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INTRODUCTION

The field of spinal cord stimulation (SCS) owes its inception to the concept of gate control 

theory (GCT), put forth by Wall and Melzack in their landmark 1965 paper, which proposed 

that “control of pain may be achieved by selectively activating the large, rapidly conducting 

fibers”.1 The first reported clinical application of dorsal column stimulation came 2 years 

later, and the field has gradually expanded ever since. Today, an estimated 50,000 spinal 

cord neurostimulators are implanted annually.4, 5 The growth of neurostimulation has been 

fueled in part by the increasing prevalence of neuropathic pain,6 in particular the upsurge of 

patients with failed back surgery syndrome (FBSS),78 and the attempts to use strategies 

other than chronic opioid therapy to treat chronic neuropathic pain.

Although SCS technology has developed greatly in the past decades,9 the last few years have 

witnessed the introduction of several novel devices and stimulation modalities, including 

high- frequency technology,10, 11 dorsal root ganglion (DRG) stimulation,12 burst 

stimulation,13 and other paradigms.14–16 Some of the new waveforms, such has high-

frequency stimulation, have challenged our ability to elucidate their mechanisms of action 

within the framework of the GCT. Fundamentally, SCS, regardless of type, involves the 

generation of electric fields between metal contacts residing in the epidural space. The 

applied fields change the electrical potential across membranes based on the properties of 

tissues near the electrode, such as the dura, layer of cerebrospinal fluid, and white matter. In 

the case of excitable membranes, such as those found in nearby dorsal column axons, the 

electric field can trigger one or more action potentials, depending on the bioelectrical 

properties of the axon (diameter, myelination status, and electrical threshold). As electrodes 

are typically placed near the physiological midline of the dorsal columns (except in the case 

of DRG stimulation), electrical stimulation causes activation of dorsal column axons, 

resulting in orthodromic and antidromic transmission of action potentials that generate 

segmental and supraspinal effects2, 14, 17–20 (Figure 1). Large diameter axons have low 

thresholds for firing action potentials, and thus are preferrentially activated over smaller 

fibers. The bioelectrical properties of the spinal cord have received signficant attention, and 
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a number of reviews have been published on this topic.14, 21, 22 Conventional SCS 

preferentially activates large Ap dorsal column axons. This activation can be measured as 

action potentials propagated antidromically in peripheral nerves,23, 24 as epidural action 

potentials,25, 26 as somatosensory evoked potentials recorded on the scalp,25 and as muscle 

twitches in limb and trunk muscles,27, 28 and felt by patients as paresthesias.29 In addition to 

provoking action potentials, electrical stimulation alters the membrane potential of neurons 

and other cell types exposed to electric fields, thereby altering electrochemical properties of 

the segments affected.17, 30

Electrical charge can be delievered via various waveforms, and net effects depend on 

waveform characteristics. The waveforms generated can be characterized in relation to the 

pulse amplitude, width, and frequency, which combine to deliver a specific amount of charge 

to tissues. The amount of charge delievered is believed to be fundamental to the electrical 

fields generated and subsequent recruitment of nerves.14, 21, 31 As device electronics have 

improved, the ability to deliver electrical impulses precisely with specific waveforms and 

various cathode/anode combinations has grown exponentially. Conventional, burst, and high-

frequency stimulation differ based on frequencies, waveform patterns, and how charge 

transfer is balanced (Figure 2), and thus produce different patterns of activation of axons and 

adjacent neural tissues. Burst is unique in how charge balance is handled: the burst of five 

individual constant current pulses is charge balanced at the end of burst, instead of for each 

spike (Figure 2, panel B).13 Signficant debate exists regarding what fibers are activated by 

SCS, and how fiber activation varies for the different waveform patterns and intesities.
21, 22, 32–34 Furthermore, it is unclear which specific fibers need to be activated to achieve 

optimal pain relief, and how activation patterns change in chronic SCS.

CONVENTIONAL WAVEFORMS

Clinical Efficacy

FBSS, defined as peristent or recurring pain despite surgical treatment, is a common 

condition, present in 10 to 40% of patients after lumbar spine surgery.7 The condition is 

believed to be caused by neuropathic back and leg pain, and is associated with high levels of 

suffering, decreased function, high unemployment rates, and escalating medical costs.35–37 

This poorly understood clincal entity lacks good treatment options, and a number of 

published reports have described studies of SCS in this population (Table 1).38, 39

Numerous early case series and prospective studies showed SCS to be beneficial in this 

patient population.37 North et al.40 conducted the first radomized controlled trial (RCT) 

comparing conventional SCS to repeat lumbar spine surgery. Among 60 patients randomized 

to either SCS or reoperation, signficantly more patients in the SCS group than in the 

reoperation group had 50% or greater pain relief and patient satisfaction. This report clearly 

established that for FBSS, SCS is superior to reoperation for patients meeting criteria for 

surgical intervention. In another classic RCT, the PROCESS trial, Kumar et al.36, 41 

compared conservative medical management (CMM) to SCS in this patient population (48 

CMM, 52 SCS patients) and measured outcomes at 6, 12, and 24 months. SCS proved 

superior to CMM at all time points for leg pain (≥50% reduction), function, and health-

related quality of life. In one of the largest RCTs to date, optimal medical management 
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(OMM) was compared to OMM + SCS in 218 patients.42 This study is completed, and, 

although the full report is not yet published, preliminary reports suggest that a significantly 

higher proprotion of patients in the SCS group than in the OMM-only group reached the 

primary outcome, defined as ≥50% reduction in low back pain intensity at 6 months.43 In 

contrast, a study that included only patients with FBSS on worker’s compensation, found no 

differences in the composite primary outcome (≥50% improvement in pain, function, and 

opioid use) between a group receiving SCS, a usual care group, and a group receiving 

specialty care through a pain clinic.44

Conventional SCS was shown to be superior to physical therapy in patients with complex 

regional pain syndrome (CRPS) in a study by Kemler et al.45 The authors reported a mean 

reduction of 2.4 cm on the visual analog scale (VAS) for pain at 6 months in the intention-to- 

treat analysis, and 3.6 cm for those actually treated with SCS. The pain scores for the control 

group increased by 0.2 cm at 6 months. Follow-up at 5 years revealed that pain relief 

gradually decreased for patients receiving SCS, as mean VAS score showed a 2.5 cm 

decrease from baseline (compared with a 3.6 cm decrease at 6 months). In contrast, the 

control group that recieved physical therapy exhibed a 1 cm decrease at 5 years (p=0.06).46 

Conventional SCS was compared to medical management in patients with painful diabetic 

peripheral neuropathy in two prospective RCTs. These studies demonstrated the superiority 

of SCS over best medical management, as approximately 60% of patients in the SCS group, 

but only 5–7% of patients in the control arm, met success criteria at 6 months.47, 48 Results 

in the SCS group were sustained over time, with 80% of patients using their devices and 

55% of patients achieving treatment success at 5 years.49, 50

Despite technologic advances, pain relief outcomes from conventional SCS have remained 

stagnant.Only 32% of patients in the recently published SUNBURST trial could be 

described as having treatment success (defined as a ≥50% reduction in pain) after 12 weeks 

of conventional stimulation (78.7% of patients had FBSS or radiculopathy), although all 

patients experienced a >50% pain reduction during the trial stimulation before implantation.
51 In the conventional SCS arm of the SENZA RCT, 55.5% of patients were found to have a 

successful outcome, a value similar to that seen in older studies (for example, ~50% of 

patients in the PROCESS and North et al. studies had a comparable successful outcome at 6 

months).10 The notion that therapeutic benefit has failed to improve despite technologic 

advances is supported by data from systemtic reviews, and points to the need for a better 

understanding of the mechanism of action of conventional SCS.37, 52

Mechanistic Studies in Humans

Does dorsal column fiber activation lead to changes in objective measurements of sensory 

and pain thresholds? Because patients experience paresthesias with conventional SCS, 

suggesting that afferent pathways are tonically activated, changes in sensory thresholds 

could be anticipated. One of the first reports of dorsal column stimulation for the treatment 

of pain noted no changes in touch and vibration sensation, but an increase in pain thresholds 

to skin stimulation (Table 2).53 Some studies detected changes in touch54 and vibration54, 55 

thresholds with SCS, whereas others did not.56, 57 Similary, mechanical pain thresholds were 

noted to be altered by SCS in one study58 but not in others.54, 57, 59, 60 Temperature 
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detection thresholds did not differ between patients with SCS and controls in a larger study 

of patients with CRPS, and only a mild effect on mechanical hyperalgesia was detected.61 

Some have observed changes in temperature discrimination,59, 62, 63 temporal summation to 

a painful tonic thermal stimulus,64 and thermal pain,62 whereas others have not. 55, 57 

Detection and pain thresholds to electrical stimulation were increased in patients implanted 

chronically compared with those receiving short-term stimulation.65 SCS was shown to 

increase pain tolerance thresholds to electrical stimulation in trial patients who ultimately 

went on to implantation, but not in trial non-responders.66 Interestingly, chronically 

implanted patients experienced an increase in current perception thresholds while the device 

was on, compared to when it was off, highlighting the importance of when the testing is 

performed.67 A recent small, but carefully conducted study followed patients longitudinally 

before a trial of SCS and up to 3 months after implantation for those with a successful trial, 

and examined a battery of laboratory pain measures, including central sensitization and 

descending modulation of pain. The authors detected no differences over time, except for a 

decrease in thermal temporal summation in patients receiving SCS.60 It is difficult to draw 

clear conclusions from the accumulating evidence described above, likely reflecting 

heterogeneous experimental paradigms such as low subject numbers, diverse pain etiologies 

(and associated nerve damage), different SCS lead locations (epidural vs. subdural) and 

stimulation frequencies, and acute vs. chronic stimulation state, among many others. As a 

whole, it can be assumed that, despite tonic activation of dorsal columns, conventional SCS 

does not impact sensory and pain thresholds to a large extent, and plays a minimal role in 

controlling acute pain.

SCS has effects on higher order processing of nociceptive information, both at segmental 

and cortical levels. Segmental effects are challenging to determine directly in humans; 

however effects on spinal reflexes can be inferred from neurophysiologic tests (Table 3). For 

example, SCS was found to inhibit sensorimotor reflexes such as the H-reflex in patients 

with lower limb pain caused by FBSS.68 This inhibition is thought to occur at least in part 

via direct effects on motor neurons,23 although more complex modulation of spinal cord 

sensorimotor circuits are likely.69 The effects of SCS on motor systems are robust and 

reliable, and SCS has been used to treat spasticity and improve motor function in patients 

with spinal cord injury and other movement disorders such as multiple sclerosis and 

Parkinson’s disease.69, 70 The nociceptive sensorimotor reflex (RIII) is a polysynaptic spinal 

reflex considered to be an objective physiologic measure of nociception, and has been shown 

to correlate positively with perceived pain.71, 72 SCS was shown to inhibit the RIII and 

correlate with efficacy of stimulation in two studies of patients with neuropathic pain.68, 73 

The RIII reflex stands out as a promising test that may be used to establish optimal 

stimulation parameters, and as an objective evaluation of the treatment efficacy.74

In addition to its segmental effects, SCS modulates cortical processing of somatosensory 

information, as reviewed recently.75 SCS has been shown to decrease cortical excitability, as 

measured via sensory evoked potentials (SEP),68, 76–80 and can normalize pathologic 

cortical activity.81 These measures may be useful to predict pain relief.82 As with other 

measures, SEP changes do not always correlate with clinical success, meaning that patients 

with significant suppression of SEP sometimes report minimal pain relief. Thus, larger 

studies are needed to determine if SEPs can be used to predict outcomes.75
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Brain activity is pathologically altered in chronic pain states,83 and considerable evidence 

supports the notion that abnormal activity in corticolimbic structures serves as the basis for 

chronic pain.84 It is enticing to hypothesize that SCS mediates analgesia by inhibiting and 

normalizing pathologic cortical connectivity and decreasing corticolimbic activation. 

Numerous studies have examined how SCS alters cortical processing by using imaging 

approaches such as fMRI, PET, SPECT, and 133-Xe inhalation.75 Cortical changes during 

SCS may represent direct effects from dorsal column stimulation or inhibition of nociceptive 

signals arising from the periphery, or they may reflect complex modulatory effects on 

somatosensory and affective processing. The earliest study to show the feasibility of using 

fMRI in patients with stimulators found increased activation of sensory and cingulate 

cortices in three patients with temporary electrodes.85 Others found that SCS decreased 

thalamic-to-cingulate connectivity, 86 diminished activation of primary motor and 

somatosensory cortex,87 and modulated resting state connectivity.88 SCS can increase 

regional cerebral blood flow (CBF), especially when administered at the cervical level, 

suggesting a direct effect on CBF regulatory centers.89–91 Studies using PET and SPECT 

imaging of CBF had similar findings, with normalization of activity in multiple brain 

regions, including thalamus, postcentral gyrus, orbitofrontal cortex, and anterior cingulate 

cortex in one study. 81 Others found regional CBF changes in thalamus, anterior cingulate 

cortex, prefrontal, and bilateral parietal association areas.92, 93 As most current SCS systems 

are MRI-compatible and can deliver paresthesia-free stimulation, allowing for placebo 

control, it is now possible to design relevant studies to delineate the cortical structures 

subserving SCS analgesia.75 Future research efforts should address fundamental questions 

such as whether long-term SCS success can be predicted from a patient’s baseline imaging, 

for example using resting-state fMRI. Other studies may address whether imaging can be 

used to adjust stimulation parameters in patients with suboptimal pain relief.

Preclinical Mechanistic Studies

Many outstanding reviews have been written about the mechanisms of action of SCS based 

on animal studies.17, 19, 94–98 Convincing evidence indicates that conventional SCS mediates 

pain relief through a combination of segmental and supraspinal mechanisms, by reversing 

neuronal hyperactivity and maladaptive changes found in chronic pain states (Table 4).99–101 

Early reports showed that SCS-mediated analgesia could be blocked by blocking inhibition,
102 and that SCS causes an increase in release of inhibitory neurotransmitters, as postulated 

by the GCT.96, 102–105 Intrathecal administration of baclofen, a GABA B receptor agonist, 

augmented SCS analgesia in rats and rescued non-responders, and, when translated 

clinically, increased the efficacy of SCS in patients with neuropathic pain who were poor 

responders.96, 103, 106, 107

SCS modulates other neurotransmitters, including cholinergic, serotonergic, and opioidergic 

systems. Acetylcholine levels are increased by SCS in responder rats, but not in non-

responder animals, and activation of M4 muscarinic receptors can potentiate SCS-mediated 

analgesia.108 Similar to baclofen, clonidine—an alpha-2 adrenoreceptor agonist that 

augments acetylcholine release in dorsal horn—potentiated inadequate SCS analgesia when 

delivered intrathecally in rats109 and offered sustained long-term benefit to patients in one 

small clinical trial.106 In addition to acetylcholine, SCS induces release of serotonin in the 
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dorsal horn of cats and rats.110, 111 Antagonists to serotonin receptors 5-HT(2A) and 5HT(4) 

blocked the analgesic effects of SCS, whereas intrathecal injection of a 5-HT(3) agonist 

enhanced SCS analgesia. This effect was blocked by inhibition of GABA B receptors in a rat 

model of neuropathic pain.111, 112 A recent study using prolonged SCS at low (4 Hz) and 

typical (60 Hz) frequencies found differential modulation by opioid receptor subtype, such 

that μ opioid receptor blockade with naloxone prevented the SCS-mediated analgesia at low 

frequencies, whereas δ opioid receptor blockade with naltrindole blocked effects of 60 Hz 

stimulation.113 Interestingly, the same group published a study in which proglumide, a drug 

that enhances the analgesic properties of opioids, had no effect on SCS analgesia or physical 

activity levels in rats.114 Another group found that opioid antagonism with naloxone blocked 

early SCS (administered 3 days after nerve injury), but had no effect on late SCS.115

SCS depresses the activity of wide dynamic range (WDR) neurons, a class of output neurons 

located in deep dorsal horn lamina.116, 117 This fact is relevant, as WDR neurons are 

candidates for the transmission cells in GCT and are critical for spinal pain processing and 

development of neuropathic pain.99, 118, 119 SCS-mediated suppression of WDR neurons 

may be achieved through modulation of the neurotransmitter systems detailed above, 

although circuit-level understanding is lacking. Recently, SCS (applied as stimulation of Aβ 
fibers) was shown to cause long-term depression of excitatory synaptic transmission in the 

superficial dorsal horn (lamina II).120 This synaptic depression was observed in both 

excitatory and inhibitory neurons; however the network-level effects remain unknown. The 

synaptic depression was blocked by antagonists of cannabinoid receptor type 1 (CB1), 

which links the mechanisms of SCS analgesia to a well-established pain control system.121 

Two recent studies showed that intrathecal infusion of AM251, a CB1 receptor antagonist, 

blocked SCS-mediated reversal of mechanical hyperalgesia in rats with neuropathic pain.
115, 122

The aforementioned investigations of WDR neurons did not verify that the neurons studied 

were projection neurons. A recent study addressed this concern by specifically recording 

from projection neurons—nociceptive-specific and WDR subtypes. The authors observed 

heterogeneous responses to 20-second-long trains of SCS of various frequencies, supporting 

the notion that the effects of SCS might be better explained by complex microcircuit 

interactions than by a gating mechanism.123

Because SCS causes activation of supraspinal regions via orthodromic dorsal column action 

potential transmission, recent studies have tried to tease out the proportion of analgesia 

attributable to supraspinal circuits, as well as the neurotransmitter involved.124, 125 In rats 

with chronic dorsal column lesions, SCS was equally effective at relieving pain when 

applied at levels rostral or caudal to the lesion, with each site producing about 50% of the 

pain relief obtained in intact rats. Intraperitoneal administration of antagonists to GABA (A 

and B), serotonin, beta and alpha adrenergic, and dopaminergic receptors differentially 

inhibited measures of tactile and thermal hypersensitivity, suggesting that segmental and 

supraspinal activation involves different circuits and neurotransmitters.126 The supraspinal 

effects of SCS are likely mediated by the rostroventral medulla, a key brain region critical 

for descending modulation of nociception, as shown recently by Song et al.,127 who reported 

that SCS in responder rats caused an increase in spontaneous activities of anti-nociceptive 
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OFF and serotonergic-like neurons. Other supraspinal loops may include adrenergic 

neurons,128 although the exact mechanisms are unknown.

HIGH-FREQUENCY STIMULATION

Clinical Efficacy

High-frequency SCS is a broad term meant to imply frequencies higher than that commonly 

used in conventional SCS (60–200 Hz), although conventional devices generate frequencies 

up to 1200 Hz. Among the high-frequency rates, 10,000 Hz (10 kHz, or HF10) has been 

studied the most, and it is available from only one device manufacturer, Nevro (Redwood 

City, CA, USA). In a feasibility study published in 2013, Tiede and colleagues examined 24 

patients with FBSS who were eligible for SCS.129 After a trial of conventional SCS, patients 

received a 4-day trial of HF10. Remarkably, average overall VAS pain scores decreased 

significantly from a baseline of 8.68 ± 0.5, to 3.92 ± 0.9 with conventional SCS and to 2.03 

± 0.75 with HF10. Patients did not experience paresthesias with HF10, and the majority 

preferred it. Low back pain, which is typically most refractory to treatment, particularly to 

SCS, improved as much as leg pain. A European prospective study reported a high trial-to-

implant ratio (88%) with HF10 and outstanding pain reduction, with 77% of patients 

reporting ≥50% pain relief at 6 months, again without paresthesias.130 At the 2-year follow-

up, 60% of patients had ≥50% relief of back pain and 71% had ≥50% relief of leg pain; 

patients also reported significant improvement in function and decreases in opioid 

medication usage. The vast majority (>80%) were satisfied or better on subjective reports 

and would recommend it to others.131

In one of the largest studies in the field of neuromodulation, Kapural et al.10 randomized 198 

patients 1:1 to HF10 or conventional SCS. Of those enrolled, 93% who trialed HF10 and 

88% of those who trialed conventional therapy proceeded to permanent implant. The rates of 

response, defined as having ≥50% pain decrease, averaged approximately 80% for back and 

leg pain in the HF10 group but only 50% in the conventional SCS group. Opioid 

consumption, disability, and satisfaction rates improved at 12 months, but more so in the 

HF10 group. Complication rates were comparable between the two groups, suggesting that 

HF10 is a safe therapy. At the 24-month follow-up, the pain relief was sustained for both 

back and leg pain in more than 70% of patients who received HF10.11 Importantly, there 

were no reports of neurologic deficits or injury in either group of patients, supporting the 

safety of SCS.

Other reports, including small, short-term prospective132 and long-term retrospective 

studies,133–135 have shown consistent and sustained pain relief. A recent non-industry-

sponsored clinical trial comparing conventional SCS and HF10 in 60 subjects with FBSS 

found that both groups had improved from baseline at 12 months; however the pain 

reduction was less than previously reported, and there were no differences in pain or 

functional scores between the two groups.136 Additional retrospective studies in patients 

with headaches137, 138 and primarily neuropathic pain139 have been encouraging, supporting 

the use of HF10 for segmental pain pathologies.140–142
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Mechanistic Studies in Humans

To the best of our knowledge no studies have systematically examined the effects of HF10 

SCS on sensations using quantitative sensory testing. Youn and colleagues measured thermal 

and mechanical detection and pain thresholds in 20 patients implanted with SCS devices (4 

weeks to 4 months postoperatively), and compared OFF, traditional SCS, and high-

frequency (200–1200 Hz) protocols.143 The body area selected for testing had coverage of 

pain and paresthesias with traditional SCS. The authors found that higher frequencies were 

associated with higher detection and pain thresholds for mechanical stimuli, but they noted 

no differences in thermal testing for threshold or pain detection. In a case report describing 

the measurement of SEPs in a patient with FBSS and thoracic epidural leads, the authors 

found that SEPs were inhibited at all frequencies tested (60 Hz, 200 Hz, 500 Hz, and 10 

kHz).144

Preclinical Mechanistic Studies

A few recent outstanding reviews discuss potential mechanisms of action for pain relief with 

high-frequency stimulation, including axonal conduction block, desynchronization of axonal 

activity, and glial-neuronal interactions.17, 145 It was initially believed that HF10 mediates 

pain relief by blocking or desynchronizing axonal transmission, as shown in peripheral 

nerves.146 However, this is an unlikely mechanism, as a computational study demonstrated 

that the stimulation amplitudes required for activation and conduction block of dorsal 

column fibers are outside the range used clinically, and patients do not experience 

paresthesias.147 Song et al.148 found that whereas conventional SCS caused profound 

activation of dorsal column projection nuclei (gracile), 10 kHz dorsal column stimulation at 

subparesthesia levels (~40–50% of motor threshold) had no effect, despite attenuating 

mechanical hyperalgesia. In a carefully designed rat study, Crosby et al.149 showed that few 

axons fired action potentials with high-frequency (1 to 20 kHz) dorsal column stimulation, 

particularly at amplitudes below 50% of motor threshold, and similarly, conduction block 

rarely occurred at those amplitudes. These studies complement prior work showing that 

whereas 4 and 60 Hz SCS drove expression of c-fos (an immediate early gene used as a 

marker to indicated neuronal activity) in supraspinal regions, stimulation at higher 

frequencies (100 Hz) elicited no such increase.150

High-frequency SCS has been shown to attenuate pain in animal models. Using a rat L5 

nerve ligation model, Schechter et al.151 showed that high-frequency SCS (1 and 10 kHz) 

attenuated hyperalgesia with an earlier time-course and to a greater extent than stimulation 

at 50 Hz. In addition, high-frequency stimulation decreased Aaα/β compound action 

potential amplitude more than did 50 Hz stimulation. However, 50 Hz stimulation 

significantly decreased wind up, whereas high-frequency did not. In a recent study, Li et al.
152 measured peripherally evoked activity of WDR and high-threshold (HT) neurons in 

naïve rats that received SCS with frequencies ranging from 50 Hz to 10 kHz, and determined 

that 20 minutes of SCS, regardless of frequency, inhibited responses to pinch in all neurons 

recorded. Furthermore, only 1 kHz stimulation attenuated responses to a second pinch, 

delivered 4 minutes after the first. This finding was surprising, as the greatest charge transfer 

occurred at 10 kHz.
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When HF10 SCS is implemented with settings similar to those used clinically, it has the 

intriguing ability to provide pain relief equal or superior to that of conventional SCS, 

without activating or blocking dorsal column fibers. Preliminary studies, published in 

abstract form, revealed that HF10 stimulation decreases wind-up and hyperpolarizes 

superficial dorsal horn neurons, suggesting segmental mechanisms that diverge from gate 

control mechanisms.17 These findings indicate that for optimal stimulation, the active 

electrodes should be placed adjacent to the segments processing painful information, 

although relation to midline might not be as critical.153

BURST STIMULATION

Clinical Efficacy

Despite its recent introduction, burst stimulation has been rapidly adopted by the 

neuromodulation community, particularly as it has become clear that most patients prefer 

paresthesia-free stimulation.3 Multiple studies, although limited by small size and short 

duration, have consistently shown that burst stimulation suppresses neuropathic pain as well 

as or better than conventional SCS, and that most patients choose it over paresthesia 

stimulation.154 These early proof-of-concept studies are challenging to interpret because 

they generally consisted of patients with FBSS already receiving conventional SCS, and the 

duration of stimulation was brief, only 1–2 weeks.155 In the SUNBURST trial, 100 patients, 

predominantly with FBSS or radiculopathy, were randomized to tonic (conventional) or 

burst stimulation for 12 weeks each.51 Burst met non-inferiority and superiority criteria 

compared to tonic stimulation for the primary end point, mean daily overall VAS, and the 

safety profiles were similar. Most patients (68%) preferred burst stimulation, and the 

majority who received burst SCS did not feel paresthesias, consistent with previous reports. 

There were no differences between burst and tonic stimulation for function and psychosocial 

assessments, which was surprising given that burst is hypothesized to mediate pain relief by 

activating medial pathways and normalizing affective/attentional components of pain.156 

These results replicated findings of previous smaller studies, although the observed 

difference in pain scores was somewhat less than what others reported.3, 13, 157 It may be 

that burst stimulation works best in certain clinical scenarios, as shown in a recent crossover 

study of patients with CRPS that compared standard (conventional 40 Hz), non-standard 

(500 Hz, 1200 Hz, and burst), and placebo stimulation for 2 weeks.158 The authors found 

that most patients preferred standard SCS, and that pain relief was comparable for standard 

and non-standard settings. Additional large, high-quality studies are needed to determine 

how pain relief mediated by burst compares with HF10 and other novel waveforms.159

Mechanistic Studies in Humans

To the best of our knowledge no studies have examined the effects of burst stimulation on 

sensory testing. EEG has been used to compare burst with conventional SCS in five patients. 

The two modes were found to activate and depress brain activity in different regions, with 

burst preferentially activating medial pathways thought to be related to descending 

modulatory systems.13, 160 Additional studies that use other imaging techniques such as 

fMRI are needed to determine how burst differs from conventional SCS in chronic pain 

states.
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Preclinical Mechanistic Studies

A few preclinical studies have begun addressing the mechanisms of burst SCS-mediated 

analgesia. Tang et al.,161 using a rat model, showed that burst SCS suppressed visceromotor 

reflexes (increases in external oblique muscle activity in response to colorectal distention) as 

well as noxious stimulus-induced activity of dorsal horn neurons to a greater degree than 

tonic stimulation. They also examined the activity of dorsal column nuclei and, surprisingly, 

found that burst SCS had no effect on the spontaneous activity of gracile nucleus neurons, 

whereas tonic stimulation activated these neurons. The results suggested that burst SCS does 

not activate dorsal column-medial lemniscal pathways. As burst and tonic stimulation were 

delivered at high intensities (90% of motor threshold), it is unlikely that the lower thresholds 

typically used in subparesthesia SCS (~40% of motor threshold) activate dorsal column 

pathways. Thus, despite being developed as an ideal, physiological stimulation paradigm, it 

appears that burst does not activate adjacent dorsal column axons and instead may be similar 

to HF10 SCS in modulating pain via segmental mechanisms.

Burst SCS significantly suppressed pinch-evoked activity of WDR neurons in a cervical root 

compression rat model, and increasing individual pulse parameters (width, amplitude, and 

number) increased the attenuation of neuronal responses; however, augmenting frequency 

parameters had no effect.162 This study also found that greater charge per burst correlated to 

a larger reduction of WDR neuronal firing, and to a higher percentage of neurons responding 

to burst SCS. In a follow-up study by the same group using the same cervical root 

compression rat model, burst SCS and tonic SCS attenuated evoked WDR activity to 

noxious stimuli (heavy von Frey filament and pinch) to a comparable degree; however 

inhibition of GABA B receptors abolished tonic SCS-mediated, but not burst SCS-mediated, 

attenuation of WDR neurons.163 Interestingly, cervical root compression caused a decrease 

in serum GABA concentrations that was rescued by tonic stimulation, whereas burst 

stimulation had no effect on serum GABA concentrations. These results strongly suggest 

that burst SCS suppresses dorsal horn excitability through non-GABAergic mechanisms.

Meuwissen and colleagues also found that increasing pulse amplitude (while maintaining all 

other waveform parameters constant) suppressed mechanical hypersensitivity in a 

neuropathic rat model. However they observed a nonlinear effect, such that burst SCS at an 

amplitude 50% of motor threshold was superior to amplitudes of 33% and 66% of motor 

threshold.164 Optimal burst SCS (at 50% of motor threshold) was comparable to 

conventional SCS at the high intensity (66% of motor threshold) for attenuating 

hyperalgesia, and interestingly, the charge delivered per second was much greater for burst 

SCS than for conventional SCS at comparable behavioral outcomes. These findings diverge 

from those of Crosby et al.,162 who found that increasing stimulation amplitudes improved 

suppression of neuronal firing, although the experimental models were different. Thus, the 

data support a complex, non-linear interplay between charge delivery, activation of neuronal 

elements, and pain relief.
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DRG STIMULATION

Clinical Evidence

Dorsal column SCS has multiple shortcomings, including limited ability to directly target 

specific dermatomes and vulnerability to positional changes and variation in the thickness of 

the cerebral spinal fluid layer immediately adjacent to the leads. DRG stimulation was 

introduced to specifically address these limitations, by delivering stimulation directly to 

affected nerve root(s) within the enclosed bony structures surrounding the DRG.165 

Technical barriers relating to placing the leads adjacent to the DRG were overcome though 

development of a specifically designed lead delivery system. Initial studies, which have been 

encouraging, showed sustained pain relief in patients with focal neuropathic pain, such as 

CRPS and groin pain, which are traditionally difficult to treat with conventional SCS.166–170 

In a recent prospective RCT, which led to FDA approval in the US, Deer et al.12 

demonstrated that in patients with CRPS, DRG stimulation was superior to conventional 

SCS for the primary composite outcome (≥50% reduction in VAS score from baseline for 

the trial and at 3 months after implantation; lack of neurologic deficits) and for secondary 

end points, including positional effects on paresthesia, quality of life, emotional scales, 

satisfaction, stimulation specificity, and percent change. The study is remarkable in that 

81.2% of patients randomized to DRG SCS achieved success at 3 months, compared with 

55.7% in those who received conventional stimulation, and these results were stable at 12 

months. The safety profile favored conventional SCS because the DRG arm had a higher rate 

of procedural events.

Preclinical Mechanistic Studies

Electrical stimulation of the DRG using electrical fields can have numerous effects, among 

them activation of low-threshold nerve fibers, alteration of conduction properties of axons 

and axonal T-junctions, and modulation of the properties in the DRG neurons and non-

neuronal cells. Koopmeiners and colleagues171 showed that exposing rat DRG to brief 

periods of field stimulation caused calcium influx, attenuated the intrinsic excitability of 

DRG neurons, and increased filtering of action potentials through the DRG. Pan et al.172 

examined the effects of DRG stimulation in a rat model of nerve injury. They implanted the 

DRG stimulation lead in situ such that rats could be maintained awake and ambulatory. 

Thirty minutes of DRG stimulation reversed mechanical (to pin and von Frey) and cold 

hypersensitivity, and the effect outlived stimulation by 15 minutes. The experimental design 

allowed the authors to study the affective components of pain by setting up a conditioned 

place preference assay, in which rats were conditioned to receive DRG stimulation in one of 

two chambers for 4 days. After conditioning, rats spent significantly more time in the 

chamber where they received DRG stimulation, whereas sham-stimulated rats showed no 

chamber preference, strongly suggesting that DRG stimulation in this model relieves pain. 

Using the same implanted DRG stimulation lead model, this group performed BOLD fMRI 

imaging in rats that received an acute painful stimulus to the hind paw, with or without 

stimulation.173 Stimulating the DRG significantly attenuated the response across multiple 

brain regions, whereas the stimulation itself, when administered at clinically relevant 

parameters, had little effect on the fMRI response. These findings confirm the hypothesis 
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that DRG stimulation decreases action potential propagation, likely at the level of T- 

junctions.171

These studies substantiate the concept that DRG stimulation has direct effects on dorsal root 

axonal transmission of painful inputs, and reverses pathologic activity found in neuropathic 

states. Additional studies are needed to delineate mechanisms, specifically the role of 

calcium influx on DRG neurons and support cells.

CONCLUSIONS AND FUTURE DIRECTIONS

There is little doubt that SCS represents a safe and effective therapy for patients with 

neuropathic pain conditions, especially those with FBSS. The accumulating clinical 

evidence is overwhelmingly positive, and with the introduction of burst, HF10, and DRG 

SCS, patients have more options than ever before. In high-quality RCTs, burst stimulation 

and HF10 have been shown to be provide pain relief superior to that of conventional SCS for 

patients with FBSS.10, 11, 51 Other stimulation paradigms such as high-density174–176 and 

3D-guided15 SCS have shown great promise as well, although larger randomized studies are 

needed to confirm preliminary findings. Large, non-industry-sponsored clinical trials 

comparing the available options are urgently needed to establish what stimulation paradigms 

are superior for specific neuropathic conditions. In addition, more attention should be 

directed to better understand the loss of efficacy that occurs over short and long durations.
46, 177, 178 Future studies should also attempt to better characterize treatment failures, in 

addition to successes.179

Quantitative sensory testing has shown promise in defining pain phenotypes180, 181 and in 

guiding pharmacologic treatment.182 It might be useful for predicting SCS analgesia,66 

although larger studies are needed.60 Other neurophysiologic measures such as SEPs and the 

RIII reflex support the idea that SCS modulates segmental nociceptive processing in 

humans. It will be interesting to determine if these measures can be used to guide patient 

selection and improve treatments. This topic deserves further study, particularly with 

paresthesia-free waveforms. Accumulating evidence supports the idea that SCS mediates 

analgesia at the systems level by modulating corticolimbic activation, and technical 

advances that include paresthesia-free waveforms combined with MRI compatibility hold 

great promise. Future fMRI studies with placebo-controlled designs should further delineate 

cortical and spinal mechanisms of action, predict responders, and optimize stimulation 

parameters.

Preclinical studies have deepened our understanding of the mechanistic basis of SCS, at 

times with direct translational implications.183 Although multiple neurotransmitters have 

been implicated in segmental and supraspinal mechanisms of conventional SCS, and 

pharmacologically augmented SCS proved successful in small studies,184 a detailed 

understanding of neuronal pathways involved and circuit-level effects is still lacking. Early 

and late SCS may have distinct mechansims115 that are relevant to the loss of efficacy 

observed clinically. Much less is known about the neural pathways activated in patients, and 

noninvasive imaging studies should address these questions.75
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The observed clinical efficacy of burst and HF10 SCS combined with basic research findings 

that these stimulation paradigms do not activate or inhibit dorsal columns when used at 

clinically relevant parameters, strongly supports mechanisms of action other than the 

traditional gate control mechanism.17, 98 Additional studies are needed to determine these 

mechanisms, their overlap, and how they relate to conventional SCS.185 As these novel 

therapies do not appear to follow linear relationships between charge delivery and behavioral 

outcomes,151, 164 it will be important to identify the critical waveform parameters that are 

relevant to pain relief.11, 162 Electrical field effects of DRG stimulation on nearby neurons 

were shown in an in vitro model, and these changes may be secondary to calcium influx and 

subsequent changes in intrinsic excitability.171 It remains to be determined if burst and HF10 

impart similar field effects on dorsal horn neurons, and how these effects vary depending on 

neuronal type, electrode geometry, and stimulation parameters. These questions have 

significant translational relevance. For example, they point to the importance of placing the 

leads anatomically. However, studies are needed to determine the critical spinal segments for 

different pain pathologies (the T9–10 disc space is targeted in current practice to treat axial 

back pain when using HF10 stimulation), whether there are inter-individual variations, and if 

these segments differ for distinct waveforms.29, 98

Chronic neuropathic pain is a common, diverse condition186 that is difficult to treat187 and 

associated with significant impairments in quality of life.188 The importance of having safe 

and effective therapies has been highlighted recently in discussions about the opioid 

epidemic.189, 190 Understanding the biologic basis of SCS through improved communication 

and collaborations between the clinical and scientific communities will be critical for 

identifying appropriate candidates, optimizing pain relief, and maximizing societal benefit 

(Table 5).
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Fig. 1. Spinal cord stimulation lead position.
The electrical lead sits in the epidural space, and the electrical stimuli activate fibers directly 

below it. This causes initiation of orthodromic and antidromic action potentials and 

supraspinal and segmental effects. Adapted from Smits et al., 2013.2
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Fig. 2. Waveform properties.
(A) The amount of charge delivered to tissues depends on pulse properties: shape, 

amplitude, and duration. The lower panel illustrates the concept of frequency and charge 

balance. (B) Burst waveform, adapted from De Ridder et al.3 The waveform represents five, 

1-ms-long pulses, delivered at 500 Hz, while the burst frequency is 40 Hz. Charge balance 

occurs after the five pulses.
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Table 1.

Randomized controlled trials in spinal cord stimulation

SCS type Failed back surgery
syndrome

Complex regional
pain syndrome

Diabetic
neuropathy

Conventional North,40 Kumar,36 Rigoard,42, 43* Turner191 Kemler45,46 De Vos,47 Slangen48

HF10 Kapural,10 De Andres136

Burst Deer,51 Schu157 Kriek158

Dorsal root Deer
12

ganglion

*
Final results available at https://clinicaltrials.gov/ct2/show/results/NCT01697358HF10,

HF10, high frequency at 10 kHz; SCS, spinal cord stimulation.
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Table 3.

Neurophysiologic effects of spinal cord stimulation in humans

Study* Sympathetic
skin
response

H reflex RIII reflex F wave Notes

Garcia-Larrea73 Suppressed in 52.4% Analgesia correlated 
with RIII attenuation

De Andrade68 Increased amplitude; 
decreased latency

Increased 
threshold and 
latency; 
decreased 
amplitude

Increased threshold; 
decreased area

Decreased latency Analgesia correlated 
with RIII attenuation

Manresa192 Increased threshold

All studies used conventional spinal cord stimulation.
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Table 5.

Future directions (developed with help from the International Association of Pain’s Neuromodulation Interest 

Group).

1.  What are the segmental and distal circuits engaged by spinal cord stimulation (SCS)?
 We need circuits to be defined by modern, genetically identified cell types.
 ◦  What are the biological roles of these circuits?

2. How are these circuits engaged by different stimulation paradigms (i.e., variations in frequency, and/or intensity, and/or pulse width)?
 ◦ What are the spike trains that are generated by various SCS paradigms?
 ◦ How do these spike trains translate into long-term changes?
 ◦ How do spike trains alter the activity of output neurons at spinal (wide dynamic range, nociceptive specific) and supraspinal 
(rostroventral medulla) sites?

3. How do SCS mechanisms differ in acute versus long-term stimulation states?
 ◦ Although animal models generally focus on early SCS, it is more relevant clinically to study late SCS, as loss of efficacy with long-
term use is a significant clinical problem.

4.  Testing of effects and pain relief based no longer on Hargreaves and von Frey tests (response-mediated effects) but on operant testing of 
behavior. The latter includes affective-emotional and cognitive aspects of pain and will likely improve clinical translation of findings.

5.  Imaging (fMRI, PET-scan) studies of supraspinal areas with various SCS paradigms need to be correlated with pain relief and used to 
link observed behavioral and cellular effects to selected brain areas.
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