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Synergy from gene expression and network mining
(SynGeNet) method predicts synergistic drug combinations for
diverse melanoma genomic subtypes
Kelly E. Regan-Fendt1, Jielin Xu1, Mallory DiVincenzo2, Megan C. Duggan2, Reena Shakya3, Ryejung Na3, William E. Carson III2,
Philip R. O. Payne4 and Fuhai Li4,5

Systems biology perspectives are crucial for understanding the pathophysiology of complex diseases, and therefore hold great
promise for the discovery of novel treatment strategies. Drug combinations have been shown to improve durability and reduce
resistance to available first-line therapies in a variety of cancers; however, traditional drug discovery approaches are prohibitively
cost and labor-intensive to evaluate large-scale matrices of potential drug combinations. Computational methods are needed to
efficiently model complex interactions of drug target pathways and identify mechanisms underlying drug combination synergy. In
this study, we employ a computational approach, SynGeNet (Synergy from Gene expression and Network mining), which integrates
transcriptomics-based connectivity mapping and network centrality analysis to analyze disease networks and predict drug
combinations. As an exemplar of a disease in which combination therapies demonstrate efficacy in genomic-specific contexts, we
investigate malignant melanoma. We employed SynGeNet to generate drug combination predictions for each of the four major
genomic subtypes of melanoma (BRAF, NRAS, NF1, and triple wild type) using publicly available gene expression and mutation
data. We validated synergistic drug combinations predicted by our method across all genomic subtypes using results from a high-
throughput drug screening study across. Finally, we prospectively validated the drug combination for BRAF-mutant melanoma that
was top ranked by our approach, vemurafenib (BRAF inhibitor)+ tretinoin (retinoic acid receptor agonist), using both in vitro and
in vivo models of BRAF-mutant melanoma and RNA-sequencing analysis of drug-treated melanoma cells to validate the predicted
mechanisms. Our approach is applicable to a wide range of disease domains, and, importantly, can model disease-relevant protein
subnetworks in precision medicine contexts.
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INTRODUCTION
Systems medicine approaches and related computational meth-
ods have provided new and powerful means to aid in various
aspects of the drug discovery process via modeling complex,
multi-dimensional phenotypes that seek to overcome reductionist
approaches to discovery science.1,2 Numerous studies have
demonstrated their utility in identifying novel drug targets,
predicting on- and off-target mechanisms, and accelerating the
translation of drug repurposing efforts.3,4 Discovering novel uses
for existing drugs through drug repurposing or drug repositioning
has also been an important goal in efforts to advance under-
standing of systems-level effects of large repertoires of chemical
and pharmacological agents, and in doing so, potentially reduce
the financial and labor costs associated with the drug discovery
process. Finally, drug combinations represent the current treat-
ment strategy for many cancers. The cross-talk, redundancy, and
feedback loops of signaling pathways regulating these complex
diseases can drive resistance to single-target therapies.5 The
design of multi-target agents and rationale drug combinations are
aimed at increasing overall efficacy, improve initiation for first-line
therapies, reduce and/or prevent drug resistance, and reduce drug

toxicities. However, it is infeasible, with limited resources, to
experimentally screen pairwise drug combinations derived from
thousands of currently available therapies for synergistic effects
across diverse cell lines and human-derived models.
One systems-based approach employed in this study is the

widely used connectivity mapping method to facilitate systematic
comparison of gene expression profiles characterizing responses
to drugs and biological states of interest using pattern-matching
algorithms.6 The accumulation of ubiquitous drug-induced gene
expression profiles in publicly available datasets has permitted
widespread connectivity mapping analysis, including the original
Connectivity Map (CMap) database and the NIH Library of
Integrated Network-based Cellular Signatures (LINCS) database
containing 473,647 gene expression signatures from 42,080
perturbagens tested across 3–77 cell lines.7 Connectivity mapping
studies via CMap and LINCS quantify the “closeness” between two
biological states (e.g., disease and drug), where drugs that are
determined to be “negatively connected” to a gene expression
signature characterizing a disease state, and the predicted drugs
are hypothesized to oppose or reverse the disease state.8

Connectivity mapping studies have been used in diverse
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applications and have been validated in in vitro and in vivo
models and pursued in clinical trials in several instances.9–11 The
main advantage of these approaches is that they offer an
unbiased, global view of drug features. Similarity matrices
constructed on these gene expression profiles can be exploited
to cluster drugs to categorize potential mechanisms of action and
generate drug combination hypotheses based on the joint
dissimilarity of gene expression patterns of drug pairs as
compared to those associated with disease states.12–15

The second approach we employed to identify drug candidates
is network analysis of interactions comprising disease-relevant
protein subnetworks and interactions between drugs and
targets.2,16 One main advantage of network analysis is that drug
targets can be identified in the context of pathways or interaction
partners in a defined subnetwork, thus permitting a more precise
understanding of molecular mechanisms.17,18 Computational
methods can also facilitate large-scale, in silico perturbation
simulations within network structures, which can also be used to
identify novel drug targets.19,20 Others have utilized network-
based methods to generate hypotheses for off-target effects of
drugs and identify drug candidates for repositioning.21–23

Network-based analyses have also shown promise in identifying
synergistic chemotherapeutic agents.24

Our work is also motivated by several limitations facing current
applications of computational and systems-based methods in
drug repurposing and drug combination discovery. For instance, a
common limitation of many computational methods described in
a recent review is that most models are too “target focused,” in
that they rely heavily on modeling interactions between individual
disease genes or and drug targets.25 While large-scale whole-
exome sequencing (WES) and whole-genome sequencing (WGS)
studies characterizing unique genomic subtypes of a variety of
cancers have identified personalized therapies based on individual
gene mutations, this reductionist approach may limit the under-
standing of biological effects of driver genes and other less
frequently observed genomic aberrations. Another generic issue
plaguing computational drug repurposing and drug combination
prediction methods is the lack of prospective experimental
validation.25 A recent effort to address this issue has been the
systematic collection of real-world evidence of drug repurposing
hypothesis, including gold standards and failed drugs for a variety
of disease contexts and drug candidates.26 While these systematic
databases and more focused experiments have validated several
hypotheses generated by computational drug repurposing
methods across different diseases, there has been comparably
less evidence validating the underlying bioinformatics theory, as
well as the potential mechanisms underlying drugs’ efficacy,
synergy, and/or antagonism.3

Melanoma also serves as an exemplar disease for systems-based
approaches to enable drug repurposing and drug combination
discovery. Recently, The Cancer Genome Atlas (TCGA) consortium
conducted the largest WES study of melanoma tumors to date.
The TCGA study employed an integrative, multi-platform
approach to analyze DNA, RNA, and protein expression of 333
primary and metastatic melanoma tumors and established a novel
framework to classify melanoma tumors based on the following
significant, mutually exclusive mutation patterns: BRAF, NRAS, NF1,
and triple wild type (TWT).27 It is also important to note that these
driver events are not sufficient alone to explain the transformation
and maintenance of tumorigenesis of melanoma tumors.28,29

Studies integrating multi-omics data from melanoma tumors have
been used to identify novel driver genes and have been shown to
improve prognosis predictions over non-integrated models.30–32

Drug combinations are increasingly utilized to address some of
these clinical challenges in melanoma. A multitude of drug
combinations are being investigated in pre-clinical settings and
clinical trials to improve the effectiveness of first-line targeted and
immune therapies for melanoma patients.33 Despite these

improvements, drug resistance to targeted combination therapy
remains a challenge for the majority of melanoma patients.
Therefore, systems approaches that can integrate and interpret
heterogeneous molecular alterations are crucial to enhance our
understanding of melanoma tumorigenesis, drug resistance, and
discovery precision therapeutics for distinct genomic subtypes of
melanoma.
To overcome some of the limitations of these systems-based

approaches, we developed an integrative computational method,
SynGeNet (Synergy from Gene expression and Network mining). In
our previous work, we tested SynGeNet in a limited setting
exclusively in BRAF-mutant melanoma and showed that it could
outperform several other tools that use disease- and drug-
associated gene expression data to generate drug combination
predictions.34 In this study, we systematically expand and evaluate
SynGeNet to predict synergistic drug combinations for all four
genomic subtypes of melanoma, as well as interpret mechanisms
of SynGeNet predictions. While large-scale WES and WGS studies
characterizing unique genomic subtypes of melanoma have
proposed personalized therapies based on individual gene
mutations, this reductionist approach may limit the understanding
of biological effects of driver genes and other less frequently
observed genomic aberrations. Here the concept of a “target” is
extended by modeling disease protein subnetworks via the
integration of diverse molecular profiles to overcome the “one-
target-one-drug” paradigm limitation. Specifically, we used
subtype-specific genomics and transcriptomics data from mela-
noma patient tumors to synthesize coherent network models that
optimize flow from known driver “root” genes and candidate co-
mutated driver genes propagated through PPIs weighted by
biological evidence and gene expression levels. The resultant
protein subnetworks are then analyzed to predict drug combina-
tions that optimize the reversal of gene expression and targeting
of topologically central network nodes. To validate genomic
subtype-specific drug combination predictions in this study, we
utilized results from a previously published high-throughput drug
screen testing drug combinations across diverse genetic back-
grounds of melanoma, including all four major subtypes.35

Additionally, we assessed several other assumptions underlying
our approach, including examining the robustness of the
integrated network to individual genes, the effects of re-wiring
of the connections among genes within the network, comparing
genotype-specific melanoma subnetworks to generalized and
randomized subnetworks, as well as evaluating the use of root
genes and differentially expressed genes alone as compared to
the integrated network models. Finally, we presented prospective
validation of the drug combination of vemurafenib (BRAF
inhibitor) and tretinoin (all-trans retinoic acid (ATRA)) predicted
by our method for BRAF-mutant melanoma. Importantly, we also
investigated the molecular mechanisms underlying the synergistic
effects of this drug combination, as predicted by SynGeNet,
including reversal of gene expression at the BRAF melanoma
network level and at an individual gene level for the most “central”
(i.e., topologically important) genes within the subnetwork.
Due to the heterogeneous genomic landscape of melanoma,

we sought to apply a systems biology framework to integrate
gene variant and transcriptomic data using network analysis to
characterize protein subnetworks of melanoma tumors driven by
distinct driver mutations: BRAF, NRAS, and NF1, as well as BRAF/
NRAS/NF1 TWT. Using the resulting protein subnetworks, we
applied a multi-step approach to define drug combinations that
together we refer to as SynGeNet. First, we identified potential
drug combinations based on (i) drug-induced gene expression
signatures that maximally oppose gene signatures defined by
each melanoma subnetwork and (ii) the combined set of
topologically important target genes within the subnetwork
determined by three centrality metrics. The overall study design
workflow is presented in Fig. 1.
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RESULTS
Distinct protein subnetworks revealed for genomic subtypes of
melanoma
To generate genomic subtype-specific protein subnetworks, we
obtained gene mutation data from primary melanoma patient
tumors from the TCGA database. We defined the following
genomic subtype groups for patients with tumors containing
mutations in the following genes: BRAF (n= 44 patients); NRAS (n
= 10 patients); NF1 (n= 10 patients); TWT (n= 36 patients). The
majority of melanoma patients harboring BRAF and NRAS
mutations exhibited the well-known hotspot driver mutations at
the V600 (42/44 samples) and Q61 (10/10 samples) loci,
respectively. Additionally, three less frequently observed muta-
tions in BRAF (K601E, L245F, and N581H) and one in NRAS (L52W)
were present in this cohort. Interestingly, mutations in NF1 were
observed at 14 different loci, with primarily truncating effects,
which is consistent with the knowledge that NF1 serves as a tumor
suppressor in melanoma. The frequency and location of the

mutations affecting these melanoma driver genes are visualized in
Fig. 2a.
The first step in constructing protein subnetworks is to define a

set of “root” genes from which network flow originates in the
background protein–protein interaction (PPI) network. In addition
to each mutated driver gene (BRAF, NRA, and NF1), we determined
significantly co-mutated genes (P ≤ 0.05, Fisher's exact test) within
each cohort, BRAF (n= 12 genes), NRAS (n= 72 genes), NF1 (n=
200 genes), and TWT (n= 13 genes), to define a set of network
root genes for each genomic subtype. We then utilized gene
expression data for genes differentially expressed in melanoma
tumors as compared to normal skin samples for each genomic
subtype in order to generate subnetworks propagating from root
genes within the background PPI network using the belief
propagation algorithm, as described in the Methods section.36

To establish that gene expression profiles reflected differences in
genomic subtype of melanoma tumors, we performed hierarchical
clustering analysis using the Euclidean distance on gene

Fig. 1 Overview of SynGeNet drug combination prediction study design. The first step of our method involves generating melanoma
genotype-specific protein subnetworks from a source of disease-associated root genes (i.e., significantly co-mutated) from which network flow
is propagated across a background network of protein–protein interactions (PPI) using up-regulated gene expression data (e.g., tumor vs.
normal samples) via the belief propagation algorithm. Next, drug combinations are predicted using the resulting networks, where drug
synergy scores are calculated based on the degree of drug-induced gene signature reversal (i.e., negative gene set enrichment analysis
connectivity scores) and the weighted sum of centrality metrics calculated for the combined set drug targets in the network for each drug
pair. Finally, predicted drug combinations are ranked according to a final synergy score. Drug predictions were validated in this study in two
settings: (i) retrospectively, using Bliss synergy score results from a high-throughput drug screening across melanoma cell lines with different
genomic backgrounds, and (ii) prospectively, where a top-ranked drug combination predicted for BRAF-mutant melanoma was selected as a
case study for prospective validation using in vitro and in vivo models of BRAF-mutant melanoma, and the mechanistic basis for this drug
combination prediction was investigated via RNA-seq gene expression analysis and the subnetwork level and for individual genes determined
to be highly central
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expression data obtained from primary melanoma tumors in the
Gene Expression Omnibus (GEO) GSE15605 and TCGA Skin
Cutaneous Melanoma (SKCM) datasets for each major genomic
sub-group. The corresponding heatmap and dendrogram for the
TCGA SKCM and GEO GSE15605 datasets are shown in Fig. 2b, c,

respectively. Remarkably, the gene expression signatures in the
TCGA dataset grouped each of the four genomic subtypes into
four distinct clusters (Fig. 2b). Differences in global gene
expression patterns between BRAF and TWT samples in the TCGA
dataset exhibited the most striking difference between all four
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groups. While the GEO dataset did not contain NF1mutant or TWT
samples to distinguish among the BRAF/NRAS wild-type tumors,
two major clusters separated the majority of BRAF-mutant primary
tumors from the wild-type tumors similarly to the TCGA dataset
(Fig. 2c). These results suggest that transcriptomic signatures
observed in melanoma tumors may reflect biological differences
in oncogenic driver gene status.
The resulting protein subnetworks for each melanoma genomic

subtype are visualized in Figure S1A, and gene network node
interactions for each network are provided in Table S1. As is
shown in Figure S1A, the vast majority of subnetwork genes
mapped by the belief propagation algorithm were highly up-
regulated (green nodes). Two possible explanations accounting
for the few down-regulated genes observed in each network
include: (i) the genes exhibited high degree of evidence of PPIs
that link multiple up-regulated genes, and/or (ii) they represented
or interact with highly topologically “central” genes (larger size
nodes) that are influential to the overall network structure.
Importantly, because we weighted up-regulated genes (positive
fold-change) to model protein subnetwork activation in the
undirected PPI network, we did not include any co-mutated gene
that resulted in a loss-of-function (LOF) mutation as a root gene
due to the presumed loss of interaction from non-functioning
genes. Interestingly, although we tested this approach including
NF1 as a root gene for the group of patients harboring
predominantly truncating (i.e., LOF) mutations in this gene, the
algorithm did not map NF1 to other interacting proteins in the
network, consistent with our assumption that LOF mutations
would not be effectively modeled using this protein subnetwork
construction approach. Furthermore, the results from our analyses
demonstrated that gene expression signals could distinguish the
NF1 mutant tumors and connect other non-LOF root genes co-
mutated with NF1 through PPIs in this patient cohort, suggesting
that the constructed subnetwork may reflect biological processes
influenced by NF1 mutation status.

SynGeNet method predicts drug combinations for melanoma
genomic subtypes
In this study, we sought to conduct comprehensive melanoma
network analyses to identify drug predictions for diverse genomic
contexts. We generated drug predictions for each subtype-specific
protein subnetwork from the following steps as described in the
Methods: (1) drugs were selected that induced gene expression
profiles that were anti-correlated to the subnetwork via calculating
connectivity scores; (2) drugs were further filtered to those with
target genes mapping onto the subnetworks; (3) centrality scores
were calculated for each drug target gene in the subnetwork; (4)
drug synergy scores were calculated by combining the weighted
connectivity score for each drug pair and the weighted sum of the
combined centrality metrics for the gene targets of each drug pair;
(5) drugs were clustered into communities based on the similarity
of their drug-induced gene expression profiles using the affinity
propagation algorithm in order to select drug pairs from distinct
communities. The full lists of drug combinations predicted for each

genomic subtype-specific melanoma subnetwork are shown in
Table S2. As is shown in Figure S1B, the majority of predicted drug
combinations are unique to each melanoma genomic subtype for
BRAF-, NRAS-, and NF1-mutant melanoma using data from the
TCGA SKCM dataset. Notably, network genes and drug predictions
for TWT exhibited a higher degree of overlap with the other
subtype-specific networks. We also observed similar patterns of
overlap using data from the GEO GSE15605 dataset (Figure S2).
Additionally, to determine whether certain drug classes were more
represented in each genomic subtype, we mapped drug combina-
tions to entities in the KEGG drug database and visualized drug
class relationships in Figure S3. The major drug classes mapped
across all genomic subtypes included antineoplastic and cardio-
vascular agents. Interestingly, BRAF and TWT drug combination
pairs were predominated by several major classes (antineoplastic,
neuropsychiatric, and cardiovascular), while NRAS and NF1 drug
combinations exhibited more diverse drug class pairings.
To validate our drug combination predictions for each of these

melanoma genomic subtypes, we utilized a large-scale high-
throughput drug combination drug screening dataset that tested
5778 pairwise combinations of 108 drugs that are Food and Drug
Administration (FDA) approved or in late clinical trials in all four
melanoma genomic subtypes.35 Specifically, a matrix of Bliss
synergy scores calculated by the authors for drug combinations
were utilized to determine true positives (positive Bliss scores) and
false positives (negative Bliss scores) for our predictions. Interest-
ingly, drug combinations demonstrating synergistic effects in this
screening study were predominantly cellular context specific. The
authors noted that even drug combinations exhibiting profound
synergy in a subset of cell lines were not synergistic or effective in
other cell lines, including those that were expected to be broadly
synergistic or even in the same genomic background. This
screening study tested drug combinations in each of the four
genomic subtypes of melanoma, including one NF1-mutant
melanoma cell line (MeWo) and one TWT melanoma cell line
(COLO792). We also selected the A375 (BRAF mutant) and IPC-298
(NRAS mutant) to validate drug combination predictions for these
melanoma subtypes, as they represented cell lines where the full
matrix of drug combinations was tested. We determined the
precision and recall for genomic subtype-specific drug combina-
tions predicted by our method applied to melanoma protein
subnetworks generated from genomic and transcriptomic data for
each of the four genomic subtypes from the TCGA SKCM dataset.
We observed a high precision for drug combination predictions
across each genomic subtype: BRAF (0.80), NRAS (0.67), NF1 (0.67),
and TWT (0.83) (Fig. 3a). While we also observed a high recall for
BRAF, NF1, and TWT drug combination predictions, we found a
lower recall (0.29) specifically for the IPC-298 NRAS-mutant
melanoma cell line (Fig. 3a). We also evaluated several model
assumptions on the effect of drug combination predictions and
present the results in Supplemental Results (Figures S4–S9).
Lastly, to determine the broader relevance of the drug

predictions in melanoma, we performed a literature analysis for
melanoma–drug associations as well as drug–drug combination
associations quantifying co-occurring terms from abstracts in the

Fig. 2 Spectrum of gene mutations and associated gene expression profiles across melanoma genomic subtypes in the The Cancer Genome
Atlas Skin Cutaneous Melanoma (TCGA SKCM) dataset. a Gene mutation plots including location and frequency of mutations in the BRAF,
NRAS, and NF1 genes are shown for primary melanoma tumor samples in the TCGA SKCM dataset. Mutation marker height corresponds to the
number of mutations and color corresponds to mutation type: missense (green) and truncating, including nonsense, nonstop, frameshift
deletion, frameshift insertion, and splice site (black). Somatic mutation frequency for each gene in this cohort is as follows: BRAF (42.3%), NRAS
(9.6%), and NF1 (9.6%). Protein families visualized for each gene include BRAF: protein tyrosine kinase (457–714), C1 domain (235– 282), and
Raf-like Ras-binding domain (156–225); NRAS: Ras family (5–165); NF1: GTPase-activator protein for Ras-like GTPase (1324– 1451), and CRAL/
TRIO domain (1602-1736). Hierarchical clustering (Euclidean distance) of primary melanoma tumors samples from the TCGA SKCM (b) and GEO
GSE15605 (c) datasets. For the TCGA SKCM dataset, sample labels are color coded according to genomic subtype: BRAF (blue), NRAS (purple),
NF1 (yellow), and triple wild-type (magenta). For the GSE15605 dataset, samples are color coded according to genomic subtype: BRAF (blue),
NRAS (purple), and double wild-type (DWT)
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PubMed database. For each genomic subtype, we determined the
mean number of literature associations involving drugs predicted
in combination with melanoma and compared the results to
literature associations generated from 10 random samplings of
equal size to the original predictions for each genomic subtype
from the same pool of FDA-approved drugs used to generate the
drug combination predictions (Fig. 3b). Overall, we observed a
higher degree of drug–melanoma literature associations for each
of the four sets of drug combination predictions as compared to
the sets of random drug–melanoma pairs. We also sought to
determine the level of literature evidence for drug combinations
predicted for each melanoma genomic subtype, as compared to
random drug pairs (Fig. 3c). We first selected the top 50 drug
combinations ranked for each melanoma genomic subtype and
generated 10 random permutations of 50 drug pairs to search in
the PubMed database. We consistently found a higher number of
literature-reported drug–drug pairs for drug combination predic-
tions across all melanoma genomic subtypes: BRAF (61), NRAS (54),
NF1 (74), and TWT (44), as compared to the average found for
random drug pairs permutations (6). Taken together, these results
show that our approach identified drugs associated with
melanoma and drug combinations with a high degree of literature
evidence compared to random sampling. Thus, these findings may
suggest that our approach predicts drug combinations on the

basis of well-studied biological mechanisms of melanoma and
drug interactions.

Experimental validation of drug combination prediction in BRAF-
mutant melanoma
Currently MAPK pathway inhibitors, including BRAF inhibitors
(vemurafenib, dabrafenib) and MEK inhibitors (trametinib, cobi-
metinib), are the only mutation-specific, targeted therapies
currently approved for melanoma patients. However, patients
become rapidly resistant to these drugs, and more durable drug
combinations are needed to combat resistance. Therefore, we
were interested in pursuing drugs predicted in combination with
BRAF inhibitors for prospective validation for BRAF-mutant
melanoma. The top 10 drug combinations associated with BRAF
inhibitors predicted for BRAF-mutant melanoma tumors are shown
in Table 1. Interestingly, the top drug prediction involving a BRAF
inhibitor ranked by our method for both the TCGA and GEO BRAF
networks was the combination of vemurafenib and tretinoin
(ATRA). This combination was not predicted for any other
melanoma genomic subtype, as vemurafenib and dabrafenib
were only returned for the BRAF networks. Therefore, we selected
this drug combination for prospective validation in the A375 BRAF-
mutant melanoma cell line. Notably, A375 cells treated with the

Fig. 3 Validation of drug combination predictions across melanoma genomic subtypes using high-throughput drug screening data and
literature evidence. a Bliss synergy scores obtained from drug combinations from a high-throughput drug screening study evaluating 5778
drug combinations among 108 drugs in BRAF-mutant (A375), NRAS-mutant (IPC-298), NF1- mutant (MeWo), and TWT (COLO792) cell lines were
used to assess precision and recall of drug combination predictions. The geometric mean of precision and recall (F1 score) is also reported for
each set of genomic subtype-specific drug combination predictions. b The mean number of PubMed abstracts for melanoma–drug
associations for single drugs constituent of drug combinations for the original predictions and random samplings of the Food and Drug
Administration (FDA)-approved drug dataset of equal size for each of the four genomic subtypes. c The mean number of PubMed abstracts for
drug–drug associations for the top 50 drug combinations for the original drug combination predictions in each genomic subtype (color-
coded bars) as well as random samplings of drug pairs (n= 50 pairs) from the FDA-approved drug dataset (gray bars)
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combination of vemurafenib and tretinoin exhibited significantly
lower proliferation following 72 h of vemurafenib treatment
compared with either drug alone or vehicle control (Fig. 4a). To
assess if these observations indicated a synergistic effect for the
combination of vemurafenib+ tretinoin, we employed the
Chou–Talalay method to model synergy. Calculated combination
index (CI) values were as follows for the following effective doses
(ED): ED50 (0.385), ED75 (0.308), ED90 (0.247), and ED95 (0.212),
and median CI value for all tested doses (0.369), where a CI value
<1 indicates a synergistic interaction. To confirm these findings,
we quantified the amount of ATP present in A375 cells following
drug treatment at 72 h, indicating the number of metabolically
active viable cells present. We observed that the combination of
vemurafenib and tretinoin significantly decreased cell viability as
compared either drug alone (Fig. 4b).
Additionally, we sought to determine if this drug combination

could induce cell death in addition to arresting cell growth. We
observed that combination treatment significantly increased A375
cell cytotoxicity as compared to either drug alone and vehicle
control (Fig. 4c). Next, A375 cells were evaluated for the presence
of apoptotic cells via annexin V-propidium iodide flow cytometry
after 72 h of treatment with each drug alone, in combination and
vehicle control. We observed that treatment of the A375 cells with
the combination of vemurafenib and tretinoin led to a significant
increase in these markers of cell death, as indicated by the double-
positive annexin V/PI cell staining (Fig. 4d). Finally, we assessed the
level of caspase-3/7 activity at different time intervals applicable
with the assay protocol employed. We observed peak enzymatic
activity at 6 h following treatment. We observed that the
combination treatment marginally increased caspase-3/7 activity
at 6 and 9 h post-treatment as compared to either drug alone or
vehicle control (Fig. 4e).
To confirm the efficacy of the combination treatment in vivo,

we pursued testing in melanoma mouse xenograft models. Of
note, we did not achieve a stable solubility of tretinoin or
vemurafenib in phosphate-buffered saline (PBS), and administered
drugs via oral gavage in a vehicle solution of 20% PEG-400 (v/v)+
5% TPGS (v/v)+ 75% ddH2O, as this resulted in an improved
solubility and represents the clinically relevant route. Although
previous in vivo studies of tretinoin have tested doses from 10 to
20mg/kg in mice,37–39 we observed side effects of weight loss and
dehydration at 10mg/kg after one week of treatment. Therefore,

we established 10mg/kg to be the maximum tolerated dose of
tretinoin. We also chose the maximum tolerated dose of 50 mg/kg
for vemurafenib for a treatment period of 2 weeks that we have
shown to be efficacious in A375 mouse xenograft models
previously.40 To create melanoma mouse models, 11-week old
athymic nude mice were inoculated with the A375 melanoma cell
line (1.0 × 106 cells suspended in PBS) via subcutaneous injection,
and tumors were grown to 1000mm3. Mice were randomized to
drug treatment groups (n= 8 mice per group). After tumors were
grown to sufficient size 10 days following injection, mice were
treated via oral gavage daily (6 days/week) for 15 days with
vemurafenib alone (50 mg/kg), tretinoin alone (10 mg/kg), vemur-
afenib+ tretinoin combination, or vehicle control. As is shown in
Fig. 4f, mice treated with the combination treatment showed a
significant reduction in tumor weight compared to vemurafenib
alone (P= 0.010, unpaired t test) and vehicle control (P= 0.029,
unpaired t test). We also found that treatment with tretinoin alone
led to a significant decrease in tumor weight as compared to
vehicle control (P= 0.046, unpaired t test), while vemurafenib
treatment alone did not lead to a significant reduction in tumor
weight (P= 0.360, unpaired t test). As we found that mice treated
with tretinoin exhibited known adverse effects of dehydration,
these results should prompt future studies to test lower doses of
tretinoin for models of melanoma in vivo. Histological analysis of
tumors showed no observable difference across treatment groups
regarding the degree of fibrosis, vascularity, or inflammation (Fig.
4g). Decrease in proliferation marker Ki67 was observed in tumors
resected from mice treated with combination and tretinoin, as
compared to vemurafenib or vehicle-treated mice. Interestingly, in
contrast to the early peak in capsase-3 activity observed at 6 h in
combination-treated cells in vitro, we observed a decrease in
caspase-3 staining at day 15 in the combination-treated mouse
tumors compared to either drug alone. Recent studies have shown
that melanoma cells induce caspase-3 to promote cell survival and
growth when exposed to cytotoxic therapy,41 as well as
nonapoptotic roles of basal caspase-3 to promote migration and
invasion of melanoma cells.42

Mechanism of action predictions for vemurafenib+ tretinoin
combination in BRAF-mutant melanoma
To investigate the potential mechanisms of action of the
combination of vemurafenib and tretinoin in the context of
BRAF-mutant melanoma, we performed RNA-sequencing (RNA-
seq) analysis of A375 melanoma cells following treatment with
vemurafenib alone, tretinoin alone, vemurafenib+ tretinoin com-
bination, and vehicle control in triplicate. We observed that global
gene expression patterns clustered samples according to treat-
ment group using three complementary dimensionality reduction
techniques hierarchical clustering with Euclidean distance, princi-
pal components analysis, and multi-dimensional scaling, as shown
in Figure S10. Next, we performed differential gene expression
analysis for several comparisons, including each drug treatment
group relative to vehicle control, as well as the drug combination
group relative to each single drug alone. For each comparison, we
calculated log 2 fold changes and defined differential expression
significance as adjusted P < 0.05 (Wald test; see Supplemental
Methods for details). We next sought to determine if the gene
expression patterns produced by the vemurafenib+ tretinoin
combination treatment could (i) reverse those of the overall
network structure in the BRAF melanoma subnetwork (n= 306
genes) and (ii) specifically reduce the highly central (i.e.,
topologically important) genes. To do so, we mapped differentially
expressed genes in the combination treatment A375 cells relative
to vehicle control onto the original BRAF melanoma network and
observed that the majority (65%) of network genes were down-
regulated (Fig. 5a).

Table 1. Top 10 drug combination predictions for BRAF-mutant
melanoma

BRAF primary melanoma
(GSE15604)

BRAF primary melanoma
(TCGA SKCM)

Rank Drug 1 Drug 2 Rank Drug 1 Drug 2

1 Vemurafenib Tretinoin 1 Vemurafenib Tretinoin

2 Vemurafenib Etoposide 2 Vemurafenib Estradiol

3 Vemurafenib Dinoprostone 3 Vemurafenib Etoposide

4 Vemurafenib Calcitriol 4 Vemurafenib Bosutinib

5 Vemurafenib Doxorubicin 5 Vemurafenib Calcitriol

6 Vemurafenib Amitriptyline 6 Vemurafenib Capsaicin

7 Vemurafenib Fluticasone 7 Vemurafenib Decitabine

8 Vemurafenib Dasatinib 8 Vemurafenib Diazoxide

9 Vemurafenib Bosutinib 9 Vemurafenib Fludarabine

10 Vemurafenib Celecoxib 10 Vemurafenib Olopatadine

Drug combinations were generated using signaling networks from BRAF
co-mutated root genes and gene expression data from two sources of
BRAF-mutant melanoma (GSE15605 and TCGA SKCM)
TCGA The Cancer Genome Atlas, SKCM skin cutaneous melanoma
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Next, we sought to determine if the genes exhibiting the
highest centrality were preferentially altered by the drug
combination treatment compared to either drug alone or vehicle
control. Table S3 lists the top genes ranked by overall centrality
score within the network as well as the top 10 genes connected to
either vemurafenib or tretinoin ranked by centrality score. All top
centrality genes significantly differentially expressed (adj. P < 0.05)
in the combination treatment group were down-regulated. We
then compared the differential expression status of these genes
ranked by centrality score in A375 cells treated with tretinoin
alone, vemurafenib alone, and combination (Fig. 5b). Overall, the
combination treatment showed a trend of decreased expression

of the top centrality genes relative to either drug alone. As an
example, we visualized a gene count plot for AKT1 (V-Akt murine
thymoma viral oncogene homolog 1), as this gene overlapped
between both sets of genes ranked by centrality and has a known
role in melanoma tumorigenesis (Fig. 5c). Interestingly, AKT1 is the
top-ranked gene showing the highest centrality of genes
connected to and exhibited the second highest centrality score
in the overall network. We found that the combination treatment
significantly reduced the expression of AKT1 relative to vehicle
control and either vemurafenib or tretinoin alone. We also found
that high messenger RNA (mRNA) expression of AKT1 was
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associated with poor survival in melanoma patients in several
studies (Figure S11).
To determine whether the decrease in gene expression is a

specific effect of the drug treatment on the network genes, rather
than due to a global decrease in gene expression, we visualized
the distribution of positive and negative fold change in MA (mean
difference) and histogram plots for each drug treatment
comparison, as well as the total number of mapped reads (gene
counts) across each sample (Figure S12). We observed a uniform
number of gene counts in each sample across treatment groups
and even distribution of fold-change values indicating a balanced
number of up- and down-regulated genes. In fact, a slightly
greater number of genes were significantly increased in each drug
treatment condition, suggesting that the decreased gene expres-
sion observed in the BRAF melanoma network genes is likely due
to biological causes rather than an artifact of widespread
suppression of gene expression.
Finally, we examined differences in gene expression of the

direct targets of vemurafenib and tretinoin following drug
treatment. Although the BRAF gene was included in the BRAF
melanoma network, no significant difference in gene expression
was observed relative to vehicle control for either vemurafenib,
tretinoin, or combination (Figure S13). This finding was unsurpris-
ing, as the known mechanism of vemurafenib involves the
selective binding, and therefore blocking, of the active state of the
BRAF kinase domain responsible for its constituent activation only
when mutated at the V600 position, rather than exerting
regulatory effects on endogenous mRNA expression levels.
However, we observed that the drug combination treatment
significantly altered the expression of each of the known isoforms
of the retinoic acid receptor (RAR) (n= 3) and retinoid X receptor
(RXR) (n= 3) genes. It is known that increased expression of these
receptors results in increased responsiveness of cancer cells to the
growth arresting and differentiating effects of tretinoin, and that
tretinoin treatment can further increase expression of these
receptors. Interestingly, we found that vemurafenib and the
combination of vemurafenib+ tretinoin could increase the
expression of RAR-β, RAR-γ, RXR-α, and RXR-β, while the
expression of RAR-α and RXR-γ were significantly reduced by
vemurafenib and vemurafenib+ tretinoin combination treatment.
Notably, the effects of tretinoin are thought to be predominantly
mediated via the RAR-β2 isoform. Remarkably, the RAR-β gene
was the only RAR/RXR gene observed to be significantly increased
by the combination treatment as compared to vemurafenib alone,
tretinoin alone, and vehicle control (Figure S13), suggesting that
synergistic effects of vemurafenib+ tretinoin we observed may be
due to, in part, a favorable increase in RAR-β gene expression.

DISCUSSION
In this study we applied SynGeNet, a computational drug
combination prediction method, to four subtypes of melanoma
based on genomic classification of major driver events, including
mutations in BRAF, NRAS, NF1, and TWT tumors. We employed this
systems-based approach to interpret the effects of genetic
aberrations and drug treatments on genome-wide expression
profiles and PPIs through integrative network models. Through
the analysis of these networks, we further identified potential
synergistic drug combinations based on a synergy model
prioritizing drug combination candidates that maximally alter
melanoma networks via reversal of gene expression and targeting
topologically important network nodes. Finally, we validated our
drug combination predictions through a combination of in silico
and experimental approaches, including a drug repurposing
candidate involving tretinoin in combination with vemurafenib
for BRAF-mutant melanoma. Importantly, we prospectively vali-
dated in vitro the predicted mechanisms underlying the SynGeNet
methodology.
We demonstrated that frequently co-mutated genes, transcrip-

tomic profiles, and resulting networks distinguished the four
melanoma genomic subtypes, and these differences were also
reflected in the pattern of predicted drug combinations. Notably,
our SynGeNet method achieved a high precision in predicting
drug combinations tested in melanoma cell lines representing
each of the genomic subtype and performed better than selecting
random drug pairs from the same pool of FDA-approved drugs.
This is an important aspect of rank-based prediction methods in
biomedical applications, where a high density of true-positive
predictions are prioritized toward the top of the list can be
selected for subsequent validation due to time and cost restraints.
We also established a broader relevance of drug combinations
predictions identified across all subtypes, as we observed a high
degree of literature associations for melanoma–drug and
drug–drug pairs for subtype-specific predictions. Furthermore,
we conducted several internal evaluations of our method’s
assumptions and found: (1) drug combinations predicted for
genomic subtype-specific networks in each context performed
better than two examples of generalized melanoma networks, (2)
the integrative network models combining genomic and tran-
scriptomic data outperformed employing either data type alone,
and (3) randomly re-wiring the interaction partners within the
network reduced the true-positive and increased false-positive
predictions, suggesting the network structure underlying the
connections among proteins and interactions among potential
drug combinations is an important aspect to our method’s
performance. Interestingly, we observed the constructed

Fig. 4 In vitro and in vivo validation of vemurafenib+ tretinoin combination in BRAF-mutant melanoma models. a Percent proliferation of
A375 cells following 72 h of treatment with tretinoin (blue), vemurafenib (red), and tretinoin+ vemurafenib combination (purple) relative to
dimethyl sulfoxide (DMSO) vehicle treatment as determined by MTS assay. Combination index (CI) values calculated by the Chou–Talalay
method for drug combination synergy are reported for effective doses ED50, ED75, ED90, and ED95 values. b Percent viable A375 cells
following 72 h of treatment with tretinoin (blue), vemurafenib (red), and tretinoin+ vemurafenib combination (purple) relative to DMSO
vehicle treatment quantified by ATP luminescence. c Cytotoxicity was measured in A375 cells via fluorescent cyanine dye bound to DNA
released following cell death at 72 h following treatment with vehicle control (DMSO 1 μM), tretinoin (blue), vemurafenib (red), and tretinoin
+ vemurafenib combination (purple). d A375 cells were treated with 5 μM of DMSO (green), tretinoin (blue), vemurafenib (red), or tretinoin+
vemurafenib combination (purple) for 72 h and stained for Annexin V and propidium iodide (PI). Cell populations were analyzed for apoptosis
via flow cytometry and quantified with FlowJo software and shown as the mean for double-positive Annexin V/PI-stained cells. e Apoptosis
was measured by caspase-3/7 enzymatic activity via a fluorescence based assay at 1, 2, 6, and 9 h time intervals following treatment (1 μM)
with DMSO vehicle control (green), tretinoin (blue), vemurafenib (red), and tretinoin+ vemurafenib combination (purple). f A375 cells were
injected subcutaneously (1 × 106 cells) into 8-week old athymic nude mice. After 10 days of tumor growth, mice were randomized to the
following treatment groups (8 mice/group): daily oral gavage (6 days/week) with vemurafenib (50mg/kg daily), tretinoin (10mg/kg),
combination or vehicle (20% PEG-400 (v/v)+ 5% TPGS (v/v)+ 75% ddH2O). Treatment concluded after 15 days, and tumors were harvested
and weighed. g Representative images are shown for hematoxylin (H&E) (top; a–d) and immunohistochemical staining for Ki67 (middle; e–h)
and caspase-3 (bottom; i–l) from formalin-fixed tumors resected from mice on day 15 of treatment. Error bars represent SEM. Significance was
determined using unpaired t tests: #P < 0.10, *P < 0.05, **P < 0.005, and ***P < 0.0005
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subnetworks to be highly stable with respect to the removal of
individual genes, including major driver genes (e.g., BRAF, NRAS,
etc.).
For our prospective experimental validation, we focused on

drug combinations involving BRAF inhibitors for BRAF-mutant
melanoma, as this represents the standard of care for these
melanoma patients. Among our top-ranked drug combination
pairs involving BRAF inhibitors, several drug combinations were
previously validated in preclinical and clinical studies, including
celecoxib (COX-2 nonsteroidal anti-inflammatory),43 dasatinib (Src
family kinase inhibitor),44 and decitabine (cytotoxic chemother-
apy).45 In this study, we demonstrated experimental evidence
validating the drug combination of vemurafenib and tretinoin
(ATRA), which was the top-ranked prediction involving BRAF
inhibitors for BRAF-mutant melanoma by our method. We
demonstrated synergy in suppressing cell proliferation and cell
viability, as well as increasing cytotoxicity and cell death in vitro
across a range of equal ratios of drug doses. Surprisingly, we
observed in vivo that tretinoin alone and in combination with
vemurafenib could significantly reduce tumors, despite its
relatively weaker effects in vitro compared to vemurafenib alone
or in combination. Importantly, we also experimentally validated
the reversal of overall gene expression of subnetwork nodes as

well as those produced by the highly central and most influential
genes in the BRAF network following drug combination.
Tretinoin (ATRA) is the most biologically active metabolite of

vitamin A (retinoid), and functions in the regulation of cell
development, differentiation, and proliferation. ATRA has been
used as a tumor differentiation therapy, which aims to reprogram
cancer cells to inhibit proliferation, trigger cell cycle arrest,
inducing apoptosis, and restore normal cell characteristics. ATRA
is the first-line therapy for acute promyelocytic leukemia (APL),
and can induce complete remission in these patients.46 Retinoids
have been used as chemotherapeutics and in the adjuvant setting
in a variety of cancers; however, ATRA is less effective in treating
solid tumors, which may be due to its reduced aqueous solubility
limiting sufficient quantities delivered to the tumor sites.47 Reports
on the effectiveness of ATRA therapy in melanoma have also been
conflicting. ATRA has been shown to inhibit growth of normal
human melanocytes, while its effectiveness in melanoma cell lines
was shown to be minimal.48 In a recent in vivo study, topical
tretinoin inhibited B16F10 melanoma growth via promoting the
maturation and cytotoxic capabilities of anti-tumor CD8+ T cells in
mice.49 A large-scale retrospective analysis of 69,635 patients
enrolled in the VITAL study revealed that baseline use of
retinol supplements, as well as intake of high-dose retinol
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supplementation (>1200 μg/day), was associated with significantly
reduced risk of melanoma.50 Another group applied a network-
guided approach to predict sensitivity to ATRA based on gene
expression profiles from a wide array of tumor types contained in
the TCGA database. Interestingly, they found that uveal melanoma
was the neoplasia with the highest predicted sensitivity.51

Additionally, a phase II clinical trial is currently investigating ATRA
in combination with ipilimumab as a treatment for stage IV
melanoma (NCT02403778).
Effects of ATRA are mediated by nuclear receptors, including

RARs (RAR-α, RAR-β, RAR-γ) and RXRs (RXR-α, RXR-β, RXR-γ), which
are also expressed as different mRNA isoforms. While the precise
cause of resistance to ATRA in melanoma is not completely
understood, one mechanism may be low expression of RAR-β2. In
fact, RAR-β2 expression is repressed primarily by DNA methylation
in a variety of cancers, and it has been reported that its promoter
is methylated in a 30–70% of melanoma cell lines and clinical
samples.52 Interestingly, ectopic expression or induced expression
of endogenous RAR-β2 restores sensitivity to retinoic acid. One
study also demonstrated that basal levels of RAR-β2 in melanoma
cell lines were correlated with the ability of ATRA to reduce cell
proliferation, and that ATRA treatment could further increase RAR-
β2 expression and sensitivity to ATRA. The authors did not observe
correlations between other RA or RX receptor gene expression and
responsiveness to ATRA in this study, although protein expression
was not examined. We also observed variable effects of tretinoin
in this study. When given alone, tretinoin was minimally effective
in vitro, but had dramatic effects in reducing tumor volume alone
when given to nude mice, which also have compromised adaptive
immune systems. An interesting finding in our study was that
treatment with vemurafenib and the combination of vemurafenib
+ tretinoin significantly increased expression of RAR-β, RAR-γ,
RXR-α, and RXR-β and reduced expression of RAR-α and RXR-γ,
which may promote responsiveness to tretinoin in these
melanoma cells.
Our RNA-seq analysis of single drug- and combination-treated

melanoma cells revealed several interesting findings. We found
that the vemurafenib+ tretinoin combination treatment sup-
pressed gene expression of the majority of BRAF melanoma
network genes that were highly up-regulated in patient tumors.
We also observed that seven out of ten of the top most central
genes in the network were significantly down-regulated following
combination treatment. Interestingly, we found that AKT1, the
second highest central gene overall and top most central gene of
those connected to either drug, was significantly down-regulated
following combination treatment as compared to vehicle or either
drug alone. Remarkably, another recent network-based study of
melanoma also reported that AKT1 was the highest ranking “hub”
gene by PageRank centrality and showed the highest degree of
differential gene expression in patient tumors.53 The activation of
the PI3K-AKT pathway has an established role in melanoma. In
fact, it has been shown that increased expression of AKT1 and
activation of AKT1 via phosphorylation promotes melanoma
proliferation and metastasis,54,55 is associated with reduced
melanoma patient survival,56,57 and mediates resistance to BRAF
inhibitor therapy.58,59 The observed reduction of AKT1 expression
via treatment with vemurafenib+ tretinoin combination may
partially explain the drug combination’s synergistic action in
reducing cell proliferation in BRAF-mutant A375 cells in this study.
Another interesting finding in our analyses was the potential

role of FN1 (fibronectin 1) in melanoma and a candidate
mechanism by which the combination of vemurafenib and
tretinoin may mediate its effects. FN1 was the only other gene
in addition to AKT1 that was ranked among both the top 10 most
highly central genes in the network and top centrality genes
interacting with vemurafenib or tretinoin. High expression of FN1
has been associated with tumorigenesis and metastasis in a
variety of solid cancers, and suppression of FN1 has been linked to

reduced cancer cell proliferation and increased apoptosis.60–65

Several studies have also demonstrated that down-regulation of
FN1 expression could be mediated by microRNAs, which led to
tumor suppression in different cancers.66–68 The role of FN1 in
melanoma has not been well established, although two studies
reported that FN1 was linked to the hypoxic microenvironment of
melanoma in promoting an invasive tumor phenotype.69

LIMITATIONS AND FUTURE DIRECTIONS
Our study was limited in several ways, and future studies should
seek to overcome these limitations. While we employed genomic
and transcriptomic data from the largest WES cutaneous
melanoma cohort study to date from the TCGA, we nevertheless
are subject to cohort bias in the primary melanoma tumor
samples analyzed from the TCGA (n= 100) in addition to
transcriptomics data from a smaller-scale GEO dataset (n= 16).
For instance, a subsequent WGS melanoma study that included
additional non-cutaneous melanoma tumors recently identified
several other significantly mutated potential driver genes missed
by the TCGA study.70 In another WGS study of desmoplastic
melanomas, NF1 was found to be highly mutated and lacked the
most common hotspot mutations in BRAF or NRAS were
discovered in this cohort.71 Furthermore, the mutation rate of
known melanoma driver mutations is also influenced by body site
location of tumors and ultraviolet exposure, leading to intra- and
inter-tumor differences.72 We also restricted our analysis of
genomic aberrations to gene mutations in coding regions. This
may have biased our results considering that the TWT melanomas
exhibited the highest proportion of structural rearrangements,
including large DNA segment amplifications and deletions.27

While the use of genomic and transcriptomic from primary
melanoma tumors permitted a more focused analysis on
oncogenic pathways, other factors beyond the cancer cell,
including microenvironment and metastatic tumors should be
considered.
To construct protein subnetworks, we relied upon a compre-

hensive curated database of PPIs from the BioGRID database (n=
1,168,521 current non-redundant interactions). However, validated
directionality information for these interactions was not readily
available on a large scale, and thus our protein subnetworks were
constructed as undirected graphs integrating gene expression
information and PPIs. Due to this limitation, we excluded LOF
gene mutations from our analysis, as network flow was mapped to
include “positive” interactions with higher weights applied to PPIs
with a high degree of evidence and up-regulated gene expression
fold-change values. Nevertheless, future work should model the
impact of LOF mutations and down-regulation of signaling
pathways using well-validated, directional PPI information. Biolo-
gical and drug interaction databases are not complete and contain
biases to the most well-studied genes. Therefore, highly studied
genes may lead to an overestimation of connectivity within a
network and an inflated number of drug and disease associations.
Although our network analyses were repeated with different
datasets and in random permutations, further iterations could
confirm the reproducibility of the results. Utilizing networks with
higher resolution information, including directed edges, isoform-
specific interactions, and variations of protein structures impacting
PPI and protein–drug interactions could improve results limited to
undirected networks in this study. Furthermore, conditional
dependencies and feedback loops characterizing gene regulatory
relationships could be explicitly modeled, such as the relationship
between transcription factors and the expression patterns of
genes under their influence. Incorporating data from melanoma
patient tumors that can be implicated in the upstream or
downstream regulation of gene expression, including methylation,
microRNA, and protein expression profiles, may also improve the
accuracy of these models. Additional causal genetic data could be
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integrated with existing drug information in future studies. For
example, one recent study integrated synthetic lethality screens
and gene set enrichment analysis to identify synergistic drug
combinations for colorectal cancer, one of which was validated
in vitro and in vivo PDX models73 and is being pursued in clinical
trials.74 Additionally, while we evaluated several clustering
algorithms to distinguish drug communities based on similarities
of gene expression profiles, other sources of drug-related data
types could be compared to determine optimal features that
classify drugs on mechanistic differences. Alternative statistical
methods for connectivity mapping could also be evaluated in the
context of this drug combination prediction approach.75,76 Future
work could also investigate hypotheses formulated on opposing
principles outlined in this study to define antagonism, for
example, enhancing gene expression, weakly affecting or
promoting the function of highly central genes in disease
networks. However, a recent study comparing different computa-
tional drug combination prediction methods showed that
predicting synergy did not correlate with the ability to predict
antagonism.77 Thus, future work should continue with careful
consideration to specific goals in predicting drug combinations.
One significant clinical challenge with the use of ATRA therapy

is differentiation syndrome, which causes severe adverse effects
due to endothelial activation, cytokine release, and other vascular
factors mediating tissue damage. In this study, we observed
several adverse dermatological effects, including skin dehydration
and flakiness in mice treated with 10mg/kg of tretinoin daily via
oral gavage. We also observed dose-dependent weight loss in
mice treated with tretinoin at daily doses of 10–20mg/kg. One
recent study tested a formulation of a liposome encapsulated
ATRA in comparison to free ATRA in a mouse model of lung
metastasis using tail vein-injected mouse melanoma cell line
B16F10.47 Compared to free ATRA, the authors observed that
encapsulated ATRA achieved an increased lifespan, and reduced
lung tumor nodules and tumor markers at a low dose (0.60 mg/kg
per day), while also reducing several unwanted side effects of
ATRA therapy, including reducing oxidative stress, lipid profiles,
increasing T-helper type 1 (Th1) cytokines, and decreasing Th2
cytokines. Given these findings, the results of this study also
warrant further testing of tretinoin in melanoma at lower doses
through other delivery systems to reduced unwanted side effects.
Important avenues to explore in future studies including

modeling drug toxicities and adverse interactions to balance with
synergy predictions, as unexpected side effects are a common
cause for failure in clinical trials of drug combinations. For
example, one group recently proposed a signed drug-target
network to jointly model synergy and adverse effects based on
the proportion of on- and off-target effects, respectively.78

Another group showed how the similarity of toxicity profiles
could be used to model drug–drug interactions.79 Furthermore, a
publicly available as part of the NIH LINCS platform has recently
been made available for researchers to predict side effects of
drugs using the L1000 transcriptomics data.80 As recent advances
in immune-based check point inhibitors have shown improved
clinical benefits to melanoma patients and in other cancers,
developing methods to systematically predict drug combinations
to improve the efficacy of existing immunotherapies represents an
exciting opportunity for future research applications. For instance,
a recent study systematically mapped gene expression signatures
characterizing drug treatments and immune cell types to model
pharmacological interactions with immune system components.81

Specific to tretinoin (ATRA) as a drug repurposing candidate in
melanoma, it is known that ATRA can also mediate its effects by
modulating different components of the immune system and free
radical oxidizing species,47,49,82 and these mechanisms and
corresponding biomarkers should be investigated in future
in vivo and clinical studies. Finally, our method highlights the
potential to personalize drug combination predictions for

melanomas classified into four major genomic subtypes, and it
will be important to evaluate this precision medicine paradigm in
pan-cancer analyses along similar genomic-based groups as well
as other diverse molecular classifications.

CONCLUSIONS
Overall, the results of this study add to the growing body of
evidence supporting the use of systems-based medicine frame-
works for drug discovery applications. Given the high financial and
labor costs to screen large sets of pairwise drug combinations,
these approaches will be particularly beneficial as a preclinical
hypothesis generation system to reduce the search space of drug
candidates and provide insights into potential mechanisms via
extensive model simulations under different conditions. We also
highlight the potential to better understand the pathophysiology
of complex disease via global analysis of networks and molecular
profiles. We present experimental evidence for the top drug
combination predicted by our method for BRAF-mutant mela-
noma and validate gene expression at the network level and for
highly ranked centrality genes. From a translational and clinical
standpoint, our work highlights the potential to personalize drug
combination predictions for diseases classified according to
specific molecular contexts.

METHODS
Data sources
Gene expression data of primary melanoma tumor samples was obtained
from GEO dataset GSE15605 (n= 46) and of primary melanoma tumor
samples from TCGA SKCM dataset (n= 100). Melanoma-associated
genomic variant data was obtained from the DisGeNET (DGN) database
(v5.0)83 and TCGA SKCM dataset from the cBioPortal database.84,85 PPI data
was obtained from the BioGRID database.86 Gene expression profiles (Z-
scores) of 633 FDA-approved drugs tested in vitro in the A375 melanoma
cell line was obtained from LINCS L1000 database.87 Drug target
interaction data was obtained from DrugBank (v5.0)88 and high confidence
interactions (score >700) from STITCH (v4.0).89 Drug classes were mapped
using the KEGG DRUG database.90 Literature abstracts containing
melanoma–drug associations and drug–drug associations were obtained
from the PubMed database.

Genomic variant data analysis
The cBioPortal web tool (http://www.cbioportal.org/) used to define
melanoma patient cohorts were defined according to BRAF, NRAS, and
NF1 mutation status and generate gene mutation plots from the TCGA
SKCM dataset. For each genomic sub-group defined for primary melanoma
tumors in the TCGA SKCM dataset (BRAF, NRAS, NF1, and TWT), we selected
co-occurring mutated genes that exhibited a log odds ratio >0 with a
corresponding Fisher's exact test P ≤ 0.05. Significantly mutated genes and
LOF mutations were determined using the InVex method, where we used
P ≤ 0.05 as a significance threshold.91 Gene–disease association scores for
genes associated with melanoma were obtained from the DGN database,
which were ranked according to the number and type of evidence as
previously described. For the GSE15605 dataset, BRAF and NRAS mutation
status of each tumor were quantified by reverse transcription polymerase
chain reaction.

Analysis of publicly available gene expression data
Microarray gene expression data from primary melanoma tumor from GEO
dataset GSE15605 and RNA-seq gene expression data from primary
melanoma tumors from the TCGA SKCM dataset were selected for analysis.
For Affymetrix Human Genome U133 Plus 2.0 microarray data from dataset
GSE15605, RMA- and quantile-normalized gene expression data was log 2
transformed, and gene expression values of probesets mapping to the
same gene were averaged. Of note, snap-frozen melanoma tumors from
this study were evaluated by a dermatopathologist who identified areas
with >70% tumor cellularity, as described previously.92 Differential
expression analysis was performed using the limma R package for tumor
vs. normal samples in each of the available genomic sub-groups (BRAF+,
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NRAS+, and BRAF/NRAS double wild type). Log-fold-change values were
calculated, and statistical significance of differential expression was set as
false discovery rate <0.05 (Benjamini and Hochberg adjustment). RNA-seq
data from TCGA SKCM (2016_01_28 version) was downloaded via
Firebrowse (http://firebrowse.org/), and RSEM-normalized gene expression
values from each of the genomic sub-groups (BRAF, NRAS, NF1, and TWT)
were mapped to differentially expressed genes as defined above.
Hierarchical clustering of normalized gene expression data was performed
in the R statistical environment using the heatmap.3 function with the
Euclidean distance of genes. The top 10% of genes with the largest
variance were selected, and heatmap plots were generated using the
gplots and GMD R packages.

Generation of genotype-specific protein subnetworks
Protein subnetworks were generated for each unique combination of gene
expression data from each dataset and from significantly co-mutated
genes observed in the TCGA SKCM dataset for each of the four genomic
sub-groups of primary melanoma tumors. In addition, two general
melanoma networks were constructed using melanoma-associated genes
from the DGN and from significantly mutated genes observed across all
melanoma tumors (SMG). The belief propagation algorithm was used to
construct the protein subnetworks by determining network flow originat-
ing from co-mutated “root” genes connected through PPIs in a back-
ground network from the BioGRID database.36 Network flow was mapped
via the belief propagation algorithm by favoring connected genes with up-
regulated fold-change values and disfavoring protein–protein connections
with low experimental evidence to maximize targetable molecular entities.
Of note, mutated genes resulting in LOF were not included as root node
genes in any network, as connected interactions in the undirected network
were predicated on the presence functional proteins. Constructing each
network can be described as a subnetwork inference problem mathema-
tically as follows: given the BioGRID background network, G= (V, E), the
subnetwork, G′= (V′, E′), is constructed to minimize the cost function (Eq.
1):

min
E0�E;V 0�V

X

e2E0
ce � λ

X

i2V 0
bi ;

where ce represents the cost of an edge and bi represents the gene
expression fold change for network nodes. The λ parameter regulates the
tradeoff between the ce and bi parameters and thus the overall size of the
subnetwork. Here we set λ= 0.025 based on empirical evaluation. Network
visualizations were created using Cytoscape software (v 3.6.0).93

Computational drug combination prediction
We computed drug combination predictions using networks generated for
each set of root genes and gene expression data in a multi-step method
referred to as SynGeNet.34

The Kolmogorov–Smirnov statistic was used to calculate connectivity
scores between gene expression profiles (at the level of Z-scores) of 633
FDA-approved drugs tested melanoma cells from the LINCS L1000
transcriptomics database and gene expression profiles representing the
up-regulated genes in the melanoma disease networks. Individual drugs
were ranked by negative connectivity scores, that is, those drugs
corresponding to a “reversal” of the melanoma disease network gene
signature.8 Connectivity scores were normalized to a range of [−1, 1], and
we selected those drugs with normalized connectivity scores ≤−0.50. The
selected drugs were empirically prioritized using weights as follows (Eq. 2):

wi ¼ 1:0þ 1:0� ri=ndð Þð Þ;
where wi and ri are the weight and rank of the ith selected drug and nd is
the number of selected drugs. Using drug target information from the
DrugBank and STITCH databases, we further filtered drugs to include those
with targets in the network. Next, drug target genes were mapped on the
constructed melanoma disease networks, and the centrality of each drug
target gene within the overall disease network was calculated using the
betweenness, closeness, and page-rank centrality metrics from the igraph
R package. The closeness of a network node calculates the average length
of the shortest path between the node and all other nodes in the graph.
Betweenness determines the number of times a node acts as a bridge
along the shortest path between two other nodes. The page-rank metric
quantifies the number of connections (edges) for a given node and
weights the connecting edges by the degree of the originating nodes.
Drug synergy scores were calculated for drug pairs (di and dj) using the

weighted connectivity scores for each drug and the weighted sum of the
network centrality parameters for the combined set of drug target (cst) in
the network as follows (Eq. 3):

sij ¼ wi ´wj ´
X

t

cst:

Drug combinations were ranked by synergy score in decreasing order.

Drug community clustering
Drug community clustering analyses were performed on the Pearson's
correlation matrix of drug-induced gene expression profiles. The following
R packages were used to employ the corresponding clustering methods:
apcluster package apcluster function (affinity propagation); fpc package,
pamk function using k= 10 clusters based on an optimum average
silhouette width tested on a range of k values 1:100 (partitioning around
medoids); hclust package hclust function (hierarchical clustering); dbscan
package dbscan function an epsilon neighborhood size= 3 and minPts=
5, per method recommendations (density-based clustering of applications
with noise). Clustering algorithms were compared using the cluster.stats
function from the fpc R package. We restricted final drug combination
candidates to drug pairs from different drug communities. Drug pair
classes were visualized using circos plots generated from the circlize R
package.

Combinatorial drug screening validation dataset
We obtained results from a recently published high-throughput drug
combination screening study evaluating 5778 drug combinations among
108 drugs.35 We utilized Bliss synergy scores for drug pairs tested four cell
lines representing each of the major genomic subtypes of melanoma: BRAF
mutant (A375), NRAS mutant (IPC-298), NF1 mutant (MeWo), and TWT
(COLO792). Synergistic drug combinations corresponded to those with
positive Bliss scores, as defined by the authors of this study. We evaluated
all genotype-specific drug combination predictions overlapping with those
evaluated in the corresponding representative cell line. True positives and
false positives were determined as predicted drug predictions with
positive and negative Bliss scores, respectively. False negatives corre-
sponded to drug combinations with positive Bliss scores identified in the
screening study that were missed by our method despite both single drugs
present in our original pool. We then calculated the precision, recall, and
corresponding F1 scores for each set of genomic subtype-specific drug
combination predictions.

EXPERIMENTAL METHODS
Methods for in vitro and in vivo experiments, including RNA-seq
analysis and statistics sections, may be found in Supplemental
Methods.

Ethics statement
Access to melanoma patient data via TCGA and GEO repositories
for research purposes were permitted via IRB approval from
corresponding study sites. Mouse studies were conducted
according to the policies and protocols set by the ULAR at The
Ohio State University.

Code availability
The R code for SynGeNet method and corresponding datasets
have been made available as Supplemental material, as well as at
the following link: https://figshare.com/articles/SynGeNet_Synergy
_from_gene_expression_and_network_mining/7551296 (https://doi.
org/10.6084/m9.figshare.7551296). All code dependencies, instruc-
tions for download, and Apache 2.0 license details are included in the
SynGeNet R package
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