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Abstract

Advances in technical capabilities for reading complex human microbiomes are leading to an 

explosion of microbiome research, leading in turn to intense interest among clinicians in applying 

these techniques to their patients. In this review, we discuss the content of the human microbiome, 

including intersubject and intrasubject variability, considerations of study design including 

important confounding factors, and different methods in the laboratory and on the computer to 

read the microbiome and its resulting gene products and metabolites. We highlight several 

common pitfalls for clinicians, including the expectation that an individual’s microbiome will be 

stable, that diet can induce rapid changes that are large compared with the differences among 

subjects, that everyone has essentially the same core stool microbiome, and that different 

laboratory and computational methods will yield essentially the same results. We also highlight the 
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current limitations and future promise of these techniques, with the expectation that an 

understanding of these considerations will help accelerate the path toward routine clinical 

application of these techniques developed in research settings.
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Interest in the microbiome is at an all-time high, with the microbiome connected to an 

increasing range of diseases of interest to gastroenterologists and hepatologists. For 

example, obesity,1–4 inflammatory bowel disease,5–7 alcoholic and nonalcoholic fatty liver 

disease,8–10 and hepatocellular carcinoma11–14 all have been linked to the microbiome in 

human beings, and changes in the microbiome have been shown to induce or modify these 

diseases in animal models. However, moving this linkage to a clinically relevant diagnostic 

is still in the research phase.

We have seen enormous progress in the past decade in using genomic sequencing coupled 

with computational pipelines to decipher the human gut microbiome.15 These tools are 

necessary because of the incredible information density of the microbiome. Each teaspoon 

of stool contains in its bacterial DNA alone the amount of data that it would take 100,000 of 

today’s highest-capacity thumb drives to store. (This number was reached using the 

following calculations: 1 g stool contains 100 billion microbes [27541692; https://doi.org/

10.1371/journal.pbio.1002533]. We then assume 5 million bases per microbe [~1 million 

bytes], which then yields 10E11 10E6 = 10E17 or 100,000 terabytes. The current 

highestcapacity thumb drive size is 1 terabyte, so at approximately 12 g each, this data 

would weigh 1200 kg [1.3 tons], or approximately the weight of a young giraffe.) This 

information also is dynamic because the microbiome profile changes with diet and medical 

interventions. These problems create challenges for clinicians in deciding whether it will be 

medically informative to ask a patient to collect stool or for the physician to obtain 

colonoscopy biopsy specimens and send them off for sequencing. Interpreting and 

discussing the results with patients can be challenging, especially with a lack of standard 

parameters and reference data for comparison.

In this review, we cover what the microbiome is, how it can be collected, what molecular 

methods can be used to analyze it, how the data can be interpreted, and what some of the 

limitations are in combining conclusions from different studies. Our goal is to highlight 

which areas are solid, which areas are emerging, and where the greatest potential is for 

future work to provide actionable information that benefits patients.

What Is the Microbiome?

The human gut is home to a variety of microbes, including bacteria, archaea (single-celled 

organisms without nuclei that are related more closely to eukaryotes than to bacteria), fungi 

(mostly yeasts), microbial eukaryotes (usually Blastocystis in the United States, but a variety 

of pathogenic and nonpathogenic taxa in developing countries), and viruses/phages. This 

collection of microbes is called the microbiota; their genes are called the microbiome.16 
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However, the term microbiome has come into popular use to refer to the microbes 

themselves. Whether the microbiome includes the virome (the repertoire of viral genes) is 

open to debate. Because of the technical ease and widespread utility of approaches that just 

read the bacteria (see later), many people assume that the microbiome refers only to the 

bacteria, but this is not correct. Rather, if a difference is shown in the bacterial compartment 

of the microbiome between cases and controls, it is necessarily true that the microbiome is 

different; however, if no difference in the bacteria is found, there still might be a difference 

in other kinds of microbes (eg, yeast or viruses).

Until recently, a frequently repeated slogan was that the human microbiome contained 10 

times as many cells as the human body. This figure was based on a rough calculation 40 

years ago,17 and the correct claim was that the true figure was somewhere between 1:10 and 

10:1, but could be as much as 10:1. Since then, the errors on the estimates of the number of 

human cells and microbial cells have narrowed considerably, with the true figure being much 

closer to 1:1, with the balance slightly in favor of the microbes.18 Therefore, it is fascinating 

to consider that one can tip the balance in an individual’s body from having more microbial 

cells to having more human cells by simply administering the bowel preparation for a 

colonoscopy. In this article, we focus on the gut microbiome, although microbiomes in other 

parts of the body (eg, the skin, mouth, and vagina) also are important for health and in 

numerous diseases.

In most healthy human beings, the gut microbiome is dominated in cellular relative 

abundance by bacteria, specifically members of the phyla Bacteroidetes and Firmicutes, with 

only small amounts of nonbacterial microbes. It is important to recognize that among 

healthy people, their percentage of each of these 2 dominant phyla can vary from 10% to 

90%, even though the combined percentage tends to be approximately 95%.19 However, 

some individuals, particularly in the disease state, can have large percentages of other 

bacterial phyla, such as Proteobacteria (which contains Escherichia coli), Verrucomicrobia, 

Actinobacteria, or Fusobacteria.

The earliest culture-independent projects showed that different people can differ greatly 

from one another in terms of their microbiomes,1,19–21 and the diversity spanned by human 

stool is comparable with the diversity spanned by completely different kinds of 

environments in the Earth Microbiome Project (Figure 1A). In fact, some bacterial species 

that were as abundant as 5% of the total in 1 individual, turned out to be no more abundant 

than 0.01% in another individual, even in a small cohort.21 We have seen the same breadth 

of composition differences in the American Gut Project data (Figure 1B). Therefore, there is 

no standard microbiome ecology that all healthy people share. However, because of this high 

variability among individuals, extreme caution must be taken in interpreting results from 

fewer than hundreds of people, and the reference range approach that has worked for blood 

tests will not work for the microbiome22,23 (Figure 1).24,25

What Is the Best Way to Collect a Sample for Microbiome Analysis?

The first topic a clinician faces is the following: what is the optimal protocol for collecting a 

microbiome sample for analysis? There is still an ongoing debate on the best way to collect 

Allaband et al. Page 3

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and store a sample for analysis of the microbiome. In short, there is no perfect method 

because the choice will depend on feasibility, cost, patient acceptance, and which methods 

will be used to read the microbiome downstream.

The first important question is what to sample. Stool is by far the most accessible material, 

and can be collected as often as your subjects produce stool, enabling longitudinal studies 

(eg, of daily samples) that would not be feasible with biopsy specimens. For studying 

gastrointestinal and liver diseases, assessing the gut microbiome using stool provides a 

unique opportunity to study pathophysiology and disease states in both cross-sectional and 

longitudinal study designs. However, stool does not capture all the microbes in the gut,20,26 

and in particular mucosally adherent microbes and microbes in the small intestine, 

particularly the ileum, can be missed. In addition, stool often is quite distant from the 

gastrointestinal region of the pathology being investigated, and has been stored in the 

rectum, where there is active dehydration and where fermentation selects for bacteria that 

are not found commonly in other parts of the lumen. This implies that it is difficult to use the 

stool microbiome to understand the pathophysiology of a disease because it likely fails to 

reflect the microbiome of the region of pathology, and it is imperative to choose a sample 

collection method that is inherently consistent with the scientific or clinical question being 

asked.

Culturomics approaches,27 in which large numbers of cells are isolated and cultured, show 

that metagenomics approaches miss many rare bacteria that are not well represented in the 

reference databases or that are below the filtering thresholds used to eliminate noise (see 

later). They also suggest that even the most aggressive homogenizing procedure to break 

bacterial cell walls still may miss important organisms. On the other hand, approximately 

85% of microbes in the human gut are anaerobic and therefore do not culture in an open 

Petri dish, although they can be grown in research laboratory anaerobic chambers. However, 

despite advances in culturing methods,28,29 what can be cultured still is biased, especially 

because any given culture condition will allow some bacteria to grow much faster than 

others.

Despite these limitations, the gold standard protocol for stool sampling is to collect the 

whole stool, homogenize it immediately (eg, with a blender or a tissue homogenizer), then 

flash freeze the homogenate in liquid nitrogen or in dry ice/ethanol slurry, with an aliquot 

preserved in 20% glycerol in Lysogeny Broth for culturing. Nucleic acid protectors such as 

RNAlater (Thermo Fisher Scientific, San Diego, CA), although popular, have had mixed 

success in different laboratories, and render the sample unsuitable for metabolomics, so 

should be used on a separate aliquot. However, this protocol is expensive and often 

impractical, especially given the limitations inherent in subjects’ ability to produce stool on 

demand. Although stool is not homogeneous, in general the differences between whole stool 

and a small sample of stool are small compared with the differences between individuals. 

Although stool consistency is correlated with microbiome changes,30 stool consistency does 

not interfere with DNA extraction in people with chronic gastrointestinal conditions such as 

irritable bowel syndrome, inflammatory bowel disease (IBD), and constipation.
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For DNA analyses, several studies have shown that Flinders Technology Associate and fecal 

occult blood test cards are stable at room temperature for at least days,31–33 and although 

they induce small, systematic shifts in the resulting taxon profiles compared with flash-

frozen samples, the practical ease of use of these methods is a considerable attraction. 

Another widely used method is dry swabs of fecal material left behind on bathroom tissue, 

such as those used in the American Gut Project,25 which can be used for amplicon analysis 

(eg, for 16S ribosomal RNA [rRNA] gene profiling by polymerase chain reaction [PCR], see 

later) with appropriate filtering for overgrowth, but are problematic for shotgun 

metagenomics, and only cotton-based swabs, not polyester-based, can be used for 

metabolomics because of issues with polymers. An important practical consideration for 

using swabs in the mail is that polycarbonate housings are not nearly as robust to the 

vagaries of mail handling as polyethylene, and require padded envelopes to arrive intact. 

However, despite these limitations, dry swabs from bathroom tissue have yielded useful 

results in many studies.25,34,35

Going beyond the stool, many studies have shown that the mucosa and lumen differ in their 

microbiomes from each other at a given site in the gut,36,37 and that the microbiome varies 

dramatically along the length of the gut, with the stomach and small intestine being 

essentially entirely distinct from the large intestine. More subtle intersample variations are 

therefore found within the small intestine and within the large intestine. This raises the 

question of where one should look for microbiome associations. However, practically 

speaking, obtaining biopsy samples from the small intestine is quite challenging clinically, 

and obtaining them from the large intestine during colonoscopy requires skill and protocols 

for extracting microbial contents from the biopsy specimens.

Some studies (eg, Gevers et al6) have shown that better classifiers for IBD can be developed 

using samples of luminal content collected directly from the gut rather than stool, but this 

has been contradicted by other studies that show high classifier accuracy for stool (see later 

for explanation of these terms). In an ideal world, sampling design would be driven by a 

hypothesis about mechanism. Most microbial biomass and therefore metabolism occurs in 

the luminal contents of the large intestine, so microbes that produce and release small-

molecule metabolites that enter the bloodstream would be expected to be most important 

there. In contrast, microbes that interact directly with epithelial cells or dendritic cells would 

be expected to be concentrated in mucosal biopsy specimens. Microbes that produce 

metabolites from dietary components that are absorbed in the ileum, duodenum, or jejunum 

should be sought there. However, we still lack the general understanding about the 

distribution of microbes and metabolism along the length of the gut to draw general 

conclusions about where to take samples. The advent of very low biomass protocols, such as 

KatharoSeq (which uses a series of positive control spike-ins to define what is real and what 

is contamination at different stages), allows even tiny specimens to be processed.38

An important question is how often to sample stool, because the microbiome ecology is 

intrinsically dynamic. This largely comes down to what question you are trying to answer. 

Remarkable changes have been observed between one day and the next, especially in the 

times surrounding colonoscopy and surgery,25,39 as well as during clinical situations such as 

IBD flares. These changes would be missed entirely with a less-frequent study design. For 
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episodic diseases, such as IBD, it is known that patients can have large changes in the 

microbiome composition on time scales of weeks to months.40 On the other hand, changes 

induced by diet (eg, those associated with weight loss), take place on a timescale closer to 

months than days in human beings41–43 (Figure 2). Having several serial samples provides 

considerable insight into microbiome dynamics,40,44 with samples of up to half a dozen 

providing substantially better classifiers from stool regardless of sampling interval. However, 

answering this question conclusively will require detailed study of many patients, which is 

prohibitively expensive at present and impossible to perform with anything beyond a stool 

sample. However, although it is difficult to obtain serial mucosal/biopsy or luminal samples 

from individuals because of the cost and invasiveness of the procedures, this may be the best 

strategy for patients who are receiving multiple, often scheduled, endoscopies as part of their 

routine care or in the event of exacerbations (eg, variceal screening 

esophagogastroduodenoscopies for patients with cirrhosis; colonoscopy for patients with 

IBD) (Figure 2).

On the other hand, adequately collected and optimally stored fecal samples from chronic 

liver disease patients, such as nonalcoholic fatty liver disease, can provide unique insights 

into differentiation between those with a milder form of fibrosis vs advanced fibrosis in a 

cross-sectional setting.45 Furthermore, integrating the gut microbiome with the metabolome 

may offer deeper insights into the metabolic perturbations linking the gut microbiome with 

disease states.45 Recent studies also have suggested that certain bacterially derived 

metabolites may be associated with shared gene effects with disease states of interest.46 

Longitudinal studies are needed to assess causality, and are discussed later in this review.

What Sort of Microbiome Data Should I Collect?

There is a bewildering diversity of microbiome-relevant molecular analyses that can be 

performed on biological specimens today, each with strengths and weaknesses (Figure 3). 

The correct type of analyses for an experiment is completely dependent on the scientific 

question and hypothesis. Some of the more traditional methods focus on species 

identification or toxin presence for pathogens,47 while newer methods seek to describe and 

detect whole communities rather than individual organisms (Figure 3).48

For known organisms with well-characterized selective culture conditions, culturing is still 

the most sensitive detection method, and comparisons of colony-forming units per milliliter 

is the best way to obtain the absolute abundance of viable organisms. This method can be 

used on a variety of sample types including stool, blood, and skin. Various organisms found 

in the stool are susceptible to antibiotic resistance including Clostridium difficile and 

Enterococcus species, which also are highly infectious pathogens.49 Culturing enables a 

phenotypic classification of an isolate including pathogenicity, antibiotic resistance 

mechanisms, and antibiotic susceptibility.47 However, this method is best suited to reading a 

small number of well-known organisms that can survive in the presence of oxygen, not to 

characterizing the entire complex and largely anaerobic gut microbiome.

A broader view can be obtained by assay panels that target a set of known bacteria, viruses, 

parasites, or functional genes such as toxins or antibiotic resistance. Stool samples generally 
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are processed through nucleic acid extraction followed by complementary DNA synthesis 

and subsequent amplification using mixtures of primers specific for a given range of 

organisms. Either genomic DNA or PCR product then is qualified and quantified across the 

organism panel, either through a hybridization array using a fluorescence-based measure or 

a melt curve analysis.50,51 Both quantitative PCR and reverse-transcription quantitative PCR 

also are examples of these methods that are used to detect and quantify specific organisms.52 

Various companies (Verigene, Luminex, Riverside, CA; Biofire, Salt Lake City, UT; and 

Luminex) have developed Food and Drug Administration–approved platforms to detect 

microbial pathogens from bulk stool samples.53 The platforms can be microfluidic chips that 

perform multiple processes including DNA extraction, PCR, and read-outs.54 Through-put 

ranges from 1 to 24 samples, while time ranges from 1 to 5 hours.53 The mentioned 

technologies target between 14 and 22 analytes, including 7 to 14 bacteria, 2 toxins, 2 to 5 

viruses, and 0 to 4 parasites. The advantage to these assays is that they provide absolute 

abundance of each taxon per gram or milliliter of input material, and have a high dynamic 

range. The disadvantage is that there are many undiscovered taxa in the gut that may be 

important, and these will be missed in a targeted panel. However, as we understand more 

about the specific microbes that make the difference between clinical indications, these 

targeted panels will be increasingly valuable. However, one important concern is whether 

panels developed in one population will apply to another (see later).

Amplicon analyses, in which a specific piece of DNA is amplified by orders of magnitude 

using various methods including PCR, have been the workhorse of the microbiome for the 

past 15 years.55 In these analyses, PCR primers that match a specific gene, usually the 16S 

rRNA for bacteria and archaea and the internal transcribed spacer for fungi, are used to 

amplify all the variants that occur between the highly conserved regions used to construct 

the primers. For example, bacterial 16S rRNA genes contain 9 hypervariable regions (V1–

V9) that show sequence diversity and therefore often are used as a barcode-like method to 

differentiate many bacterial taxa, sometimes but not always at the species level. Then next-

generation sequencing, typically on the Illumina (San Diego, CA) platform,56 is used to read 

all the sequences, which then can be placed into a phylogenetic tree or matched to a 

database. There are many considerations in choosing which primers to use, and the 

difference between the microbiome profiles obtained with different PCR primers is much 

greater than the difference between the stool of different healthy individuals.19 

Consequently, the best option is to use the same PCR primers as other studies with which 

you would like to compare your results, or if there is no specific study in mind then using 

widely used primers such as the V1 to V3 or V3 to V5 primers from the Human Microbiome 

Project or the V4 primers from the Earth Microbiome Project (which have the advantage that 

they pick up archaea such as Methanobrevibacter and Methanosphaera, which are both 

important in the gut) is the best plan. Critically, many primers can target the same variable 

region, so it is important to know not just which region is being sequenced but the specific 

primers themselves. In general, the specific region is much more important than the length 

of the fragment,57,58 and a long sequence with biased primers can provide a spectacularly 

incorrect result. Therefore, it is important to beware of claims about the value of longread 

sequencing that are not backed by extensive validation in the form of peer-reviewed reports. 

Many species of bacteria are identical along the full length of the 16S rRNA gene, and in 
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principle it therefore is impossible to distinguish all bacterial species using that gene, despite 

claims of some vendors. In general, genus-level resolution is possible for most bacterial 

taxa, but species resolution is difficult.59 Amplicon analyses in general are challenging to 

apply to viruses, which is mostly because there is no gene common to all viruses like there is 

in bacteria.

Although 16S rRNA sequencing has enabled a great deal of scientific research on 

microbiomes, simply knowing the genera of bacteria and its relative abundance is not as 

useful for clinical analysis. This is because each genus can have a wide range of strains that 

are genomically distinct. This is true even within a species: E coli, for instance, has a 

genome that can vary from 4 to 6 million DNA bases,60 which group into several thousand 

distinct genes, some of which can be quite virulent. As a result, there are thousands of 

known strains of E coli that have been sequenced (only approximately a third of the E coli 
genome is core to all its strains) and found to be genomically distinct, with at least 1 strain 

considered a probiotic and another that can cause debilitating illness.

In contrast to the use of 1 gene, such as 16S rRNA, shotgun metagenomics is a method that 

fragments all the DNA from a sample into small pieces, sequences these fragments, then 

tries to puzzle these fragments together into a view of the microbiome.61 The advantage to 

shotgun metagenomics is that it is very easy to explain what it does: you are trying to infer 

the complete list of microbial strains present in a microbiome, including the fungi and 

viruses that are missed by 16S rRNA amplicon analysis, and how abundant each of those 

strains is. However, the technical challenges are considerable: for example, analyses rely on 

genomes of the organisms in the gut, many of which are unknown (especially outside the 

bacteria). Shotgun metagenomics was traditionally orders of magnitude more expensive than 

amplicon analyses, but with rapid decreases in the cost of DNA sequencing and library 

preparation this technique is becoming much more accessible on a large scale. In addition, 

the amount of DNA required for shotgun metagenomics recently has decreased from 

micrograms to less than a nanogram, allowing it to be used on biopsy specimens. An 

important limitation to shotgun metagenomics is that all the DNA will be sequenced, 

including human DNA, which is a problem if your subjects are not consented for human 

DNA analysis or if your biopsy specimen is dominated by host tissue (resulting in very 

expensive resequencing of the human genome, with only a small trace of microbial reads; 

this is common in biopsy specimens, which is why 16S rRNA amplicon analysis typically is 

used for such specimens; “host DNA depletion” techniques, although successful in saliva62 

have not yet worked for biopsy specimens, although this is an active area of methods 

development). Shotgun metagenomics is rapidly displacing 16S rRNA amplicon analysis 

because of its expanded taxonomic range and strain-level resolution, but is subject to many 

of the same reproducibility issues that have not yet been as well characterized because of the 

increased expense of the assays.

Metatranscriptomics, in which the transcribed RNA is sequenced, and metaproteomics, 

which uses mass spectrometry to sort out the wide range of proteins in a sample, have 

tremendous promise because they read gene expression, but are still very challenging. Most 

bacterial transcripts only last a few minutes,63 so the interpretation of RNA left in a stool 

sample is challenging. Moreover, in the few comparisons that have been performed, the 
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correlation between gene expression in the RNA and proteins at the whole-community level 

has been close to zero, complicating interpretation of the expression profiles. These should 

be considered emerging technologies rather than ready for routine use, although techniques 

are rapidly improving. Studies of expression require metagenomic data from the same 

sample to back them so that changes in the relative expression of particular genes can be 

distinguished from changes in the representation of these genes in the community.64

Metabolomics, the study of the nonprotein small molecules including products of 

metabolism, is a very exciting emerging area because it relates directly to the function of the 

community. The most common approaches separate metabolites by gas chromatography or 

liquid chromatography before analysis by mass spectrometry as charged ions. There are 2 

main approaches of metabolomics analysis: targeted metabolomics, in which we have a 

predetermined list of molecules, typically for which the reference standards are available. It 

is usually the most sensitive approach for detecting molecules of interest and has better 

quantification compared with untargeted mass spectrometry but does not allow for 

discovery.65,66 Most molecules that are made by the microbiome are not commercially 

available or still remain to be discovered and therefore cannot be analyzed via targeted 

methods. On the other hand, untargeted metabolomics aims to detect as many small 

molecule metabolites as possible. The main challenge for untargeted metabolomics is the 

annotation of these metabolites. For untargeted metabolomics, tandem mass spectrometry 

(which weighs the ions, then breaks them into fragments, then weighs the fragments) often 

is used to provide annotations by matching against a reference library of known molecules. 

However, this fails to annotate molecules that are modified by the microbiome or host 

metabolism. However, fragmentation data from related spectra can be found by linking their 

mass spectra through a technique called molecular networking67,68 (see later), allowing 

identification of new molecules that are related to known ones. An important consideration 

when choosing a metabolomics platform is whether the target molecules will be captured, 

for example, many standard untargeted liquid chromatography/mass spectrometry/mass 

spectrometry approaches do not pick up short-chain fatty acids such as butyrate and acetate, 

which are known to play important physiological roles in the gut, on the other hand gas 

chromatography–mass spectrometry does not pick up molecules from the host that are 

modified by microbes. Examples of such molecules include lithocholic acid, the oral 

bacteria produced fungal biofilm inhibitor mutanobactin A,69 and the microbial molecule 4-

phenyl-ethyl sulfate, which results in autism-like symptoms in rodent models.70 The current 

preferred methods for stool are a combination of shotgun metagenomics and metabolomics. 

It is likely that metabolomics will not only be able to report on microbially modified or 

microbially biosynthesized molecules, but also provide a direct read of the medications as 

well as diet that affect the gut microbiome.

How Should I Analyze My Data?

The main question clinicians usually have is either “how do my cases and controls differ?” 

Or “is this sample from this patient indicative of a particular disease?” These questions can 

be difficult to answer with the current state of the science, especially given the many options 

for conducting the molecular analysis.
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The wrong approach is to decide to perform a microbiome study, pick a type of sample to 

collect, decide which molecular assay to run, and then decide to analyze the data yourself or 

hand it off to a bioinformatics or biostatistics collaborator, core facility, or company. The 

greatest expense in many studies is data analysis, and if the study was not designed in a way 

that allows the data to be analyzed easily, this can take years and cost hundreds of thousands 

of dollars (if accurately accounted). We cover issues of study design extensively elsewhere 

in other recent reviews.71–74 Briefly, it is important to consider confounding factors such as 

age, drugs, diet, and co-housing, issues of causality. Your patients might be sick because 

their microbiomes are different or their microbiomes may be different as a consequence of 

their medical condition or treatment. It is important to begin to appreciate that studies 

designed with equal numbers of samples per group with consistent time points are 

dramatically easier to analyze. Furthermore, a common tactic is to use the microbiome 

differences to infer that they underlie a pathophysiological process that was not even part of 

the initial intent of the study. Not only does this assume a causative relationship between the 

microbiome and the pathology being investigated, but also our knowledge of the relationship 

of the gut microbiome on host processes is often not yet sufficient to support such 

conclusions. Finally, for all next-generation sequencing–based methods of microbiome 

analysis, it is paramount to include positive and negative controls to help distinguish 

between signal and noise.38

The most important consideration with data analysis is that different methods will provide 

different results, even using the same raw data from the DNA sequencing instrument. This 

issue stems from several distinct sources. First, algorithms for assigning DNA sequences to 

particular genomes or classes of organisms are approximate. For example, the popular RDP 

classifier59 has an accuracy of approximately 80% at the genus level using short 16S rRNA 

fragments. This means that approximately 20% of the assignments are wrong, which is not 

ideal. In shotgun metagenomics, approaches, such as Kraken75 or Centrifuge,76 based on k-

mers (short fragments of sequences, often only a few bases long) are much more sensitive 

(likely to find an organism if it is present, especially at low abundance), but less specific 

(likely to report an organism even if it is not present) than those based on profile matches to 

marker genes, such as PhyloPhlAn.77 Whether it is more dangerous to miss an organism that 

is present or accidentally report an organism that is absent depends on the clinical 

application. In any case, none of these techniques is currently suitable for clinical use. The 

diagnosis of pathogens still should be performed by Food and Drug Administration–

approved, culture-based, PCR-based, or antibody-based assays.

In addition, most approaches rely on reference databases that are highly incomplete. 

Consequently, matches to a given sequence will vary depending on what sequences are 

actually in the reference database and the name given to the closest sequence, which results 

in different bacterial names given to the same DNA sequence depending on the database 

used. Because of this, you can get wildly different results. In the past this was an enormous 

problem, although cooperation among the rRNA-based taxonomy databases such as SILVA,
78 RDP,79 and Greengenes80 have reduced this problem and resulted in more consistency 

between results in recent years. However, taxonomy based on whole genomes rather than on 

single-marker genes is likely to prompt large-scale revision of taxonomy as we discover 

more about the relationships among major groups of organisms.
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The major considerations in data analysis are as follows (Figure 4).81–91 (1) How do I go 

from my raw DNA sequence data to a table of how many of each species (or gene/strain, for 

metagenomics) is observed in each sample? (2) How do I link this table to relevant clinical 

variables for analysis? (3) How do I perform appropriate analyses either at the level of the 

whole microbiome (typically, α diversity and β diversity analyses) or at the level of 

individual taxa or genes?

There are several features of microbiome data from a statistical standpoint such as sparsity, 

compositionality, and zero inflation that make standard statistical tools inappropriate for 

most microbiome analyses. It is therefore critical to use tools designed for these analyses, 

such as QIIME/Qiita,81 the BioBakery,92 or PhyloSeq93 that take these considerations into 

account. Providing details of how to analyze microbiome data is beyond the scope of this 

article, but we have covered this topic recently in several other reviews that will be of 

interest to readers who want more details.74

What Are the Limits to Combining Data From Different Studies?

One frequently encountered issue is reading an exciting research report that links a particular 

microbe, pathway, or gene to a condition or treatment, then wanting to see if the same 

relationship holds true in a new cohort or a new individual patient. This apparently simple 

question turns out to be surprisingly difficult.

As noted earlier, a very large number of factors can affect the read-out of the microbiome, 

especially at finer taxonomic levels, but they are by no means limited to these levels. The 

same samples can yield completely different assessments of which phyla are abundant in a 

given specimen when using PCR-based methods, including primers that target different 

hypervariable regions (eg, V1–3 vs V4) or different primers that target the same region but 

pick up different taxa with different efficiency. It is especially true when trying to make an 

assessment at the species level, which current sequencing techniques are poorly suited to 

determine. Consequently, if you are designing a new study and want to compare it with an 

existing study, the safest approach is to use exactly the same methods in every detail, 

including sample collection, sample storage, DNA extraction, PCR or library construction, 

sequencing, and bioinformatics analysis. Standardized reporting such as the Genomic 

Standards Consortium MIxS standards94 help immensely with this task by capturing the 

information in a structured way and, in the context of databases such as Qiita (https://

doi.org/10.1038/s41592-018-0141-9), allow automatic retrieval of studies that used 

comparable methods.

The Human Microbiome Project19 showed that even when everything else is kept exactly the 

same, the choice of PCR primers (V1–V3 vs V3–V5) and the choice of whether to perform 

shotgun metagenomics or 16S rRNA sequencing on the same samples can produce 

completely different results. Similarly, the Microbiome Quality Control project showed that 

differences in the computational pipeline, even on the same data, could lead to large 

differences in the inferred outcomes at levels from the species to the phylum.95 However, 

one valuable outcome of the Microbiome Quality Control project was that many different 

laboratories could independently reproduce similar results on the same samples by following 
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a consistent written protocol.95 Similarly, in the American Gut Project, we found that dozens 

of sequencing runs over many years yielded consistent results when consistent protocols 

were used, and this was highlighted in the Supplementary Video 1 of that report (https://

figshare.com/articles/movie_s2_mp4/5936482).25, 96

In general, whether and how studies can be combined depends on the subtlety of the effect 

and the type of analysis being performed. Different parts of the human body differ radically 

in their microbiomes, and neonatal microbiomes are completely different from adults. 

Therefore, even studies using different DNA extraction methods and sequencing techniques 

often will yield the same pattern in combined analysis (eg, through principal coordinates 

analysis).97 In contrast, subtle differences such as those yielded by day-to-day variation 

within a healthy individual are much smaller, and will be obscured by even minor technical 

variation such as lot numbers of sequencing reagents. A general guideline is that the more 

technical factors differ between 2 studies, the more obvious the difference will need to be to 

be visible. Although the American Gut Project and other recent projects have started to 

construct an effect size scale for factors that affect the microbiome in large or small ways, 

incorporating technical variation at these scales would be an arduous and expensive 

undertaking. One approach that often is useful is asking whether particular taxa or gene 

functions are reliably increased or decreased with a given clinical state (eg, ulcerative colitis, 

nonalcoholic fatty liver disease) across many studies, although different methods can in 

principle lead to different conclusions, even with data analysis at this level.

Of particular concern to clinicians is whether data from companies offering testing, or from 

citizen-science projects such as the American Gut Project,25 is comparable with studies 

performed in the scientific literature. The American Gut Project is part of the Earth 

Microbiome Project, and uses the Earth Microbiome Project protocols24 that have been 

applied in literally thousands of microbiome studies, including those that are clinically 

relevant. Unsurprisingly, testing services that use proprietary protocols produce different 

results, even on the same biological specimens. In general, to understand these differences, it 

is necessary to have detailed information about all the protocols being used.

Another important issue is that although many associations between the microbiome and 

disease or between the microbiome and treatment have been found within the context of 

individual research studies, there are many reasons why these might not generalize to new 

individuals or populations. It is well known in the field of human genetics that 

environmental factors have a major impact on which genes are important for a given trait, 

and the same likely is true for the microbiome, therefore validation cohorts are essential to 

prove the generality of microbiome findings just as they are for human genetic findings. 

Some conditions, such as IBD, have very robust signatures across populations,6,98,99 with 

diagnostic models trained in human beings working even on dogs100; in contrast, while there 

are typical signatures that separate lean from obese individuals within one population, these 

signatures do not apply across other cohorts.23,98,101,102 This result is surprising given that 

obesity can be transmitted from human beings into germ-free mice by transmitting the 

microbiome from obese people, showing the direct effects of the microbiome.2,103 

Understanding which findings will generalize to new subjects, and which will not, remains 

an important outstanding challenge in the field. It is possible that new ecosystem-level or 
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pathway-level concepts and methods need to be developed to develop such an 

understanding.

Conclusions

Although there is great interest in the microbiome, there is still a long way to go before 

microbiome-based diagnostics become a routine part of clinical care. Microbiome studies 

have been enormously valuable both in understanding mechanisms of disease in animal 

models and finding associations with disease in human beings. A good analogy is machine 

translation of natural languages: there has been interest since the 1950s, and poorly 

functioning systems have been available since the 1980s, but only in the past couple of years 

has it been possible to have a conversation with someone who speaks no common language 

using a mobile app on a smartphone, or to translate signs or menus from Chinese into 

English in real time using that smartphone’s camera. In the same way, microbiome testing 

right now is primarily of interest as a science project. However, there will be rapid progress 

in the near term to develop better technical capability, including better user interfaces with 

readouts at the level of bacterial strains, and integration of ecologic dynamic concepts to 

better understand the transitions from health to illness.

Abbreviations used in this paper:

IBD inflammatory bowel disease

PCR polymerase chain reaction

rRNA ribosomal RNA
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Figure 1. 
Intersubject variability of the gut microbiome. (A) A principal coordinates plot of 

unweighted UniFrac distances computed using the Earth Microbiome Project (EMP) data 

set24 and the fecal samples from the American Gut Project (AGP) data set.25 Even though 

the EMP data include samples from many of the environments on the planet, including 

hydrothermal vents, soils, marine sediment, and many others, the extent of diversity 

associated with just the large intestine of a single mammal is one of the dominating clusters 

of microbial diversity. (B) Dynamic ranges of the 50 most abundant genera in the human 

fecal microbiome from 9316 individuals. These data are based off of a single sample per 

person, and only consider organisms observed in at least 100 people. Even though 

Bacteroides are ranked the highest, there are individuals with up to 3 orders of magnitude 

lower relative abundance of those genera, and that genera was not detected in approximately 

1% of the individuals. PC, principal coordinates
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Figure 2. 
Interindividual variability is a stronger discriminatory factor than diet, even under extreme 

dietary changes. (A) Principal coordinates analysis plot of unweighted UniFrac distances of 

the subjects (color) and their diets (shape). (B) Principal coordinates analysis plot with 

traces to show the individual variation over time, each edge is connected according to the 

collection time point.43 PC, principal coordinates.
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Figure 3. 
Conducting a clinical microbiome experiment warrants careful attention to numerous 

factors. (A) Stratification by potential confounders (eg, age, sex, diet, lifestyle factors, and 

medications) can help resolve differences in microbiota between groups of interest that 

might otherwise be masked by a confounder effect.48 (B) Longitudinal studies are especially 

powerful because they both control for confounding factors and allow for the assessment of 

community stability.40 (C) For all studies, standardizing technical factors and sample 

processing are essential to control for variation introduced by every step of the process: kit 

reagents, primers, sample storage, and other factors. The collection and curation of metadata 

about all aspects of each sample, from clinical variables to sample processing, are crucial for 

data interpretation; without metadata, it is difficult to draw meaningful conclusions from 

sequencing data

Allaband et al. Page 21

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Allaband et al. Page 22

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Once samples are collected, the samples can be put through molecular preparations and 

DNA sequencing to generate microbiome data. Two common types of protocols are 

amplicon sequencing and shotgun sequencing. In amplicon sequencing, PCR primers are 

used to target a specific region of a specific gene, focusing sequencing effort on just those 

fragments. One of the most widely used protocols targets the V4 region of the 16S rRNA 

gene.24 In shotgun sequencing, the DNA in the sample is randomly sheared and sequenced, 

generating data from many different parts of the genome. The specifics of the molecular 

protocol used before shotgun sequencing are important for what type of data are being 

examined, and this type of sequencing can be used, for example, for metagenomics and 

metatranscriptomics. The initial processing performed on the data after sequencing depends 

on the type of sequencing performed. For amplicon studies, one common strategy is to 

upload the data into Qiita81 and to use Deblur82 to resolve sequence data into single-

sequence variants called suboperational taxonomic units (sOTUs). Taxonomic assignments 

generally are performed using naive Bayes classifiers such as the RDP classifier,59 as 

implemented in the q2-feature-classifier against reference databases such as Greengenes,83 

SILVA,78 RDP,79 or UNITE84 (fungal internal transcribed spacer [ITS]) depending on the 

amplicon target. Shotgun sequencing of host-associated samples first requires preprocessing 

to remove either host DNA before analysis. Typically, the shotgun data then are summarized 

using tools such as Kraken,75 MEGAN,85 or HUMAnN286 to generate taxonomic or 

functional profiles, or are assembled with tools such as metaSPAdes87 and MEGAHIT.88 For 

both sequencing methods, higher-level analyses (eg, α and β diversity, taxonomic profiling, 

and machine learning) subsequently are used to assay patterns of microbiome variation in 

the context of the study design. Metagenomic assemblies also can be analyzed through 

platforms such as Anvi’o.89 SourceTracker,90 a Bayesian estimator of the sources that make 

up each unknown community, is useful for classifying microbial samples according to the 

environment of origin.91 Citizen Science platforms, such as the American Gut Project,25 

standardize the molecular work and bioinformatic processing to generate a basic summary 

report of the content of an individuals sample. In the case of the American Gut Project, the 

samples also are placed into the context of a few other popular microbiome studies through 

data integration.
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