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1. What is Metabolomics

Metabolomics is the accepted name for the -omic science
that deals with the characterization of the metabolome, in
turn defined as the whole set of metabolites in a certain
biological system such as a cell, a tissue, an organ, or an entire
organism. The term metabonomics, as distinct from metab-
olomics, is also used when we refer to the science of
understanding the network of interactions that metabolites
undergo in a living system and is therefore closer to the
concept of systems biology. Metabolomics deals with the
objects, metabonomics with their interconnections and func-
tions.[1] In practice the two terms are mostly used interchange-
ably.

Metabolomics is downstream with respect to the other
-omic sciences, and this has important implications, as

illustrated in Figure 1. Metabolomics is much more influenced
by environmental factors, and this makes metabolomic data
more difficult to interpret but also richer of information about
the health status of an individual. While the genome is
(almost) invariant throughout the lifespan of an individual,
the metabolome may change as a result of lifestyle, stress and,
most importantly, onset of pathologies. On the other hand,

Metabolomics deals with the whole ensemble of metabolites (the
metabolome). As one of the -omic sciences, it relates to biology,
physiology, pathology and medicine; but metabolites are chemical
entities, small organic molecules or inorganic ions. Therefore, their
proper identification and quantitation in complex biological matrices
requires a solid chemical ground. With respect to for example, DNA,
metabolites are much more prone to oxidation or enzymatic degra-
dation: we can reconstruct large parts of a mammothQs genome from
a small specimen, but we are unable to do the same with its metab-
olome, which was probably largely degraded a few hours after the
animalQs death. Thus, we need standard operating procedures, good
chemical skills in sample preparation for storage and subsequent
analysis, accurate analytical procedures, a broad knowledge of
chemometrics and advanced statistical tools, and a good knowledge of
at least one of the two metabolomic techniques, MS or NMR. All these
skills are traditionally cultivated by chemists. Here we focus on
metabolomics from the chemical standpoint and restrict ourselves to
NMR. From the analytical point of view, NMR has pros and cons but
does provide a peculiar holistic perspective that may speak for its
future adoption as a population-wide health screening technique.
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Figure 1. The flow of information in systems biology proceeds from
the genome to the transcriptome, the proteome and finally to the
metabolome. From left to right they are increasingly variable during an
individual lifespan, and all concur to the phenotype.
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while the number of biological objects increases from 104–105

genes to ca. 107 proteins, it decreases down to 103–104

metabolites[1, 2] (Figure 1), thus condensing the information.
The distribution of metabolites in a biological fluid (urine) is
shown as an example in Figure 2.

Although the majority of studies of metabolomics deal
with humans, and therefore with human health and diseases,
metabolomics also applies to animals,[3] plants[4] and micro-
organisms,[5, 6] and therefore also impacts on other important
fields such as agriculture, food production and environ-
ment.[7–9] There are very many review articles that, as it can be
imagined, describe metabolomics from many different view-
points.[10] The present one attempts at looking at metabolo-
mics mainly from a chemical viewpoint. We are well aware
that the whole is greater than the sum of all its parts, that is,
understanding metabolomics implies a systemic view of the
biological entity and cannot be limited to correctly identifying
and quantifying as many chemical objects as possible in
a system. On the other hand, expertise in analytical chemistry,
medicinal chemistry, chemometrics, molecular reactivity,
good laboratory practice, and in at least one of the two
major instrumental metabolomic techniques (MS and NMR)
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co-founder and Director of the Center of Magnetic Resonance (CERM),
and President of the Interuniversity Consortium on Magnetic Resonance of
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metabolomics team from left to right: Leonardo Tenori, Gaia Meoni,
Veronica Ghini, Claudio Luchinat, Paola Turano, Alessia Vignoli, Pantelei-
mon G. Takis, Cristina Licari.

Figure 2. a) Concentration ranges of the 260 most abundant metabolites in urine as determined by LC-MS, NMR, GC-MS, ICP-MS and HPLC.[18]

Metabolites are sorted according to their mean absolute concentration values in urine. Green and blue bars highlight the organic metabolites and
the inorganic ions that appear at high occurrence in urine, respectively; gray bars those at lower occurrence.[18] b) Enlargement of the first 136
urine metabolites, with mean concentration value >30 mM. Adapted from Ref. [14].
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is essential to properly collect, handle and store the metab-
olomic samples, perform the experiments, analyze the results,
and even detect flaws that might escape an eye that is not
chemically trained. Metabolomics can bring to great discov-
eries, but we need to be sure that the discovery is based on
solid ground.

Of the two main analytical techniques, MS and NMR,[11]

we will only deal with NMR which is our main field of
research, but we think that the two techniques are very
complementary, and the weaknesses of one are compensated
by the strengths of the other,[10, 12,13] as illustrated in Table 1.

The main reason to stick to one of them is that, because the
merits of the two techniques are intrinsically different, doing
metabolomics by NMR results in developing an “NMR-
vision” of metabolomics that is different from the “MS-
vision”. By doing this we hope to contribute to increase the
“biodiversity” of metabolomic approaches, to the advantage
of the scientific communities (the medical community above
all) that are progressively attracted by it but still need to
appreciate and exploit the fact that metabolomics comes in
very different flavors.

2. Metabolomics by NMR

A major application of NMR in metabolomics is the
detection of all small molecules in a sample that are above

a given concentration threshold (Table 1) using one-dimen-
sional 1H pulse sequences. Two main approaches are
employed: i) solution NMR, for the detection of soluble
metabolites in biofluids, cell lysates or polar/apolar tissue
extracts and ii) HR-MAS (High Resolution Magic Angle
Spinning), for the measurement of metabolites in semi-solid
samples, like intact tissues.

2.1. Types of Samples

The types of samples are many; the most common and
significant are listed in Table 2, Figures 3 and 4. The samples
can be classified in terms of molecular/biochemical complex-
ity, from cells to tissues and biofluids. The NMR detectable

part of the metabolome corresponds to tens-hundreds of
molecules, mainly belonging to the class of amino acids,
carbohydrates, alcohols and organic acids (Figure 3). NMR
can also contribute to the definition of the overall lipid
composition of a biosystem, the so-called lipidomics.[16,17]

Sample-specific considerations can be applied. Different
types of cells are characterized by different metabolomes,
but the measurable molecules are end-products or intermedi-
ates of the main metabolic pathways. Intensity variations in
intracellular metabolites (endo-metabolome) induced by
treatment with drugs, overexpression of a protein, genetic
manipulation, etc. can be directly related to the up- or down-
regulation of specific pathways. For a comprehensive picture
of the biochemistry of cells, the complementary information
provided by analyzing culture media (exo-metabolome) is
extremely important.[27] The NMR spectra of tissues reflect
organ-specific biochemistry (aerobic respiration, lipid metab-
olism, etc.) but are also affected by the heterogeneity of the
tissue composition, the contribution from the extracellular
matrix and the tissue microenvironment, so that their
biochemical interpretation is more difficult than in cultured
cells. Nevertheless, tissue samples are extremely valuable as
direct reporters of the diseased organ, where variations in the
metabolome with respect to a healthy status are expected to

Table 1: Main features of NMR and MS applied to metabolomics.[12, 13]

Technology NMR MS

Reproducibility Very high Fair

Detection limit Micromolar range Picomolar range

Sample prepa-
ration

Minimal Several steps: often
requires chromatographic
separation and sample
derivatization

Volume of the
original
sample used

0.1–0.5 mL 0.01–0.2 mL

Types of mole-
cules detected

Any molecules containing
NMR active nuclei

Most organic and some
inorganic

Types of
experiments

All metabolites above
detection limit are
observed simultaneously

Several, tailored for spe-
cific chemical species

Ambiguous/
false identifi-
cation

Origin: compounds with
degenerate chemical
shifts, chemical shift vari-
ability due to experimental
conditions (pH, tempera-
ture, ionic strength), pres-
ence of only one singlet
signal. Experimental
approaches: 2D experi-
ments[14]

Origin: compounds (e.g.
isomers) that can match
a given atomic composi-
tion or a parent ion
mass.[15] Experimental
approaches: LC-MS/MS

Figure 3. Number of detectable and quantifiable metabolites with
+50 % occurrence in the 1H NMR spectra of different biological fluids
(urine,[18] serum,[19] saliva,[20] CSF,[21] EBC,[22] fecal extracts, cell lysates
(e.g. ovary and glioblastoma cells)[23, 24] and intact tissues (e.g. liver
and pancreas).[25, 26]
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Table 2: Type of samples, pre-analytical procedures, NMR sample preparation, NMR spectral acquisition.

Type of Pre-analytical procedures[a] Analytical procedures
sample NMR sample preparation[b] NMR spectral acquisition[c]

URINE Collect the first urine of the morning after
a minimum of 8 h fasting. Specify if
collected in different daytimes or not
fasting.
Centrifuge the urine within 120 min after
the collection at 1000–3000 RCF for 5 min
at + 4 88C and/or filtrate the samples by
0.20 mm cut-off filter.
Recover the urine in sterile condition
making 1 mL aliquots.
Store at @80 88C.[29]

Thaw at room temperature and shake.
Centrifuge at 14000 RCF for 5 min at
4 88C.[30]

Add 630 ml of sample to 70 mL of
potassium phosphate buffer (1.5 m
K2HPO4, 100% (v/v) 2H2O, 2 mm NaN3,
5.8 mm TMSP; pH 7.4).[d]

Transfer 600 mL of each mixture into
a 5 mm NMR tube.[30]

[31]Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 32
Data points: 65 536
Spectral width: 12019.230 Hz
Acquisition time: 2.73 s
Relaxation delay: 4 s
Mixing time: 0.01 s
2D J-RES
(Bruker: jresgpprqf )
Scans: 2
Data points direct dimension (F2): 8192
Data points indirect dimension (F1): 40
Spectral width direct dimension (F2): 10 026.738 Hz
Spectral width indirect dimension (F2): 78.000 Hz
Increment for delay: 12820.51 ms
Acquisition time direct dimension (F2): 0.41 s
Acquisition time indirect dimension (F1): 0.26 s
Relaxation delay: 2 s

BLOOD SERUM
Collect blood into anticoagulant free
tubes.
Allow the blood to clot in an upright
position for 30–60 min at RT.
Spin centrifuge within 30 min from collec-
tion at 1500 RCF for 10 min at RT.[29]

PLASMA
Collect blood into tubes contain an anti-
coagulant (preferred EDTA; avoid hepa-
rin).
Centrifuge within 30 min from collection at
820 RCF for 10 min at 4 88C.[29]

Thaw at room temperature and shake.
Add 350 ml of sample to 350 mL of
sodium phosphate buffer (70 mm
Na2HPO4 ; 20 % (v/v) 2H2O, 6.1 mm
NaN3 ; 4.6 mm TMSP; pH 7.4).[d]

Transfer 600 mL of each mixture into
a 5 mm NMR tube.[30]

[31]Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 310 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 32
Data points: 98 304
Spectral width: 18028.846 Hz
Acquisition time: 2.73 s
Relaxation delay: 4 s
Mixing time: 0.01 s
1D CPMG
(Bruker: cpmgpr1d)
Scans: 32
Data points: 73 728
Spectral width: 12019.230 Hz
Acquisition time: 3.07 s
Relaxation delay: 4 s
Total spin-echo delay: 80 ms
1D Diffusion-edited
(Bruker: ledbpgppr2s1d)
Scans: 32
Data points: 98 304
Spectral width: 18028.846 Hz
Acquisition time: 2.73 s
Relaxation delay: 4 s
Square gradient strength: 80 % of the maximum
gradient strength (53.5 Gcm@1)
Square gradient length: 1.5 ms
Diffusion time: 0.119 s
2D J-RES
(Bruker: jresgpprqf )
For all the parameters see urine.

For both serum and plasma:
recover supernatant in sterile condition
making 0.5 mL aliquots.
Store at @80 88C.[29]
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be most evident. The latter feature is shared with some
compartmentalized biofluids; for example, cerebrospinal
fluid (CSF) reflects the biochemistry of the central nervous
systems, and exhaled breath condensate (EBC) that of
respiratory pathways. The saliva metabolome not only
changes in correlation with oral disorders but also in the
presence of distant pathologies.[28] An important contribution
to the metabolome of fecal extracts originates from metab-
olites resulting from the gut microbiota.

Systemic biofluids, such as urine or blood serum and
plasma, in general have a fainter biochemical correlation with
a diseased organ or apparatus, but present two main

advantages: the simple, noninvasive or minimally invasive
collection, and the ability to reflect the overall response of the
individual to a disease status. On the other hand, urine and
blood are largely different in terms of chemical composition,
with urine metabolites being heavily influenced by environ-
mental factors such as food and liquid intake, while blood has
a better defined and stable metabolome.

From the above considerations it is clear that preserving
the chemical composition of the in vivo metabolome, and
ensuring spectral reproducibility, are key factors for the
significance of metabolomic analysis. In general, the entire
workflow can be subdivided into two main phases, the pre-

Table 2: (Continued)

Type of Pre-analytical procedures[a] Analytical procedures
sample NMR sample preparation[b] NMR spectral acquisition[c]

SALIVA Collect saliva after refraining from eating,
drinking, smoking, or using oral hygiene
products for at least 1 h.
Rinse the mouth twice with water before
spitting the saliva in sterile tubes making
1 mL aliquots.
Freeze asap at @20 88C and then store in
liquid nitrogen.[32]

Thaw at room temperature and shake.
Centrifuge at 14000 RCF for 5 min at
+ 4 88C.
Add 630 ml of sample to 70 mL of
potassium phosphate buffer (1.5 m
K2HPO4, 100% (v/v) 2H2O, 2 mm NaN3,
5.8 mm TMSP; pH 7.4).
Transfer 600 mL of each mixture into
a 5 mm NMR tube.[33]

Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 128
For all the other parameters see urine.
2D J-RES
(Bruker: jresgpprqf )
For all the parameters see urine.

CSF Collect CSF via lumbar puncture in sterile
polypropylene tubes.
Centrifuge asap at 2000 RFC for 10 min at
RT.
Collect the supernatant in sterile condition
making 0.5 mL aliquots.
Store at @80 88C.[34]

Thaw at room temperature and shake.
Add 750 mL of sample to 150 mL of
potassium phosphate buffer (0.9 m
K2HPO4, 60% (v/v) 2H2O, 1.2 mm NaN3,

3.5 mm TMSP; pH 7.4).[d]

Transfer 600 mL of each mixture into
a 5 mm NMR tube.

Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 256
For all the other parameters see blood.
2D J-RES
(Bruker: jresgpprqf )
For all the parameters see urine.

EBC Collect EBC after refraining from eating for
at least 3 h using a condenser equipped
with a saliva trap.
Rinse the mouth twice with water before
breathing through a mouthpiece for
15 min making a 1.5 mL aliquot.
Transfer the EBC into glass vials closed
with 20 mm butyl rubber lined with poly-
tetrafluoroethylene septa and crimped
with perforated aluminum seals.
Before sealing, remove volatile substances
by a gentle nitrogen gas flow for 3 min.
Freeze asap in liquid nitrogen and then
store at @80 88C.[35]

Thaw at room temperature and shake.
Centrifuge at 14000 RCF for 5 min at
+ 4 88C.
Add 540 ml of sample to 60 mL of 2H2O
containing 5.8 mm TMSP.
Transfer 600 mL of each mixture into
a 5 mm NMR tube.

Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 512
For all the other parameters see urine.
2D J-RES
(Bruker: jresgpprqf )
For all the parameters see urine.

FECES Collect feces in sterile containers.
Add 2 mL of PBS/2H2O buffer (0.1 m,
pH 7.4) to 1 g of each feces sample and
homogenize the mixture by vortexing for
60 s.[36]

Sonicate for 30 min and centrifuge at
10000 RCF for 5 min at RT.
Collect the supernatant in sterile condition
making 1 mL aliquots.
Store at @80 88C storage.[37]

Thaw at room temperature and shake.
Centrifuge at 14000 RCF for 5 min at
+ 4 88C.
Add 630 ml of sample to 70 mL of
potassium phosphate buffer (1.5 m
K2HPO4, 100% (v/v) 2H2O, 2 mm NaN3,
5.8 mm TMSP; pH 7.4).
Transfer 600 mL of each mixture into
a 5 mm NMR tube.

Recommended magnetic field: 600 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1 d)
Scans: 128–256
For all the other parameters see urine.
2D J-RES
(Bruker: jresgpprqf )
For all the parameters see urine.
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analytical and the analytical phases. Both require specific
procedures for accurate downstream analyses but are char-
acterized by different degrees of development.

2.1.1. SOPs for Pre-Analytical Treatment

Molecular analyses of biological samples are necessarily
preceded by the so-called pre-analytical phase, which includes

Table 2: (Continued)

Type of Pre-analytical procedures[a] Analytical procedures
sample NMR sample preparation[b] NMR spectral acquisition[c]

CELLS ENDO-METABOLOME
Place cell plates into ice and rinse with
PBS. Scrape and collect cells with PBS
supplemented with 1% Protease Inhibitor
Cocktail and 1% Phosphatase Inhibitor
Cocktail.
Sonicate and ultra-centrifugate for 1 h at
4 88C. Collect the supernatant in sterile
condition making 0.6 mL aliquots.
Store at @80 88C freezer.[23]

Thaw in ice and shake.
Add 540 ml of sample to 60 mL of 2H2O
containing 5.8 mm TMSP.
Transfer 600 mL of each mixture into
a 5 mm NMR tube.[23]

Recommended magnetic field: 900 MHz
Recommended acquisition temperature: 300 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 128–256
Data points: 110060
Spectral width: 17942.584 Hz
Acquisition time: 3.07 s
Relaxation delay: 4 s
Mixing time: 0.01 s

1D CPMG
(Bruker: cpmgpr1d)
Scans: 128–256
Data points: 110060
Spectral width: 17942.584 Hz
Acquisition time: 3.07 s
Relaxation delay: 4 s
Total spin-echo delay: 80 ms

EXO-METABOLOME
Removal of the growing medium.
Collect the medium in sterile condition
making 1 mL aliquots.
Store at @80 88C.

Thaw at room temperature and shake.
Add 350 ml of sample to 350 mL of
sodium phosphate buffer (70 mm
Na2HPO4 ; 20 % (v/v) 2H2O, 6.1 mm
NaN3 ; 4.6 mm TMSP; pH 7.4).
Transfer 600 mL of each mixture into
a 5 mm NMR tube.

Recommended magnetic field: 900 MHz
Recommended acquisition temperature: 310 K
1D NOESY-presat
(Bruker: noesygppr1d)
Scans: 32–64
Data points: 11 0060
Spectral width: 17942.584 Hz
Acquisition time: 3.07 s
Relaxation delay: 4 s
Mixing time: 0.01 s

TISSUES Collect tissues in the most aseptic con-
ditions possible.
Cut tissue samples ,0.5 cm in any single
dimension.
Snap freeze in liquid nitrogen within
30 min from collection.
Stored in liquid nitrogen vapor.

Trim frozen tissue samples (10–15 mg)
to fit HR-MAS ZrO2 rotor insert capacity.
Fill the insert with 2H2O containing
5.8 mm TMSP.
Cover the rotor inserts with plug and
plug-restraining screw and insert it into
the 4 mm rotor for HR-MAS.[38]

[31, 38]Recommended magnetic field: HR-MAS
600 MHz
Recommended acquisition temperature: 277 K
1D ZGPR
Scans: 128–256
Data points: 32 768
Spectral width: 12019.230 Hz
Acquisition time: 1.36 s
Relaxation delay: 2 s
Rotor speed: 4 MHz
1D CPMG
(Bruker: cpmgpr1d)
Scans: 128–256
Data points: 32 768
Spectral width: 12019.230 Hz
Acquisition time: 3.07 s
Relaxation delay: 1.36 s
Total spin-echo delay: 94 ms
Rotor speed: 4 MHz

[a] It is extremely important to: 1) minimize as much as possible the time between sample collection, processing and storage keeping the samples at
4 88C, if not differently specified; 2) use additive-free tubes and laboratory materials to avoid sample contamination. [b] Minimize as much as possible
the time between sample preparation and NMR spectral acquisition. [c] 1) Acquire NMR spectra in automatic mode using a refrigerated (4–6 88C)
sample changer. 2) Acquire NMR spectra of samples in a totally random way, interleaving the samples of different groups to avoid batch effects.
[d] According to Bruker guidelines.
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several steps such as primary sample collection, processing,
transport, and storage. The impact of non-appropriate pre-
analytical procedures on downstream metabolomic analyses
can be heavy and is one of the main reasons that makes it
difficult to compare metabolomic data collected in multi-
center studies. Some of the molecules forming the metab-
olome are indeed very sensitive to sample conditions, and
their levels can change drastically from collection to analyses.
It is therefore important to develop simple and validated
standard operating procedures (SOPs) for each type of
sample to be strictly followed to ensure that the subsequent
assay will determine the metabolome in the original sample
and not an artificial profile generated during the pre-
examination process.

The development of validated procedures requires the
systematic simulation of different pre-analytical situations. In
this way one can identify the critical steps and parameters that
may influence the levels of the metabolites that are prone to
degradation (with consequent accumulation of their degra-
dation products). Systematic studies exist for some of the
most common samples;[39, 40] they have revealed enzymatic
activities in the samples as main sources of variations. For

blood derivatives, the presence of cells during sample
processing heavily affects the concentration of glucose and
lactate; therefore, serum and plasma harvesting should be
initiated within 30 min from blood collection. Residual
cellular activity is a problem also in urine; mild centrifugation
and/or filtration upon sample collection are therefore
required. While maintaining samples at low temperature
throughout the pre-analytical process is obviously an efficient
strategy to slow down degradation reactions, one should avoid
sample freezing before removal of cellular components, to
prevent cell breaking and consequent release of enzymes into
the biofluid.[41] In tissues, it is obviously impossible to
preclude cellular/enzymatic activities, and the best strategy
consists in flash freezing samples in liquid nitrogen upon
collection. This treatment reduces to a minimum the detri-
mental effects of the so-called post-resection or cold ischemia.
More difficult to avoid is the impact of the intraoperative
warm ischemia, that also alters the levels of metabolites
associated to oxidative stress and apoptosis.[42] If warm
ischemia times can hardly be standardized during surgical
procedures, their accurate annotation is recommended.
Finally, particular attention should be devoted in the selection

Figure 4. 1H NMR spectra of: a) urine, b) serum, c) saliva, d) CSF, e) fecal extract, f) EBC, g) liver tissue, h) cell lysate (endo-metabolome) and
i) cell media (exo-metabolome). The NMR spectra are recorded at 600 MHz, except for cell lysates and media (900 MHz).
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of sample collection vials that should not contain stabilizers or
other contaminants that can interfere with the NMR analysis,
giving rise to detectable NMR signals.[43]

A noteworthy example of activities focused on pre-
analytics was conducted within the FP7 project SPIDIA
(standardization and improvement of generic pre-analytical
tools and procedures for in vitro diagnostics), which has led to
the first example of technical specifications for pre-examina-
tion processes in metabolomics.[29]

2.1.2. SOPs for Analytical Treatment and NMR Acquisition

The analytical step initiates with the NMR sample
preparation, usually starting from cryopreserved samples. To
ensure intra- and inter-laboratory comparability, several
efforts have been made to develop standardized procedures
for i) NMR sample preparation and ii) spectral acquisition.
The former is designed to obtain NMR-quality samples;
buffering is required to easily reference chemical shift values
to existing databases; dilution has to be defined for subse-
quent absolute quantification. The latter relies on instrumen-
tal optimization, NMR pulse sequence selection, and choice
of acquisition parameters. Instrument producers have been
very active in the field. The selection of a “recommended”
magnetic field facilitates comparison of spectra acquired in
different laboratories and with available spectral databases
(see Section 3.3.2). The use of 600 MHz spectrometers
represents the best compromise between a good spectral
sensitivity and resolution and affordable instrumental cost,
and it is therefore considered the standard field for biofluid
and tissue analyses. The economical aspect is essential for
a technique that aims at being translated into clinical
practices. Higher fields are often used to achieve better
performances, especially with non-clinical samples, such as
cell cultures. Instrumental optimization includes an ample
range of aspects: probe design, sample changer and software
tools for automatic acquisition (temperature control, optimi-
zation of shim, water suppression, etc.) of about hundred
samples. In most biofluids, low mass metabolites coexist with
high mass biomolecules, such as lipids, proteins, and lipo-
proteins. Three NMR pulse sequences are used in these cases
to selectively observe the different components: i) the nuclear
Overhauser effect spectroscopy (NOESY) pulse sequence
yields a spectrum in which both signals of metabolites and
high molecular weight molecules are visible; the Carr-
Purcell–Meiboom–Gill (CPMG) pulse sequence enables the
selective observation of small molecule components in
solutions containing macromolecules (via T2 filtering); the
DIFFUSION-EDITED sequence permits the selective obser-
vation of macromolecular components in solutions containing
small molecules. As summarized in Table 2, for several
sample types, it is a common practice to acquire all three
spectra. In defining the total acquisition time, one shall
consider the stability of the sample under the selected
experimental conditions. It should be pointed out that some
authors prefer to physically remove macromolecular compo-
nents via centrifugation with 3000 MWCO Amicon Ultra-0.5
filters followed by NOESY acquisition rather than relying of
CMPG filtering.[44, 45] The recording temperature is clearly an

issue that, in the case of HR-MAS, sums up to destructive
friction/centrifugation effects induced by spinning the sample
in the rotor. Thus, the selection of recycling times between
different scans is again a compromise between magnetization
recovery (ideally 5 X T1 of the slowest relaxing signals) and
acquisition of a number of scans sufficient for good S/N
before sample degradation. Typical spectra in Table 2 require
4–32 min acquisition. Refrigerated automatic sample chang-
ers, where NMR tubes are kept at 6 88C until acquisition, have
been developed to facilitate the automatic acquisition of large
sets of samples. Along the lines of a general standardization of
the entire process involving metabolomic studies, there are
ongoing efforts in the community to achieve open data
standards and accessible repositories that allow researchers to
store, exchange, and compare metabolomic data with perti-
nent metadata information.[39, 46] For example, MetaboLights
(https://www.ebi.ac.uk/metabolights/) or Metabolomics
Workbench (http://www.metabolomicsworkbench.org) are
repositories of metabolomic experiments and derived infor-
mation.

3. Analysis of the Spectra

3.1. Processing

In the metabolomic work-flow, the data processing step
follows the acquisition of the raw spectra and is used to
transform the data in a form suitable for subsequent statistical
analyses (Figure 5). Each NMR spectrum must be properly
adjusted for phase and baseline. Both operations are usually
performed automatically; manual adjustment is discouraged
for metabolomic data, because it can introduce operator-
biased artefacts. The spectra need also to be properly aligned
to a reference signal, using a chemical shift standard, ideally
not interacting with any sample component (for instance
deuterated trimethylsilylpropanoic acid (TMSP) may bind
macromolecules), thus in samples like serum/plasma, tissues
and cell extracts an alternative internal reference is preferred
(e.g. the anomeric signal of glucose).[47] For the same reason,
use of TMSP as a standard for quantification is discouraged.
For the absolute quantification of metabolites, alternative
approaches have been proposed, such as the production of an
artificial NMR signal based upon PULCON method[48] or the
ERETIC method.[49]

3.2. Normalization for Different Types of Spectra/Samples

In order to compare signal—or bucket—intensities in
different samples, one should refer to the same amount of
total sample. In biofluids this seems an obvious task, as one
prepares the NMR sample starting from the same volume of
the original fluid (Table 2). In practice, a preliminary step of
correction for dilution effects is needed due to the presence of
large physiological variations in concentration. For examples,
urines exhibit significant metabolite concentration fluctua-
tions depending on the hydration state of the individual (in
turn related to water/food intake, physical exercise and
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sweating, etc.),[50] therefore, a global intensity correction by
means of normalization is a critical initial step. For biofluids
under stricter physiological control (like serum/plasma)
normalization is less crucial, but could be beneficial to
compensate for non-physiological sources of variations
emerging from (small) experimental inaccuracies and/or
technical artifacts.[51] Total area normalization is a common
practice but there are more sophisticated and reliable
methods. In the quest for the “optimal” normalization
method, a plethora of strategies/algorithms have been devel-
oped. Table S1 (Supporting information) shows and briefly
describes 23 state-of-the-art methods belonging to five main
categories, including those not explicitly developed for
metabolomics but borrowed from other fields. Although
several comparisons are reported in the literature, a definitive
consensus on which normalization method to use in which
case is still lacking. For biofluids, Probabilistic Quotient
Normalization (PQN),[52] Quantile Normalization,[53] Cubic
Splines Normalization (CSN),[54] and Pairwise Log-Ratios
(PLR),[55] are generally described as good choices[50, 51,55, 56]

that outperform total area normalization. For instance,

PQN has been successfully used with EBC,[57, 58] saliva,[33]

and urine[59] samples. For tissues, cell lysates or cell/tissue
extracts, exact quantification of the starting material is not
straightforward. For cells, it can be assumed that an increase
of cell number produces a linear increase of metabolite signal
intensities, thus data normalization is usually performed to
the number of cells.[60, 61] Alternatively, one could refer to the
total DNA or total protein content.[61] On the same line, for
tissues, normalization according to the sample weight is
recommended.[62] If this information is not available, total
area normalization represents a good method, as the total
spectral area can be considered proportional to the number of
cells or the weight of tissues.

3.3. Different Experimental Approaches in Metabolomics

Depending on the biological question at issue, metabolo-
mic analysis can be planned with two different methodolog-
ical approaches: targeted and untargeted analyses (Figure 6).
The targeted approach involves the monitoring of a panel of

Figure 5. Key stages of NMR spectral processing: 1) baseline correction, phase correction, calibration to an internal reference peak (e.g. glucose,
TMSP, etc.); 2) normalization; 3) bucketing.
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metabolites selected a priori on the basis of known metabolic
pathways or pre-identified biomarkers that are undoubtedly

associated with the disease or condition of interest.[11] These
selected metabolites must be unambiguously assigned and

Figure 6. Different metabolomic strategies. If knowledge of the metabolites or metabolic pathways of interest is available, a targeted approach,
which involves the analysis of only these specific metabolites, is the preferred choice. In the absence of prior knowledge, the problem can be
addressed by analyzing the spectrum, with a so-called untargeted approach. Untargeted analysis can be achieved via metabolic fingerprinting or
profiling. The former is a global evaluation of all of the features of a binned spectrum without identification of single metabolites; the latter deals
with the analysis of all quantifiable metabolites. Each of these three different sets of data can be addressed by either multivariate or univariate
analyses. Multivariate methods are routinely used to visualize biological data, to identify possible clusters, and to build predictive models; these
can be divided into two main categories: unsupervised analyses to explore data without any class membership and supervised analyses to
discriminate among known groups of interest. Conversely, univariate methods are used to identify metabolites and thus metabolic pathways that
are altered or correlated with specific biological conditions.
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quantified in the samples. Conversely, untargeted metabolo-
mics provides a global view of a sample by analyzing all (or as
many as possible) measurable analytes present, including
unknown chemicals.[63] The latter purpose can be achieved via
two strategies: fingerprinting or profiling. Fingerprinting is
a global, rapid evaluation of an NMR spectrum as a whole
that can be considered a “fingerprint” of all (assigned or
unassigned) detectable metabolites present in that biological
sample.[64] This can be achieved only by transforming NMR
spectra in matrices of data for example, through bucketing,
that is, a procedure used to reduce the total number of
variables and to compensate for small misalignments in the
spectra. One bucket (or bin) is a little portion of the spectrum,
usually with a width of 0.02 or 0.04 ppm. The integrated
spectral intensity within each bin is then calculated to obtain
the variables used for feeding the statistical algorithms.
Although many more sophisticated algorithms for bucketing
exist, this equidistant binning is the most commonly used
method[65] and often works quite well despite its simplicity.[66]

Alternatively, some practitioners prefer to work with full
resolution spectra, totally avoiding binning. In such cases,
specific algorithms[67] for peak alignment are needed (e.g. the
very efficient icoshift[68]), to assure that peaks can be
compared across multiple spectra. The fingerprinting
approach is essentially utilized to provide sample classifica-
tion. Indeed, metabolic fingerprinting aims at discriminating
specimens in relation to different biological conditions (e.g.
presence/absence of disease, before/after treatment), in turn
characterizing a specific health state with a unique metabolic
pattern.[11] Metabolic profiling, in contrast, deals with the
determination of the concentrations of all quantifiable
metabolites in a biological sample. Profiling provides consid-
erably more meaningful data from a biochemical perspective
since it also enables the identification of metabolites and
metabolic pathways associated with a specific physiological or
pathological condition. However, it is important to mention
that the spectral processing required to deconvolute 1D NMR
spectra, in order to obtain concentrations, may not be
straightforward and is not yet completely automated. The
molecules quantifiable via profiling are significantly less
numerous than those contributing to the fingerprint (in the
case of urine < 50%).[64] The latter, therefore, is the best tool
for sample classification and to build statistical models.

3.3.1. Multivariate Analysis for Classification and Modeling

Starting from the available data (full or binned NMR
spectra, or a list of concentrations) arranged in rows (samples)
and columns (variables) in a data matrix, the principal aims of
metabolomics can be summarized in four goals: i) visualize
the overall differences, trends, relationships, and correlations
among different samples; ii) detect whether there is a signifi-
cant difference between investigated groups (e.g., healthy vs.
diseased subjects); iii) highlight the spectral regions mostly
contributing to these differences and, iv) construct a predic-
tive model for the correct classification of new samples.[69]

Multivariate statistics is the key to achieve these goals, by
either i) unsupervised or ii) supervised methods. Unsuper-
vised methods are utilized to summarize, explore, and

discover clusters or trends in the data unlabeled with any
class membership; therefore, no prior assumptions or knowl-
edge of the data are needed.[70] Unsupervised methods usually
represent the first step in data analysis, helping to visualize
the data and to discover possible outliers. One effective class
of exploratory approaches involve the projection of the data
in a new space using just few dimensions (data reduction).
This includes classical methods, such as Principal Component
Analysis (PCA),[71–74] and Independent Component Analysis
(ICA),[75, 76] as well as promising new ones developed for
metabolomics, such as Group-Wise Principal Component
Analysis (GPCA).[77] Another interesting class of approaches
is data clustering, which consists in the assignment of a set of
samples into subsets (so-called clusters) so that samples
belonging to the same cluster are similar in some sense (i.e.
they share similar metabolic features). Classical clustering
methods, such as K-Means (KM)[78–80] and Partition Around
Medoids (PAM),[81] have played a historical role in the data
mining field. More recent methods include Spectral Cluster-
ing (SC)[82, 83] and KODAMA.[84, 85] Another option to obtain
visually interpretable maps that capture inherent relation-
ships among observables are the Self-Organizing Maps
(SOM),[86,87] developed in the neural networks field.

In contrast, supervised approaches use a priori knowledge
to generate models that are tightly focused on the effects of
interest. The goal of supervised data analysis is to find a rule
to extend the knowledge already available from pre-existing
samples to new samples, so that predictions can be made (i.e.
to classify normal vs. abnormal samples for diagnosis and/or
prognosis). In doing so, the characteristics of the training set
(data already available) are defined, “learned” by the
statistical method, and applied to predict the test set (the
unlabeled samples to be classified). Supervised analysis
includes methods based on projection and data reduction,
such as Partial Least Squares (PLS)[88–91] and its variant
Orthogonal Partial Least Squares (OPLS);[92] methods based
on machine learning, such as K-Nearest Neighbors (K-
NN);[93, 94] and methods based on neural networks architec-
tures, such as the potentially ground-breaking paradigm of
deep learning.[95, 96] An overview of the main multivariate
statistical techniques employed in metabolomics is reported
in Table S2. It is worth noting that all the multivariate
algorithms can be used on full resolution spectra, on the bin
data matrix, or a panel of quantified metabolites, depending
on the chosen approach.

To demonstrate the performance of a predictive model,
proper validation of the results is performed using cross-
validation strategies,[97] or an external and completely inde-
pendent dataset. Moreover, a permutation test is often
advocated to calculate the statistical significance of the
results. Several measures of the model quality exist, such as
those derived from the confusion matrix (i.e. sensitivity,
specificity, and accuracy). The use of independent training
and validation sets is the preferred approach in the medical
community, but requires collecting samples from different
hospitals, even from different countries. In this way, weak-
nesses due to for example, not perfectly identical SOPs (see
Section 2) can become apparent. Conversely, artificially
dividing in two groups samples collected under identical
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conditions is not affected by this type of problems. Thus, the
selection of the best approach strongly depends on the aim of
the research: cross-validation on a unique collection of
samples should be recommended for exploratory studies,
where the aim is to see whether a fingerprint for a specific
condition exists. Independent validation is then recom-
mended to further demonstrate that the fingerprint is still
strong also in the presence of “environmental noise”.
Immediately jumping to this second strategy may lead to
conclude that a fingerprint does not exists while it may be
only obscured by sub-optimal procedures that could be easily
fixed.

3.3.2. Identification, Quantification, Univariate Analysis

The process of metabolite identification in NMR spectra,
especially for less common biospecimens, is not straightfor-
ward due to the high complexity of their 1H-NMR spectra.
Usually many resonances can be directly assigned in one-
dimensional spectra based on chemical shifts and multiplicity.
This task is facilitated by databases, often freely available: in
particular, for human metabolites, the Human Metabolome
Database (HMDB)[98–100] is becoming the de-facto standard
reference database. For doubtful cases, the addition of
standard molecules (spiking) to the NMR sample could be
of help. However, two-dimensional spectra are often required
to assign new metabolites, as briefly summarized below (and
reviewed in more details in Ref. [101]): i) 1H-1H J-resolved (J-
RES), to provide information about multiplicity and coupling
patterns, ii) 1H-1H Correlation Spectroscopy (COSY) and 1H-
1H Total Correlation Spectroscopy (TOCSY), to provide,
respectively, short and long range scalar connectivities,
iii) natural-abundance heteronuclear experiments that use
1H in combination with other nuclei, for example, 13C-1H
Heteronuclear Single Quantum Coherence Spectroscopy
(HSQC), Heteronuclear Multiple-Quantum Correlation
(HMQC) and Heteronuclear Multiple-Bond Correlation
Spectroscopy (HMBC), to obtain information on the direct
scalar coupling between 13C and 1H nuclei.[101] The quest for
a completely automatic assignment tool is an active research
field, with promising achievements (Figure 7, see also Sec-
tion 7).[14] Of course, as shown in Table 1, NMR and MS are
two complementary approaches and combined MS/NMR can
be used to correctly identify a wide range of metabo-
lites.[102,103]

Further, while NMR spectroscopy is an intrinsically
quantitative technique (signals are proportional to the con-
centration of nuclei), the ability to accurately and reprodu-
cibly quantify signals from metabolites in complex mixtures is
complicated by spectral crowding and signal overlapping, as
well as from raising of the baseline caused by the presence of
large molecular mass components. In order to solve the latter
problem, a sample treatment has been proposed for serum/
plasma, that includes a centrifugation step at the level of
sample preparation to remove large molecules.[44] In our view,
any sample manipulation represents a potential source of
experimental errors; therefore, we prefer broad signal
suppression by CMPG. Nevertheless, a careful estimation of
the effect of spectral acquisition parameters on signal

intensity for the different metabolites shall be conducted.
Spectral crowding and signal overlap are unavoidable in the
absence of chemical separation.

Tools for (semi) automatic quantitation have been devel-
oped. Among them there are BATMAN,[104] BAYESIL,[44]

ASICS[105] and the NMR Suite Software Package (Chenomx
Inc., Edmonton, Canada). The first three are mostly auto-
mated computational tools based on Bayesian inference
(BATMAN and BAYESIL) or linear models (ASICS).
ASICS is freely available. BATMAN is also freely available,
it performs quite well, but it is computationally very
demanding. BAYESIL is faster, but it is commercial and
requires a dedicated kit for the preparation of the samples.

Figure 7. The automated assignment of several 1H NMR signals of
>60 urine metabolites, performed by the urine shift predictor.[14] The
urine spectrum is divided into 3 regions: a) 9.5–5.5 ppm, b) 4.5–
3.0 ppm and c) 3.0–0.9 ppm.
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The B.I. (Bruker IVDr) platform for analysis and quantifica-
tion of metabolites in biofluids (urine, CSF, serum/plasma)
has been recently released by Bruker BioSpin.

NMR Suite is another commercial software. It is a com-
plete computer-assisted tool for analysis and deconvolution of
the spectra, permitting the user-guided fitting, integration,
and quantitation of the selected peaks. However, being
mostly manual, it is time consuming and it needs a skilled
operator. As witnessed by the total number of citations,
BATMAN, BAYESIL and NMR Suite (61, 50, 90 Web of
Science citations, respectively) are the most commonly used
packages by practitioners.

In order to find a metabolite (or a panel of metabolites)
that can be considered as a possible biomarker for the specific
pathology or condition under investigation, each metabolite
needs to be analyzed independently of all the others without
considering any possible interactions. Univariate statistical
analysis is the key to achieve this goal: statistical tests,
correlation analysis and Receiver Operating Characteristic
(ROC) curves are the most used approaches.

On the biological assumption that metabolite concentra-
tions are not normally distributed, non-parametric tests are
often utilized. The Wilcoxon–Mann–Whitney[106] test is the
non-parametric analogue of the classical t-test to compare the
distribution of a metabolite in two groups. The null hypothesis
(H0) claims that two randomly selected samples from two
populations actually belong to the same population; the
alternative hypothesis (Ha) states that H0 is false and the two
population are distinct. A variant of this test also exists, called
the Wilcoxon signed ranks test,[107] that is suited to compare
two matched samples from a repeated measurement in the
presence of a paired study design. When the groups are more
than two, Kruskal–Wallis test[108] (the analogue of the para-
metric Analysis of Variance) or Friedman test[109] (for paired
samples) are employed. A summary of the main statistical
tests for univariate analysis of metabolites is reported in
Table S3.

The output of all these tests is a P-value, that expresses the
probability of obtaining a result equal to or more extreme
than what was actually observed, assuming the null hypothesis
true. Conventionally, when the P-value is less than the
significance level of 0.05 or 0.01 the null hypothesis is
rejected, and the metabolite is deemed statistically different
in the groups of interest. When several metabolites are tested
together, to avoid random false positives, multiple testing
corrections need to be adopted: Bonferroni[110] and Benja-
mini–Hochberg[111] are the most widespread methods. How-
ever, P-values need to be taken with care: they are often
misused, misunderstood and misinterpreted;[112] for this
reason statisticians have proposed replacing (or accompany-
ing) P-values with effect size[113] (a standardized measure of
the magnitude of the observed phenomenon) as an alternative
(complementary) measure of evidence.

ROC curves are graphical representations that illustrate
the diagnostic ability of a binary classifier (e.g. the concen-
tration of a biomarker to pinpoint a disease or the efficacy of
a composite prognostic score to catch the risk of developing
a disease). The curve is created by plotting sensitivity versus
one minus specificity for all possible thresholds of the test.

Accuracy is measured by the area under the ROC curve
(AUC). An area of 1 represents a perfect test; an area of 0.5
represents a worthless test. ROC analysis could also be
employed to check the performance of a multivariate super-
vised classifier. In this case, the cross-validated output of the
classifier (a continuous response vector) is used as the input
for the calculation of the ROC curve. Again, an AUC near
1 indicates a good classifier. ROC analysis is of particular
importance because it provides a simple tool to select optimal
models and to discard suboptimal ones, thus permitting
a direct cost/benefit analysis of a diagnostic test.

Pearson correlations can be calculated to test whether
there is an association (linear dependence), between metab-
olites and clinical data or biological features. Correlations are
expressed by a coefficient (R) which ranges between + 1
(totally correlated), 0 (no correlation) and @1 (totally
anticorrelated). From metabolite to metabolite correlation
maps, metabolic networks with a biological meaning can be
inferred.[114–117]

4. Biomedical and Biochemical Significance

Metabolomics is focused on the analysis of intermediates
and end products of metabolism in the form of endogenous
(gene-derived metabolites), exogenous (environmentally
derived metabolites) and gut microbiota-derived metabolites.
For this reason, metabolites, unlike genes and proteins, are
easier to correlate with the phenotype and act as direct
signatures of biochemical activity, since they play a central
role in disease development, cellular signaling and physio-
logical control.[118] Metabolomics monitors the global out-
come of all exogenous and endogenous factors, without
making assumptions about the effect of any single contribu-
tion to that outcome. This makes metabolomics a perfect
instrument to investigate and understand the molecular
mechanisms of human health and disease.[1] Metabolomics
can contribute to precision medicine for the comprehension
of individual susceptibility to drug administration, nutrition
and life style interventions, influence of environmental
factors, as well as to the characterization of the metabolic
signature of diseases for diagnostic and prognostic purposes;
and to the understanding of the biochemical causes at the
basis of different pathophysiological conditions.

4.1. Individual Fingerprint

One of the main findings of metabolomics is that each
individual is “chemically different” from any other in terms of
small molecules composition of its systemic biofluids like
urine, blood and saliva.[33, 119,120] Our research group has
significantly contributed to define and characterize this
strong chemical signature, called individual metabolic phe-
notype or metabotype.[119, 121–125] In urine, a biofluid whose
composition is strongly affected by daily variations, the
presence of an invariant part of the human metabolic
phenotype, characteristic of each individual has been estab-
lished through multivariate statistical analysis of several
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samples collected on different days. This has led to the
definition of the “metabolic space”, where samples from each
subject occupy a well-defined and circumscribed sub-space
and each individual can be discriminated from all others with
near 100% accuracy (Figure 8a). The individual metabolic
phenotype is the result of a combination of many factors such
as genotype, host metabolism, gut microflora composition,
dietary habits, physical activity etc. The collection of multiple
urine samples is fundamental to identify the invariant part
from the day-to-day variability of the subjects. We have
shown that around 20 urine samples per individual, collected
in different days, are enough to achieve an individual
discrimination of 97–98%. By using 40 urine samples per
person values above 99% can be obtained.[119, 121,122] Using
multiple urine collections in the same day for a few days (e.g.,
4–5 samples per day, for 10 days) is substantially equivalent to
1 sample per day for 40 days.[125] In addition to being
characteristic of each individual at any time point, metab-
otypes in urine are stable over a time scale of 8–10 years. Over
this time-frame, significant metabotype drifts were observed
only after the onset of important pathophysiological condi-
tions; the “normal” individual metabotype was regained if the
condition was reversed (Figure 8b).[122] These results clearly
underline the enormous value of this approach to monitor
subjects during their life-span, in order to detect early disease
onset, its progression, response to therapy or dietary inter-
vention, etc., with obvious applications in the context of
precision medicine.

A strong signature of the individual phenotypes has been
also characterized in blood.[120] Due to its nature, blood is free
from most of the daily variations observable in urine, and the
intra-individual variability is very low. Thus, good discrim-
ination among individuals can be obtained using fewer
samples per person. A high degree of stability of the
individual phenotype in serum over 7 years has been also
demonstrated.[126]

A clear individual metabolic phenotype exists also in
saliva[33] and human breath,[127] although it is slightly less
strong than the urinary or blood phenotype.

The “individual metabolic phenotype” of urine and blood,
and possibly that of other biofluids, possesses suitable
characteristics for personalized healthcare solutions, being
typical for each subject, stable over time and essentially
independent of lifestyle and dietary intake,[119,121, 122, 125,128–130]

thus allowing us to monitor individual status and response to
different stimuli.[131–133]

4.2. Metabolomics and Diseases

For metabolomics applications in medicine, the ability to
monitor the individual metabolic fingerprint parallels the
ability to identify clear disease signatures. Classically, metab-
olomics has been used to characterize metabolic profiles of
diseases, with the intent of discovering new biomarkers and
identifying biochemical pathways involved in disease patho-
genesis. NMR metabolomics has already increased our
understanding of cellular and physiological metabolism,
helping to identify many unexpected biochemical causes for
several important chronic and complex diseases,[134, 135] such as
cancer,[23, 136–141] cardiovascular diseases,[115, 142–146] diabe-
tes,[147–150] and obesity.[151–153] One of the most striking aspects
of metabolomics is the ability to detect at the systemic level
alterations in the metabolome, which correlate with patho-
logical states even for those diseases that are not immediately
associated to metabolism. Such sensitivity, most probably
involving immune mechanisms, is particularly promising to
monitor the individual response to illness. NMR metabolo-
mics has the most ambitious objective of detecting early
metabolic perturbations even before the manifestation of
disease symptoms. Indeed, the goal of precision medicine is to
customize subjectsQ therapeutical treatments according to

Figure 8. The NMR-derived urine individual metabolic phenotype and its stability over time. a) Multiple urine samples collected from 12 healthy
donors (each identified by a given color) over a period of 20 days occupy a well-defined portion of the metabolic space (PCA-CA score plot), thus
indicating that intraindividual variations are much smaller than interindividual differences. This is due to an invariant part of the metabolome
characteristic of each individual, which identifies the individual phenotype. b) The individual phenotype over the time scale of 10 years is very
stable in the absence of physiopathological conditions that can cause abrupt deviations (subjects AG, AW, BD). If this condition is over, the
individual phenotype reverts back (AG, AW); adapted from Ref. [122].
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their specific omic profiles/fingerprints.[13] NMR metabolic
profiling in large-scale epidemiologic studies, though is still
recent, has uncovered novel biomarkers for various diseases,
has contribute to their etiologic understanding, and has shown
the ability to predict disease risks and the effects of drug
administration, with the potential to translate into multiple
clinical settings.[140, 154–157]

The literature available concerning metabolomics applied
to clinical examples is extremely wide; we are presenting here
a limited number of examples of application to a few diseases
using different types of samples.

Coeliac disease (CD) is a multifactorial and complex
disorder involving genetic and environmental factors that
induce autoimmune response and nutrients malabsorption,
thus having great potential impact on metabolism. Our group
has extensively described the NMR metabolic signature of
CD in serum and urine by identifying important alterations of
the metabolic profiles of patients with respect to healthy
controls, especially for what concerns energy and ketone body
metabolism, and gut microbiota alterations.[158,162] Further-
more, our statistical model has demonstrated to be effective in
monitoring the adherence and efficacy of the gluten free diet
in CD patients (Figure 9a).

A striking finding was that potential coeliac people, that
is, those with typical antibody signature of CD but without
symptoms and without or slight intestinal damage, are already
classified as coeliac from a metabolomic point of view,
suggesting that the CD metabotype precedes the manifes-
tation of the disease.[2]

Cancer is probably the most studied pathology so far via
NMR metabolomics;[163–168] Cancer patients present meta-
bolic profiles that are different from those of healthy controls
and patients with benign diseases; moreover, the site, the
stage, and the location of the tumors may differently affect the
metabolome.[169] The most fascinating aspect of metabolomic
research is the challenge of translating these evidences into
diagnostic or prognostic models capable of ensuring early
diagnosis or prediction of recurrence and of the final outcome
of the patients with results comparable or even better with
respect to classical methodologies. Metabolomic analysis of
intact tissues via HR-MAS offers the possibility to obtain
information directly at the level of the organ affected by the
tumor, and these ones could have prognostic values. HR-
MAS NMR analysis of pancreatic intact tissue can provide
important information for the characterization of pancreatic
adenocarcinomas (PA) and could discriminate PA from
healthy pancreatic parenchyma (PP) (Figure 9 b1). Ethanol-
amine resulted as a possible single metabolic biomarker
(Figure 9 b2) for the prediction of long-term survival.[26] The
analysis of systemic biofluids such as blood can give funda-
mental information regarding the patient prognosis. Meta-
static colorectal cancer patients (mCRC) and healthy controls
were clearly discriminated by multivariate statistical analysis
of the serum NMR data; mCRC patients presented various
metabolic alterations regarding energy metabolism and
inflammatory response.[159] Furthermore, mCRC patients
clustered according to their overall survival (Figure 9 c1)
with a better performance with respect to traditional bio-
markers (hazard ratio = 3.37).

Breast cancer (BC) is a complex and heterogeneous
disease which has been extensively characterized by many
platforms such as clinicopathological risk factors and various
-omic techniques including metabolomics, which has shown
significant promises in diagnosis, prognosis, and patient
management.[170–175] In this precision medicine era, however,
development of tailored oncological treatments for BC and
accurate instruments to identify patients at high risk of
disease recurrence are lagging.[176] Our group has demon-
strated that NMR serum metabolomics could contribute
significantly to this aim: in the first single center pilot study,
relapse was predicted with quite good accuracy in both
training set (90 % sensitivity, 67% specificity, and 73%
predictive accuracy, AUC: 0.863), and validation set (82%
sensitivity, 72 % specificity, and 75 % predictive accuracy,
AUC: 0.824).[177] The results have been reproduced in a multi-
center study by analyzing 699 serum samples collected in the
framework of an international phase III clinical trial
(Figure 9, d1, d2).[160]

Cardiovascular diseases provide another excellent target
for metabolomics, especially for what concerns early diag-
nosis. For example, heart failure (HF) is a complex, chronic,
progressive syndrome in which the heart muscle is unable to
pump enough blood to cope with the body needs for blood
and oxygen. Unfortunately, HF is asymptomatic in its first
stages, when medical intervention would still be effective;
therefore, early assessment of this disease is a crucial and
challenging task.[178] We have shown that NMR serum
metabolomics is an excellent instrument for the discrimina-
tion between HF patients and healthy controls (Figure 9e).
Even more important, the metabolomic fingerprint does not
change with disease progression; therefore, it could really
represent a useful tool for the purpose of early diagnosis.[143]

Metabolomics also offers a cost-effective and productive
route to uncover new targets for drug discovery, and to
predict and monitor individual response to drug treatment
(pharmacometabolomics).[13, 58, 179–182] For these purposes,
animal models represent the preferred choice, especially for
first explorative studies. Since animal models ensure a high
rate of standardization, they enable a clearer identification of
the intervention effects using a reduced number of subjects
with higher discrimination power (often even unsupervised
analysis is effective in identifying clusters of interest). As an
example, Clayton and co-workers in their study on para-
cetamol (acetaminophen) administration showed that NMR
pharmacometabolomic phenotyping could be successfully
used.[161] They analyzed pre- and post-dose urine samples
from 65 rats given a single toxic-threshold dose of para-
cetamol, observing that pre-dose NMR discrimination is
related to the post-dose variation in histopathology (Fig-
ure 9 f).

For the sake of completeness, it is important to underline
that the use of the metabolomic approach is not confined to
human medicine. Several potential applications in the veteri-
nary industry are possible, in particular in the framework of
disease diagnosis and investigation, optimization of health
and production, drug discovery and animal welfare.[3, 183–187]
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Figure 9. Applications in the biomedical field. a) Monitoring the efficacy of the gluten free diet in CD patients: predictive clustering of CD patients
after 12 months on a gluten-free diet (yellow triangles) using a PLS-RCC model built on CD patients (red circles) and healthy controls (light blue
circles).[158] b) Metabolomic profiling of tumor tissues predicting clinical outcome of pancreatic adenocarcinoma patients.[26] b1) OPLS-DA model
discriminates pancreatic adenocarcinoma tissues (black circles) with respect to pancreatic healthy tissues (white squares), R2 and Q2 were used
to measure model quality: R2>0.7 and Q2>0.5 can be considered as a good predictor. b2) Ethanolamine concentration (the threshold value was
0.740 nmolmg@1) as a single metabolic biomarker for the prediction of overall survival in patients with PA. Kaplan–Meier curves show differences
between long-term (black line) and short-term (segmented line) survival patients. c) Prediction of overall survival in patients with mCRC. c1) PLS-
CA clustering for long OS (purple triangles) and short OS (aquamarine circles) mCRC patients. c2) Kaplan–Meier curves showing survival
probability based on the 1H-NMR metabolomic model.[159] d) Identification of early-BC patients at increased risk of disease recurrence via serum
metabolomics. d1) Clustering of serum metabolomic profiles between early-BC (green circles) and mBC (pink squares) patients using a Random
Forest (RF) classifier in the training set. d2) Prediction of relapse in the test set containing 192 relapse early-BC patients and 42 early-BC patients
free from disease up to 6 years (ROC curve).[160] e) Discrimination between HF patients (lilac circles) and healthy subjects (dark blue squares)
using an OPLS-DA.[143] f) Pharmaco-metabonomic phenotyping: a scores plot from PCA of the pre-dose of paracetamol urine spectra. NMR data
discriminates low histology damage (Class 1, green squares) and severe histology damage (Class 3, red squares).[161]
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4.3. Pathway Analysis

Once the biomarkers, or metabolic profiles, whose con-
centrations are altered due to the biological processes under
investigation have been identified, pathway analysis can be
performed with the final aim of obtaining a mechanistic
explanation of the changes observed. Pathway analysis
strengthens the information generated by metabolomic
analysis. In the framework of diseases, for instance, the
identification of the altered metabolites has been successfully
correlated with the biological pathways and processes
involved in pathogenesis and disease progression.[149, 158, 188,189]

In particular, pathway analysis has been applied in several
cancer studies to unravel the processes at the basis of the
oncogenic phenotype.[137, 190]

Online biological databases, such as KEGG[191] (Kyoto
Encyclopedia of Genes and Genomes) Pathway Database,
provide information of a large number of metabolic pathways
and can be easily used to identify and visualize the metab-
olites involved in several biological processes. Furthermore,
the development of metabolite set enrichment analysis
(MSEA) methods[192] strongly helps the identification and
the functional and/or biological interpretation of patterns of
metabolite concentration changes in a biologically mean-
ingful context. Publicly available tools implementing these
methods are available.[193] Among these tools, MetaboAna-
lyst—a comprehensive tool for NMR- and MS- based
metabolomic analysis and interpretation[194] includes sections
for metabolic pathway analysis and metabolite set enrichment
analysis. These approaches examine the metabolites present
in the biological matrix at a particular time point, thus
providing steady state levels of metabolites.

Stable isotope-resolved metabolomics (SIRM) provides
a more dynamic assessment of specific metabolic pathways
using stable isotopes (13C, 15N or 2H).[195] In this approach,
isotopically enriched precursors such as 1,2-13C2-glucose or
13C5, 15N2- glutamine, are administered to a biological system,
enabling the analysis of the fate of individual atoms of
a particular metabolite, and thereby a robust tracing of
metabolic pathways and of their fluxes in cells, animals and
humans (fluxomics). During the last years, the use of isotopic
labelling tracers has been successfully applied to unveil the
different metabolic pathways activated under different con-
ditions in cancer, providing important information for the
development of new therapeutic strategies.[196–198]

According to the type of samples, the biological inter-
pretation of changes in concentration levels of metabolites
through pathway analysis may be tangled. The simpler the
system studied, the easier the reconstruction of the biological
pathways involved in the investigated process. For instance, in
cultured cell models the biological explanation is the most
immediate. Our research group investigated the metabolic
changes induced by the oncogenic enzyme Sphingosine
Kinase 1 (SK1) in ovarian cancer.[23] Using an NMR-
untargeted approach, we demonstrated that SK1 expression
is sufficient to alter radically the metabolomic profile of
ovarian cancer cells influencing both the glycolytic pathway
and the tricarboxylic acid cycle (TCA) (Figure 10). With this
approach we have highlighted the occurrence of SK1-induced

Warburg effect, and pointed out that SK1 expression also
modulates the pentose phosphate pathway and nucleotide
biosynthesis, both fundamental to satisfy the anabolic
demand of high proliferating cancer cells.

5. General Considerations on Experimental Design
and Significance of the Results

As in any other scientific field, before initiating a metab-
olomic study it is of primary importance to set up a correct
experimental design, especially regarding the total number of
samples to collect, the type of samples to be analyzed, the
number of different groups to be examined, the inclusion and
exclusion criteria, the choice of the control group, the kind of
clinical design (prospective, retrospective, paired/unpaired).
Well planned studies ensure that the experiments are efficient
and help to avoid biases in the statistical analysis.[199]

Figure 10. SK1 expression induces a metabolic switch known as the
Warburg effect in A2780 ovarian cancer cells.[23] From the comparison
between A2780 mock (blue) and SK1-expressing cells (red) emerges
that expression of SK1 induced a high glycolytic rate (a), characterized
by increased levels of lactate, and decreased oxidative metabolism,
associated with the accumulation of intermediates of the TCA (b).
Changes in metabolite levels caused by SK1 overexpression were
statistically significant by paired Wilcoxon test, *P-value<0.05.
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Having in mind a clear object of the study and a well
posed biological question is of course of great help in deciding
an appropriate experimental plan. However, metabolomics,
in its untargeted incarnation, does not require any initial
hypothesis; therefore, it may happen that it is not the original
needs that drive the experimental steps, but, conversely,
metabolomics is applied to samples already collected, and
often for different purposes. For this reason, researchers in
metabolomics are faced with challenges posed, for instance,
by samples not properly collected and/or stored (e.g. accord-
ing to SOPs designed for different purposes), causing
unwanted sources of variation, lack of correct statistical
power analysis or small number of samples for statistical
analysis. Power analysis[200] is sometimes forgotten by metab-
olomic practitioners, but it is a pillar of any good experimental
design. Roughly speaking, statistical power is a measure of the
chance to detect in the experiment statistically significant
effects provided that the said effects really exist. Power is
(also) a function of the sample size, so the most common aim
of a power analysis is to determine the minimum number of
samples needed for the study.[201] Human clinical studies often
require large cohorts, due to the high interindividual varia-
bility[202] that could obliterate the investigated effects. The
most common clinical design for human metabolomic studies
is the simple comparison of samples collected from two
groups of donors (e.g. a diseased group vs. healthy controls).
This makes sense and can works reasonably well; however,
interindividual variations are an unavoidable source of noise.
A better approach would be to compare the same healthy
individual with its diseased counterpart (Figure 11), by
planning a long-lasting cohort study where a number of
healthy individuals are recruited and followed for many years,
ideally collecting repeated samples until at least some of them
develop the disease of interest (or any disease, see below).
This approach has the great advantage to eliminate inter-
individual variation. Further, using repeated samples, it is not
only possible to define the disease fingerprint, but also its
dynamic evolution in time, allowing us to trace the path of
each individual from healthiness to pathology, thereby open-
ing the door to a predictive medicine strategy able to detect
a disease before the appearance of the symptoms.

A further point speaks in favor of metabolomics in this
respect. When used for epidemiological purposes, it will
permit the buildup of fingerprints for many different diseases
(especially the most common) as long as they appear in the
cohort. Therefore, subsequent samples, either from the same
or from different individuals, could be compared with an
increasing number of fingerprints, and therefore allow for
early diagnosis of an increasing number of diseases.

Another comment is due to the concept itself of univariate
analysis applied to untargeted metabolomics: in essence, the
aim of univariate analysis is that of finding a specific
biomarker. Indeed, as metabolomics can quantitate many
metabolites at once, it has been sometimes termed a “bio-
marker discovery” tool. However, as such, the results of
metabolomics have been often disappointing. In fact, a stat-
istically valid criterion such as a low P-value or a large effect
size can only tell that the concentration of a certain metab-
olite is statistically different between two groups. Assuming

two Gaussian concentration distributions for the two groups,
the region of overlap between the two curves is very often too
large (Figure 11), that is, the accuracy in distinguishing if
a sample belongs to one group or the other is often modest (in
the example, 80%, that is, 20% of false positives or false
negatives). A good biomarker should provide a much higher
accuracy. Unfortunately, it is becoming evident that there are
not so many metabolites that are as good as, for instance,
glucose for diabetes. However, a much more robust separa-
tion could be made if a panel of all metabolites that are
statistically significant between the two groups is considered
to be a single biomarker. In fact, two biomarkers that fail in
20% of the cases, when taken together, would only fail in 4%
of the cases, and three of them would bring the failures down
to less than 1%. Basically, this reasoning brings us back to
profiling and multivariate analysis (Section 3.3). Taken to the
extreme, fingerprinting and multivariate analysis would
always be the most efficient method, that is, a fingerprint
would be, by definition, the best biomarker. While the above
considerations indicate fingerprinting as the way to go, it

Figure 11. A single metabolite that is significant for the discrimination
of healthy and diseased populations still may not provide a clear-cut
answer (20% false positives and false negatives in this example, upper
panel). The ambiguity originates from inter-individual variability, repre-
sented by the width of the two Gaussian distributions. Conversely, it is
more likely that an individual can be correctly classified if the level of
the metabolite is quantified before and after the onset of the disease.
While individual A is correctly classified as healthy and subsequently
as diseased also according to population statistics, individuals B and
C would not be classified correctly if evaluated only by population
statistics.
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should be considered that any method to be used in clinics will
need extensive validation and ultimately approval by regu-
latory agencies. Up to now, researchers have experienced
difficulties in having an analytical method considered by
regulatory agencies if not based on the quantitation of one or
more well identified metabolites. This is an attitude that may
change in the future, under the growing evidence that
fingerprints, once obtained under rigorous SOPs, are by
themselves reliable analytical quantities.

6. Other Fields of Application: Foodomics as an
Example

The food and beverage industry is constantly growing, and
the global expenditure on this sector is twelve times bigger
than the global expenditure on the health care sector.[203, 204] It
is therefore not surprising that the traditional use of NMR as
an analytical tool for quality control of food stuff has recently
evolved into a key tool for the new field of “foodomics”,
a discipline that studies food and nutrition in relation to
consumerQs well-being.[205] Foodomics can be applied to study
and characterize each step of the production/consumption
chain in a comprehensive, integrated and high-throughput
approach, to improve also consumerQs well-being, health, and
confidence.

The applications of metabolomics in foodomics can be
summarized in three main areas (Figure 12): i) in the field of
human health, which can be divided in food consumption
monitoring studies, where, given a particular diet, the
consequent metabolome changes are investigated,[8,206–209]

and in treating/preventing diseases by improving and mon-
itoring patient diet;[158] ii) in the food resources area, which
can be investigated through the analysis of the composition of
food from animal and plant origin and defined also on the
basis of climate, land and cultural practices (“terroir”) that

contribute to the traceability and thus to the characterization
of the genuine product; iii) in food processing, which includes
the characterization of the most influencing pre- and post-
production manipulations on the original product, such as
altered growing conditions (e.g. feed, GMOs, chemicals,
pesticides etc.), the effect of packaging and storage,[210,211]

and, last but not least, safety and authenticity control. Post-
harvest manipulations, such as storage, can widely affect food
profiles. For example, the molecular effect of controlled
atmosphere, a common practice applied to extend the storage
life of fruit, was studied on apples (Malus domestica).[210]

Despite the fact that conventional quality, safety and
authenticity control in food is based on targeted strategies,
high resolution 1H-NMR has found its way into routine food
analysis,[214] offering several advantages if performed under
well-defined instrumental specifications and SOPs, generat-
ing an extremely reproducible food fingerprint and fully
quantitative data by means of a single experiment with
minimal or no sample preparation. Thus, the fingerprint of
a food matrix, analyzed with statistical methods, can reveal
some latent information such as the provenance of milk
samples from different farms even when all located in the
same small geographical area,[215] the origin of fruit juice[212]

and the grape variety for wine[213] (Figure 13).

Figure 12. The main applications of food metabolomics. Food con-
sumption monitoring and treating/preventing diseases, for the human
health field (blue); chemical and molecular analyses of food composi-
tion and its characteristic ecosystem that contributes to the definition
of traceability/authenticity of food resource (green); food processing
area for the characterization of the effect of pre- and post-harvest
manipulations on food (orange).

Figure 13. 3D projections of the model space with the ellipsoids of
possible groups available in the databases. a) Extract from JuiceScree-
nerTM, estimation of the origin of an orange juice.[212] b) Extract from
WinescreenerTM report of a Sangiovese sample (star) with respect to
other Italian wines. Classification model for the wine type assignment,
representing the probability of classification for every group.[213]
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A platform for 1H-NMR based food quality and authen-
ticity control, the FoodScreenerTM platform, has already
been introduced by Bruker BioSpin based on an Avance
400 MHz spectrometer, for the analysis and characterization
of fruit juices and wines, and with application to honey
samples being currently in development.[214]

7. Technical Improvements

As for other omics, the future of metabolomics is driven
by technology developments. Herein, we will summarize
a few recent technical advances that could expand the
common metabolomic routine analyses by NMR, by provid-
ing alternative protocols for sample preparation and methods
for facilitating metabolite assignment in the NMR spectra of
biofluids.

As far as sample collection is concerned, one of the main
problems in following SOPs is associated to situations where
sample collection at home is needed: samples like urine and
saliva can be collected directly by the donor, but problems
may arise if filtering or keeping the samples at the right
temperature is needed. Recently, we proposed a complemen-
tary pre-analytical method relying on the gelification of
biofluids and subsequent analysis by HR-MAS NMR spec-
troscopy.[216] Urine gelification is rapid and reproducible and
permits preservation of the sample for 24 h without the need
of refrigeration (Figure 14a).

Moreover, this approach has a substantial advantage in
cases of low biofluids abundance (e.g. newborns, small
animals), since the HR-MAS sample only requires & 40 mL
of gelified urine. In order to improve the identification of new
metabolites in biological matrixes, a separation protocol has
been proposed,[217] where the solution of an NMR metab-
olomic mixture is passed through a set of filters, loaded with
either anionic or cationic ion exchange resin beads (IERB).
This method provides a separation of the metabolites depend-
ing on their specific physical-chemical properties.[217] As
a result, the 1H-13C HSQC 2D spectra of the flow through
and the eluate could be used for a better assignment of the
metabolites.

A novel approach for the automated and accurate
identification of urine metabolites was recently introduced
by our group. This has been achieved by constructing a large
number (ca. 4000) of artificial urine samples where the
concentrations of the most abundant metabolites and of
several inorganic ions were varied to sparsely but efficiently
populate an N-dimensional concentration matrix. By the use
of statistical machine learning tools, we constructed an
algorithm that, based upon the chemical shifts of only five
signals, can accurately predict the chemical shifts of many
other metabolites in the urine sample (so far 90 spin systems
chemical shifts of 63 metabolites) (Figure 7). This predictor,
besides allowing for easy quantitation of many metabolites
whose signals are visible in the spectrum, provides estimates
of the concentrations of 11 NMR “invisible” inorganic ions
(Figure 14 b). Our software estimates the inorganic ions
(including trace metal ions) in one single, inexpensive experi-
ment, thus making NMR a significant tool in the recently

introduced field of ionomics.[218] This strategy could be
expanded to other metabolomic fluids, such as juices, soft
drinks etc.

8. Summary and Outlook

This Review aimed at highlighting the many chemical
aspects of metabolomics. This was not meant to imply that the
ultimate goal of metabolomics research is chemistry, but
rather that chemistry is needed for a better understanding of
the biomedical goals and can even be inspirational for
defining the strategy of how to best achieve these goals. By
restricting ourselves to metabolomics by NMR we hope we
have shown that the horizon of metabolomics—in particular
of its untargeted fingerprinting version, which is best per-
formed by NMR—can be actually enlarged towards popula-
tion-wide metabolomic screening, especially as we expect
further technological advancements, of which Section 7
provides some examples. As highlighted in Section 4,
metabolomics is being gradually appreciated as the science
that is closest to provide early diagnosis of diseases. The
medical community is progressively appreciating that search-
ing for disease-specific biomarkers is probably no longer the
way to go: single biomarkers seldom have enough discrim-
inating power, while a panel of biomarkers taken together has
a better chance to provide higher discriminating power. By
extrapolating this concept (Section 5), a whole fingerprint,
that virtually contains “all” detectable metabolites, will have
the highest possible discriminating power. This extrapolation
requires a leap of faith, that is, that an NMR spectrum is
equivalent to a complete panel of perfectly quantitated
metabolites. Only a chemist with enough NMR knowledge
could convincingly make the case in front of non-chemists,
that presently would rather trust a table of chemical
substances with the associated concentrations.

But how far are we from actually adopting metabolomics
by NMR as a population-wide screening method? From the
examples reported in Section 4, and from many other
examples in the recent literature, it appears that i) for several
diseases there are already NMR fingerprints that are charac-
teristic of each of these diseases; ii) by comparing the NMR
spectrum of a “healthy” subject with these fingerprints, an
early diagnosis can be made with an accuracy of 70–85%; iii)
recurrences in some types of cancers can be predicted earlier
than by any other method, again with ca. 80% accuracy. The
conceptual distance from the present situation to the adop-
tion of metabolomics at the level of national health systems is
given by the need to move further in two directions: towards
defining fingerprints for a larger number of diseases, and
towards increasing the number of subjects from which the
fingerprint is built, to increase robustness. It should be noted
that, as the population screening will progress, the system will
become more and more informative (more diseases will be
fingerprinted, and therefore more could be detected from the
same NMR spectrum) and more reliable (accuracy will
further increase). It should also be noted that even an
accuracy of 80% would be more than enough to prescribe, to
individuals with a tentative early diagnosis of a given
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pathology, a specific check-up for that disease (e.g. echocar-
diography for heart failure, or antibody tests for celiac
disease, etc.).

The next question to answer is the cost of adopting such
a population-wide NMR screening: although NMR instru-
ments are expensive (a 600 MHz dedicated instrument costs
more than 1 million E + VAT), they are long-lived and can
work almost continuously for months, provided the automatic
sample changer is refilled constantly. They do not need to be
recalibrated nearly as often as MS instruments, and sample
preparation is extremely simple. Overall, the cost per sample
when all operations are optimized, including initial invest-
ment, maintenance and upgrading, personnel and consum-

ables, would probably be lower than 15 E. Therefore,
a metabolomic NMR analysis on, say, a serum sample
would add only a modest amount to the cost of a blood test
for a panel of analytes as it is currently done for periodic
check-ups.

The last question is the feasibility: for instance, to screen
400 million Europeans once every two years, 200 million
spectra per year would need to be recorded. A single
instrument can run about 120 spectra per day, that is,
around 40 000 spectra per year, so ca. 5000 NMR instruments
will be needed. They will have to be spread across the
continent, in multiple copies in major and middle-sized
hospital, as well as in public and private clinical analysis

Figure 14. Examples of technical improvement. a) Gelification of urine by silica particles provides a ready-to-use HR-MAS sample that could be
exploited for metabolomic routine studies. b) Prediction of 11 inorganic ions and albumin by urine shift predictor.[14]
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laboratories, because clinical analyses are typically performed
locally to avoid shipping of massive numbers of samples. Five
thousand spectrometers may seem as a very large number but
is about the same as the number of MRI scanners in use in
Europe, each of which costing significantly more than one
million E. When MRI started to appear as a potentially useful
technique, it took only a few years for MRI scanners to spread
and grow to the levels of today.
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