant traits, introduced through conventional breeding, resulted in soy-
bean transpiration rates that plateaued at Vpd levels above 1.4–2.1 kPa5–7. Crop management strategies, such as 
earlier-than-typical sowing, has also been proposed as a strategy to increase yields in regional studies8,9. However, 
soybean exhibits different sensitivities to weather during varied developmental stages10, and therefore, the sensi-
tivity of a crop to climate adaptation strategies and their effectiveness in mitigating drought-induced yield reduc-
tion remains unclear.

An important step towards adapting to climate change and mitigating its impact on yield is accurate identi-
fication of the weather conditions that most affect crop yield. As has been reported earlier, one option is sowing 
date adjustment. Regional trials have shown the benefits of earlier sowing8,9; however, there is a limit to how much 
the regional field trials can extrapolate results. Our objective was to examine crop sensitivity to varying in-season 
weather conditions and to model optimal sowing dates and associated yield and monetary benefits due to sowing 
date adjustment across the US. To date, there is no similar previous work.

A major obstacle is the lack of an extensive database that includes a wide range of yields and weather con-
ditions. Field-level farmer’s data are an abundant source of information; nevertheless, such data can include 
unknown confounding factors (e.g., unreported and unmanageable field adversities such as hail, frost, flood-
ing), that can significantly affect yield and potentially bias the results. Here, we used data from soybean seed 
yield cultivar trials performed by agricultural university personnel in 27 states during 2007–2016 (Fig. 1). These 
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multiple-site trials were conducted each year (n = 1,323 location × year yield data) in representative soybean 
production areas. Within each state, the trial sowing date data (Fig. S1) bracketed the 50% sowing date progress 
reported by USDA-NASS for each state and year (Fig. S2). These 27 states accounted for ~99% of total US soybean 
cultivated area (2007 to 2016 average)11. The 1,323 location × year yield data were aligned with 1-K-resolution 
daily weather data. State-wide average yield and weather conditions were calculated resulting in 186 state-year 
soybean yield and weather condition data.

To identify weather variables during the growing season that had the strongest impact on soybean seed yield 
in the 10-year, 27-state data set, we used conditional inference regression tree analyses (Fig. 2). Our chosen can-
didate predictors were: the state in which a trial was performed, cumulative precipitation and solar radiation, 
average Vpd, maximum temperatures, and relative humidity. We divided the growing season into six successive 
30-day time windows from 30 days before sowing (DBS) to 150 days after sowing (DAS), and calculated predictor 
values for each window, thereby resulting in 31 total candidate weather predictors. The overarching goal of this 
analysis was interpretation of the model, so additional variables, such as day length, and minimum temperatures, 
that might enhance the fit of the model, but also might confound with other weather variables, were not included 
in the analyses.

Results and Discussion
The conditional inference tree analyses revealed that Vpd during 61 to 90 DAS was the most important predic-
tor of soybean yield (Fig. 2), which was consistent with a finding in a previous study that focused on just three 
Midwestern states12. The lowest trial yields were observed in state-years in which Vpd was greater than 2.44 
kPa from 61 to 90 DAS, and Vpd from −30 to 0 DBS was greater than 1.79 kPa. The highest yielding trials were 
those in which Vpd was lower than 2.44 kPa from 61 to 90 DAS, in 13 states as listed in Fig. 2 legend and colored 
blue in Fig. S3, and with precipitation greater than 75 mm from 61 to 90 DAS. These results show that the state 
and amount of precipitation from 61 to 90 DAS are important yield limiting factors mainly in non-drought 
conditions.

The large yield difference among the levels of Vpd highlights the strong and negative effect of drought in 
soybean production. Indeed, regression analyses between Vpd and soybean yield indicated that increased Vpd 
during 61 to 90 DAS reduced yield across the US and 10 years (2007–2016) by 1,135 kg/ha/kPa. This estimated 
yield loss due to Vpd during 61 to 90 DAS did not vary significantly among states (P > 0.05). The impact of 61 
to 90 DAS Vpd >2.44 kPa on yield is exacerbated when coupled with an increased −30 to 0 DBS Vpd, as shown 
by the regression of latter values on yields. Such harsh growing season conditions resulted in an average soybean 
yield suppression amounting to 2,074 kg/ha/kPa. This estimated yield loss due to Vpd during −30 to 0 DBS also 
did not vary significantly among states (P > 0.05).

The sensitivity of soybean yield to variable in-season weather conditions were examined by creating weather 
datasets that differed from the typical state-specific sowing dates (trial sowing dates set to zero) in 10-day incre-
ments (spanning a total of −30 to +30 days) for all states and years in the study. A machine learning model 
(Fig. S4), calibrated to predict state-year-specific trial soybean yield across the US based on coordinates and 
weather variables, was applied to estimate yields for each hypothetical sowing date in every state from 2007 
through 2016.

A clear trend of increased yields due to earlier sowing was observed within most states (Fig. 3A) across the  
10 years of the study. Excluding Texas and Mississippi, where later sowing by 30 and 6 days, respectively, increased 

Figure 1.  Soybean hectarage distribution in the US. Circles show the locations of the rainfed soybean yield 
cultivar trials conducted during 2007–2016 in 27 states (n = 1,323 location × year combinations), and the 
yellow-to-brown coloration denotes relative soybean crop density.
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yield, sowing 12 days earlier than what was practiced during this decade (2007–2016) across the US would have 
resulted in a 10% greater total yield. Our results suggest that Southeastern state producers could adjust sowing 
dates by 30 days earlier than those typically used (Fig. 3B). Such adjustment would have resulted in a 377 to 
704 kg/ha average yield increase (Fig. 3C). Mississippi and Texas growers have already adopted an early sowing 
date strategy ca. 199413, and it appears that later sowing by 5 and 30 days, respectively, from what currently is 
used would have increased yields from 2007 to 2016. In the Midwestern US, soybean producers in states such 
as Iowa and Ohio could have theoretically experienced a small yield increase (30 and 73 kg/ha, respectively – 
Fig. 3C) during the past decade by 8 to 10 days earlier sowing, respectively. This result is in agreement with recent 
regional estimates of early sowing date effect on farmers’ fields9,14. In other states with large cultivated areas, such 
as Nebraska, Illinois, and Wisconsin, producers appear to be already using near optimum sowing dates. It has 
been reported that earlier sowing dates resulted in a longer sowing-to-first trifoliolate growth stage (V1) period 
but also advances V1 occurrence on a calendar date basis15. This leads to earlier node accrual and floral induction 
which can optimize the final number of main stem nodes and result in greater yield potential15.

In most states, from 2007 to 2016, Vpd from 61 to 90 DAS was constant with delayed sowing, whereas Vpd 
from −30 to 0 DBS was constant or increasing with later sowing (Fig. S5). The Vpd values, above the critical 
yield-limiting levels quantified by the conditional tree analysis (Fig. 2), were observed with delayed sowing in 
most Central and Southern states. In Northern and Midwestern states, although Vpd from 61 to 90 DAS did not 
exceed the across-US critical levels, delayed sowing would have theoretically resulted in increased Vpd from −30 
to 0 DBS and reduced water availability, which would likely resulted in suppressed yields.

Using state-year-specific total income data ($)11 and the previously calculated yield change due to sowing date 
adjustment (Fig. 3C), a 10-year cumulative monetary effect was estimated for each state (Fig. 3D). A substantial 
monetary gain from earlier sowing was estimated in most soybean producing states. Minnesota, North Carolina, 
and Kansas would have experienced the greatest monetary gains that could have reached ca. US$0.9 to 1.5 Billion. 
The gains would have been lower in Southern and Southeastern states, despite the greatest yield change due to 
sowing date adjustment from the Northern states, mainly due to the smaller cultivated area. Indeed, when calcu-
lating the monetary effects per hectare, producers in Southeastern states would have benefited the most (Fig. S6). 
Overall, sowing date adjustment across the continental USA from 2007 through 2016 would have resulted in a 

Figure 2.  Conditional inference tree for 186 US state-year soybean trial yields (kg/ha) distributed across 27 
states during 2007–2016 (Fig. 1). In each boxplot, the central rectangle spans the first to third yield quartiles. 
The solid line inside the rectangle is the mean which is also numerically shown at the bottom (Y). The number 
of state-year yields (total = 186) is shown on top of each boxplot (n). The white circles show outlier yields. The 
acronyms DAS, DBS, and Vpd are, respectively, days after sowing, days before sowing, and vapor pressure 
deficit, with Vpd reported in kPa and precipitation in mm. States in group 1 include: AL, FL, GA, IA, KS, LA, 
MN, MO, NC, ND, OK, TN, TX, and VA. States in group 2 include: AR, DE, IL, IN, KY, MI, MS, NE, OH, PA, 
SD, SC, and WI. States in group 3 include: AL, GA, ND, OK, and TX. States in group 4 include: FL, IA, KS, LA, 
MN, MO, NC, TN, and VA. A color-coded map of the four groups is shown in Fig. S3.
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cumulative gain of ca. US$9 Billion. We note that earlier sowing may be associated with an additional cost for 
farmers to update or add additional sowing equipment. Still, because such costs can be amortized out over time, 
we consider our estimates as an upper bound of hypothetical monetary benefits.

An important consideration in early sowing is spring frost occurrence, which can damage or destroy the 
crop (but only after emergence at 15–25 DAS)16. The current common recommendation to soybean producers 
is to sow the first field when frost probabilities are less than 20% on or after emergence. Minor frost damage on 
emerged seedlings may occur when temperature drops below 0 °C, but becomes more damaging when tempera-
ture drops below −2 °C for prolonged periods. In Northern and Midwestern states, where the risk for early frost 
damage is higher, optimum sowing dates were observed for up to 21 days earlier than what are typically used 
(Fig. 3B). Using the 21 days earlier sowing as a threshold, 2% of all 289 locations (all in North Dakota, South 
Dakota, and Minnesota) exceeded the 20% probability threshold for daily minimum temperatures to drop below 
0 °C at emergence and only 0.3% had exceeded the 20% probability for daily minimum temperatures to drop 
below −1 °C (Fig. 4). In the Southeastern states, frost probabilities (Tmin <0 °C) for 30-days earlier sowing was 
zero. Considering that climate models under different emission scenarios have projected an increase in frost-free 
season length until the end of the century17, these results suggest that frost may not be a serious issue for most 
regions of the continental US when moving sowing dates earlier into spring.

Conclusions
Global temperatures are expected to continue increasing until 210018. Furthermore, a 20% cumulative increase in 
Vpd in July in the Midwest is projected by 204012, driven by increased temperatures and reduced relative humid-
ity. Climate simulations have also estimated up to a 30% reduction in precipitation during summer months in 
many US regions, including the Midwest and much of the Corn Belt17. It is clear that soybean exhibits variable 
sensitivities to weather during vegetative and reproductive development10. To that end, we show here that with 
state-specific sowing date adjustment, drought impact during sensitive developmental stages could be mitigated.

Figure 3.  Ten-year average state-specific (n = 27 States) effect (A) of sowing date on soybean yield (kg/ha)  
using weather data sets that differed from the typical sowing date (trials sowing date set to zero) in 10-day 
increments (spanning a total of −30 to +30 days). The red vertical line shows the US-average predicted 
optimum sowing date difference from typical. (B) Ten-year state-specific optimum sowing date difference from 
typical. Earlier optimum predicted sowing dates (negative numbers) were identified in red-colored states, but 
later than typical optimum dates (positive numbers) were identified blue-colored states. (C) Simulated 10-year 
average yield increase (kg/ha) when using the optimum predicted sowing dates in each state. (D) Simulated ten-
year state-specific cumulative effect of optimum earlier sowing than typical when expressed in terms of soybean 
producer income (in 2016 inflation-adjusted Billion US$).
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We acknowledge that more work is needed to extrapolate the results of this work to finer spatial resolution. 
Previous work has shown that there is significant heterogeneity in soybean sowing dates regionally19, and results 
may change when moving from regional-level to field-level analyses20. However, such work would require more 
locations with better spatial coverage across the US. Additionally, there is a lack of measured daily weather data at 
appropriate spatial resolution and there are known issues with gridded weather data quality for field-level analy-
sis21. In conclusion, currently such data are not existent and to that end, more work is imperative.

Overall, our results agree with previously reported simulated future yield trends (a 7 to 15% increase) due 
to climate adaptation in wheat, rice, and maize22. The results in our study complement the previously measured 
sensitivity of soybean-related long-term economic returns to regional climatic change2,23 by identifying and quan-
tifying climate change-related yield constraints. It is evident that many progressive farmers in the NC US region  
(e.g., NE and WI), continuously monitor and strive to sow crops earlier on an annual basis. Our results highlight 
the potential yield and monetary benefit that US farmers can gain due to sowing date adjustment by using the 
results we report as a point of reference of optimal sowing date in each state. Lastly our findings suggest that the 
USDA Risk Management Agency should consider updating their antiquated earliest sowing dates for replant 
payments to reflect current environmental and monetary factors.

Methods
Soybean yield from non-irrigated cultivar performance trials conducted at sites within each of 27 states from 2007 
through 2016 were assembled for this study. Sowing dates in farmer fields were assessed using state-wide publicly 
available data11. The dates when 50% of state-wide hectares were sown every year were interpolated using the data 
reported in each weekly crop progress report. For all subsequent analysis, yield and sowing dates reported in each 
trial were used.

Weather data were obtained from the DAYMET24 dataset due to its improved accuracy compared to other 
sources of weather data21. Weather variables included were daily minimum and maximum temperatures (Tmin 
and Tmax, respectively), precipitation, day length, solar radiation, and water vapor pressure. Vapor pressure defi-
cit (Vpd) was estimated as the difference between saturated vapor pressure (0.6107 * exp(17.269 × T/(237.3 + T))) 
at daily Tmax and at daily Tmin. Relative humidity was calculated by dividing the vapor pressure by the average 
of saturated vapor pressure at daily Tmax and Tmin.

In every trial, multiple maturity groups (MG) were used. For this study, pooled cultivar yields within the 
MG that exhibited maximum yield was recorded and used in subsequent analysis under the assumption that the 
year-specific weather conditions favored this specific MG. Then, for all cultivars in all location × years, sowing 
date as day of year (doy) was set to zero. The 30-day specific weather conditions, of all the aforementioned weather 
variables, starting from 30 days before sowing (DBS) up to 150 days after sowing (DAS), were calculated and used 
as independent variables in subsequent analysis. This allowed the models to capture differential weather sensitivi-
ties at different development stages. Finally, the seed yield and weather conditions of all trials within a state × year 
were averaged to obtain state × year-wide estimates. This resulted in 186 state × year-specific soybean yields.

In our study, weather variables cannot be considered to have been “applied” in a randomized manner, nor 
replicated with respect to analysis of trial data. Thus, use of traditional linear models (e.g., analysis of variance, 
multiple linear regression) may be misleading and other analysis tools are more appropriate25. Consequently, we 
used the conditional inference regression trees methodology, within the “partykit” package in R (R development 
Core team, 2016), to identify the 30-day-specific weather variables that affected soybean seed yield across the con-
tinental US. For this analysis, state, cumulative precipitation and solar radiation, Vpd, maximum temperatures, 
and relative humidity were used as independent variables with the ultimate goal to interpret the resulted model. 
Variables that could confound the results (e.g., Tmin) were not used.

This methodology does not require statistical distribution assumptions, can handle categorical and continuous 
explanatory variables, is robust to outliers, multicollinearity, heteroscedasticity, and can reveal variable interac-
tions26. There is no bias and overfitting issues, and one can estimate a relationship among several variables by 
binary recursive partitioning in a conditional inference framework27. In the first step, the algorithm tests the 
global null hypothesis of independence between the response variable (i.e., yield) and any of the input weather 
variables. If the hypothesis cannot be rejected, the algorithm stops; otherwise the algorithm selects the input vari-
able with strongest association to the yield response. The association is measured by a p-value which corresponds 
to an association test for the partial null hypothesis of a single input variable and the response. Then, a binary split 
is implemented in the selected variable (node) and all steps are recursively repeated. The terminal node accounts 

Figure 4.  Location-specific (n = 289 locations distributed in 27 states across the US – Fig. 1) spring frost 
probability for 0, −1, −2, and −3 °C at soybean emergence (at 15 DAS) for 30 DBS to a 30-DAS date bracketing 
the actual sowing date (set to 0). The red line shows the 20% spring frost probability threshold. The probabilities 
for each location were calculated using last 46 years of weather data (1981 to 2016).
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for the final subset of yields. The result of this procedure is a tree-like appearance graph where intermediate and 
terminal nodes are defined according to pre-specified criteria. In our analysis, the criterion for the independence 
test was based on a Bonferroni p-value of alpha = 0.05. Additionally, to ensure adequate power at all steps, each 
intermediate node had to account for >37 observations (~20% of total observations), and a terminal node had to 
consist of >18 observations (~10% of total observations). To avoid overfitting and enhance interpretability, the 
maximum tree depth was set to 10 nodes. Sensitivity analysis, by allowing the development of larger trees and 
terminal nodes with a smaller number of observations, did not change the resultant model.

Machine learning regression analysis is a powerful method of predicting continuous responses. The objective 
of the developed machine learning model was the increased precision of prediction of yet to be observed soybean 
yields rather than just focusing on an improved fit of the training dataset. Therefore, the data were partitioned 
into training (85% of all data) and test (15% of all data) datasets, stratified by states within years to ensure repre-
sentative sampling in both, training and test datasets. The most appropriate model was the one that resulted in the 
highest R2 value and lowest root mean square error in the test dataset.

In this analysis, potential predictors included the aforementioned 30-day-specific and season-wide variables 
to capture differential weather sensitivities at different development stages and season-wide weather variables. 
Additionally, to enhance the predictive ability of the model, the number of days with precipitation >1 mm (a), 
number of days with precipitation <1 mm (b), and the ratio a/b, were calculated for each 30-day period and 
for the entire season. Finally, coordinates (latitude and longitude), and year were also included in the model to 
capture non-weather-related trends that could bias estimates of weather effects. For example, a measurable and 
non-constant effect on yield is the technology adoption yield increase trend over time (year). Omitting this vari-
able would result in potential bias in weather coefficients.

The machine learning model was a functional gradient descent algorithm (boosting) which was developed 
in R (R development Core team, 2016) utilizing the “mboost” package28. After tuning the model, the number of 
boosting iterations was set to 600 and the step length was set to 0.2. Figure S4 shows the performance of the devel-
oped model in fitting the training data (Fig. S4A) and in predicting new data in the validation data set (Fig. S4B). 
We note that the analysis was repeated using trial level data. However, the performance of the developed model 
was poor (Fig. S7A,B) presumably due to the inability of gridded weather data to capture weather differences at 
the trial level21. Nevertheless, aggregation of trials to state-level did not alter the observed trends due to variable 
sowing dates (Fig. S8). Thus, state-wide results are presented due to the superior predictive model when using 
state-wide vs. trial-specific data.

For all locations and years in the study, seven different weather datasets were created by changing sowing date 
from −30 to +30 days from typical (average) in 10-day increments. The machine learning model was applied 
then in all weather datasets to simulate soybean yield in each location from 2007 through 2016 for a total of 1,890 
simulations. The simulated yields were fitted in a multilevel model to quantify the effect of variable sowing date 
on soybean yield as has been described elsewhere29,30. To assess the state-specific soybean yield variability due 
to sowing date, a three-level conditional (mixed effect) hierarchical nested linear model was fitted using PROC 
GLIMMIX in SAS 9.4. The linear and quadratic forms of sowing date were treated as continuous fixed effects, and 
year, state within year, and sowing date within state within year were considered random effects.

The monetary effect of optimum sowing was calculated in three steps. In the first step, the percentage of yield 
change due to optimum sowing within each state, as was identified in previous analysis, and the total, state-wide 
non-irrigated soybean production change (metric tons) in each year (2007 to 2016) were used to estimate the 
production difference (%). Then, the state-year-specific total income ($)11 was adjusted for inflation to 2016 US$ 
values. Finally, utilizing the previously calculated production change and the state-year-specific inflation adjusted 
monetary effects, a 10-year cumulative monetary gain was estimated for each state across the US. Additionally, 
using the 10-year average soybean hectares11 in each state, a state-specific average monetary effect, in terms of $/
ha, was calculated.

Frost probabilities were calculated using binomial distribution of event occurrence (spring frost vs. no frost) 
for different daily minimum temperature thresholds in all locations of the study (n = 289 locations distrib-
uted in 27 states). The last 46 years of weather data (1981 to 2016) for each location were used to calculate the 
probabilities.
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