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Abstract

Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. 

Current approved therapies, including ganciclovir, are only moderately efficacious, with many 

transplant patients suffering from a variety of side effects. A major impediment to the efficacy of 

current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral 

replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of 

HCMV infection associated with transplant recipients and ultimately the cause morbidity and 

mortality. While work continues on new antivirals that block lytic replication, the dormant stages 

of HCMV’s unique lifecycle need to be concurrently assessed for new therapeutic interventions. In 

this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the 

different stages of HCMV’s lifecycle, and describe the advantages of targeting this cellular 

pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique 

modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of 

monocytes, which serve an essential role in the viral dissemination strategy of the virus.
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1. Introduction

Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family and a major 

worldwide public health burden. While primary infections in immunocompetent individuals 

are generally self-limiting, infections are associated with severe morbidity and mortality in 
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immunocompromised individuals such as transplant and chemotherapy patients (Bissinger et 

al., 2002; Lawlor and Moss, 2010; Nerheim et al., 2004; Reinke et al., 1999; Staras et al., 

2006). HCMV is also the most common infectious cause of newborn malformations in 

developed countries (Bristow et al., 2011; Dollard et al., 2007; Kenneson and Cannon, 2007; 

Manicklal et al., 2013). Despite the huge public health burden of HCMV, limited options for 

prophylactic or fulminant therapy exist today (Ahmed, 2011). Historically, replication 

inhibitors targeting viral proteins has been the first choice in developing new antiviral 

therapeutics as viral proteins mediates distinct evolutionary conserved functions during the 

virus lifecycle. Such therapies approved for HCMV are ganciclovir, valganciclovir, 

cidofovir, and foscarnet, which are synthetic nucleotide analogues that inhibit the viral 

polymerase UL97 to halt replication (Griffiths and Boeckh, 2007; Prichard and Kern, 2011). 

However, there are several drawbacks to this class of anti-HCMV drugs, including 1) The 

side effects from these inhibitors can be severe, particularly for transplant patients on long-

term regimens; 2) The emergence of antiviral resistant strains; 3) The low efficacies of these 

drugs with up to 30% of transplant patients on ganciclovir therapy eventually developing 

disease and a significant proportion experiencing transplant rejection (Ahmed, 2011; 

Echenique et al., 2017; Griffiths and Boeckh, 2007). Overall, the poor efficacy of replication 

inhibitors is in large part due to the inability of these drugs to exert any effect on HCMV 

during the dormant (non-lytic replication) periods of the virus life cycle. Thus, current 

antivirals are inadequate to address the needs of patients, and new therapeutic strategies 

must consider the other stages of HCMV’s unique life cycle.

2. HCMV Life Cycle

HCMV infection can be divided into three stages: lytic, latent, and quiescent (Chan et al., 

2010; Jean Beltran and Cristea, 2014; Sinzger and Jahn, 1996; Smith et al., 2004a; Yurochko 

and Huang, 1999). During a lytic infection HCMV expresses three temporal classes of viral 

genes: immediate early (IE), early (E), and late (L) genes (Crough and Khanna, 2009). Lytic 

gene expression allows for replication of the viral genome, packaging of nascent virions, and 

release from the host cell (Hamirally et al., 2009; Jean Beltran and Cristea, 2014; Milbradt et 

al., 2007; Milbradt et al., 2014). In contrast, during a latent infection HCMV transiently 

expresses a subset of viral latent genes in the absence of a fully productive viral infection 

(Cheng et al., 2017; Gatherer et al., 2011; Shnayder et al., 2018). Undifferentiated 

hematopoietic progenitor cells in the bone marrow are generally thought to be the major site 

of latent HCMV infection (Goodrum et al., 2012; Hahn et al., 1998; Mendelson et al., 1996; 

Movassagh et al., 1996; Taylor-Wiedeman et al., 1993; Taylor-Wiedeman et al., 1991b; von 

Laer et al., 1995). An external stimulus is required to differentiate these cells and reactivate 

lytic replication (Ibanez et al., 1991; Soderberg-Naucler et al., 1997b; Söderberg-Nauclér et 

al., 2001; Taylor-Wiedeman et al., 1994b). A “quiescent infection” is a state recently defined 

by our and the Yurochko group to occur within monocytes (Chan et al., 2012c; Smith et al., 

2004b; Stevenson et al., 2014). While our understanding of a quiescent infection is largely 

incomplete, there is lack of lytic gene expression similar to latent infection (Ibanez et al., 

1991; Sinclair and Sissons, 1996b; Smith et al., 2004a). However, a quiescent infection 

appears to differ from a latent infection by being able to “reactivate” and begin lytic 

replication without the need of an external activation signal (Chan et al., 2008; Smith et al., 
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2004a). In quiescently infected monocytes, spontaneous expression of lytic viral gene 

products and productive replication occurs 2–3 weeks after the initial infection (Chan et al., 

2008; Smith et al., 2004a). However, while latency in CD34+ or other hematopoietic cell 

types and quiescence in monocytes are referred to as being separate and distinct in this 

review, the line differentiating these two types of HCMV infections is likely blurred with 

overlapping biological traits. Indeed, monocytes harboring episomal viral genome can be 

induced to reactivate with growth factor treatment prior to 2 weeks post infection (Sinclair 

and Sissons, 1996a, 2006; Soderberg-Naucler et al., 1997a; Soderberg-Naucler et al., 2001; 

Streblow and Nelson, 2003; Taylor-Wiedeman et al., 1991a; Taylor-Wiedeman et al., 1994a). 

Consequently, HCMV-infected monocytes have been widely used as a model of latency. 

Nonetheless, HCMV utilizes quiescent infections in monocytes as a key cog in its 

dissemination strategy during a primary infection in order to bridge the initial transient lytic 

infection with the establishment of a persistent latent infection.

3. HCMV Dissemination

HCMV was first detected in peripheral blood monocytes, which are the primary cell type in 

circulation harboring the viral genome, suggesting these blood sentinels may be important 

for the early dissemination of the virus despite not being permissive for lytic replication 

(Schrier et al., 1985; Taylor-Wiedeman et al., 1991b; von Laer et al., 1995). In support, 

leukocyte depletion eliminates HCMV transmission through blood donations, monocytes are 

carriers of the virus following organ transplantation, and monocyte-derived macrophages are 

the first cells to express viral antigen within infected organs (Adler et al.; Gnann Jr. et al., 

1988; Larsson et al., 1998; Lipson et al., 2001; Mazeron, 2000; Sinzger et al., 1996). Ex vivo 

studies from naturally HCMV infected monocytes showed HCMV reactivation from 

monocytes that have been matured into macrophages using differentiation factors, 

supporting a role for monocytes in the HCMV dissemination strategy (Poole et al., 2015; 

Soderberg-Naucler et al., 1997b; Taylor-Wiedeman et al., 1994b). The importance of 

myelomononuclear cells during virus dissemination was further corroborated by in vivo 
murine CMV (MCMV) studies showing monocytes were the predominant cell type 

responsible for spread during an acute infection (Bale and O’Neil, 1989; Collins et al., 1993; 

Collins et al., 1994; Daley-Bauer et al., 2014; Stoddart et al., 1994). A recently developed 

humanized mouse model of HCMV infection that supported latent viral infection and 

dissemination also found the source of HCMV in the peripheral organs was from human 

macrophages derived from peripheral blood monocytes (Smith et al., 2010). In addition to 

facilitating spread to peripheral organs, HCMV-infected monocytes can travel into the bone 

marrow and transmit the virus to CD34+ bone marrow stem cells, the major site of HCMV 

latency. In these ways, monocytes represent a key link between acute and persistent 

infections as an initial lytic infection cannot propagate to distant organs, nor establish a 

latent infection within the bone marrow without monocyte-mediated dissemination. While 

effective therapies targeting all three stages of the viral lifecycle would be ideal, quiescently 

infected monocytes present new opportunities for specific interventions at a crucial stage 

linking both lytic and/or latent infections.

As current therapies are virally focused, resistance has rapidly developed through selective 

pressure. Rather than targeting viral replication and proteins, cellular pathways represent 
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highly conserved and regulated processes. Signaling pathways are differentially regulated 

during HCMV infection in a multitude of cell types across all three life stages. Viral 

infection tends to usurp the activities of select cellular kinases important to the viral life 

cycle (Brinkmann and Schulz, 2006; Cheeran et al., 2005; Dawson et al., 2003; Herbein et 

al., 2010). Targeting these pathways may be key to not only suppressing virus replication, 

but also eliminating latent and/or quiescent viral reservoirs, which are highly dependent on 

cellular kinases to effect cellular change due to the limited expression of viral gene products. 

In particular, a number of prosurvival pathways have been recently identified to be 

specifically upregulated in HCMV-infected monocytes but not uninfected cells (Chan et al., 

2010; Cojohari et al., 2016; Collins-McMillen et al., 2015; Peppenelli et al., 2016; 

Peppenelli et al., 2018; Stevenson et al., 2014). These pathways represent a unique 

opportunity for the design of new antivirals that target the virally infected cell rather than the 

virus itself. This review summarizes the current research on these signaling pathways during 

HCMV infection with a particular focus on the quiescent stage of the viral life cycle.

4. Cellular Receptors and HCMV

The first step in modifying cellular signaling pathways comes during viral entry. HCMV 

enters cells through the interaction of a number of its surface viral glycoproteins with a 

panoply of cell surface receptors. In monocytes these key glycoproteins include gB, gH, gL, 

gO, and UL128–131 (Chan et al., 2009; Isaacson and Compton, 2009; Nogalski et al., 2011; 

Nogalski et al., 2013; Smith et al., 2004b; Yurochko and Huang, 1999; Yurochko et al., 

1997). Glycoprotein gB forms a trimer linked by disulfide bonds (Sharma et al., 2013). 

Glycoproteins gH and gL form a complex through disulfide bond interactions at the viral 

envelope, which then forms two separate complexes, the trimeric gH/gL/gO or the 

pentameric gH/gL/UL128–131, either through disulfide or covalent interactions (Huber and 

Compton, 1998, 1999; Yurochko et al., 1997). The trimeric complex is required for viral 

entry into fibroblasts, while the pentameric complex is essential for entry into endothelial, 

epithelial, monocytic, and dendritic cells (Adler et al., 2006; Liu et al., 2018; Straschewski et 

al., 2011; Wang and Shenk, 2005; Wille et al., 2013).

As HCMV has tropism for a wide range of cell types, there is a significant body of research 

into discovering entry receptors. Huang et al identified epidermal growth factor receptor 

(EGFR) bound with gB in order to mediate viral binding and entry in a number of cells 

(Wang et al., 2003). However, conflicting reports indicated that EGFR was not the receptor 

for gB and has no role in mediating viral entry (Isaacson et al., 2007). The relationship 

between gB and EGFR during viral entry remains unsettled across a variety of cell types, but 

in monocytes, gB was required for EGFR activation and subsequent entry into monocytes 

(Chan et al., 2009). Recently, the interaction of gB with PDGFR-α was described (Cobbs et 

al., 2014; Kabanova et al., 2016; Soroceanu et al., 2008; Wu et al., 2017); however, like with 

EGFR, there are conflicting reports about the importance of PDGFR-α with regard to both 

its ability to bind gB as well as function as a bona fide entry receptor (Vanarsdall et al., 

2012). Moreover, monocytes do not express PDGFR-α as a surface receptor (Chan et al., 

2009; Inaba et al., 1993; Krettek et al., 2001). Integrins were also found to be important in 

facilitating viral entry, with different integrins mediating entry in different cell types. In 

monocytes, β1 and β3 integrins bind glycoprotein complexes gH/gL/gO and gH/gL/UL128–
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131 in order to mediate viral entry into these cells (Feire et al., 2004; Nogalski et al., 2013; 

Wang et al., 2005a). Additional HCMV receptors, including Nrp1, CD147, CD90, and BST2 

have emerged as potentially having key roles in mediating entry as well (Li et al., 2016; Li et 

al., 2015; Martinez-Martin et al., 2018; Vanarsdall et al., 2018; Viswanathan et al., 2011). 

Given the complexity of HCMV entry, targeting this step of infection as an antiviral strategy 

will be challenging as finding a “magic bullet” to prevent entry and signaling in all the 

different cell types infected by HCMV is doubtful. Moreover, cellular receptors such as 

EGFR are also involved in stages of the viral life cycle other than viral entry. Early 

inhibition of EGFR prevents viral entry and viral gene expression, which is likely due to 

decreased viral entry, while inhibition of EGFR post entry promotes viral replication, 

suggesting that late EGFR activity lowers virus yields in fibroblasts. These time dependent 

opposing effects on HCMV infection increase the unlikelihood targeting of HCMV entry 

receptors as an antiviral strategy.

5. Phosphatidyl Inositol 3 Kinase/ Protein Kinase B (PI3K/Akt) Pathway

Despite the multitude of receptors engaged by HCMV, a constant feature among several of 

the receptors is the activation of the same downstream targets critical to viral infection. In 

particular, EGFR, PDGFR-α, and integrins independently activate the PI3K/Akt signaling 

axis highlighting the possibility of intervention at this central signaling hub within the 

HCMV-induced signalsome (Alessi et al., 1996; Lemmon and Schlessinger, 2010; Liu et al., 

2009; Soroceanu et al., 2008). Canonical Akt signaling involves an initial recruitment and 

activation of class 1 PI3Ks (compromised of a p85 regulatory and a p110 catalytic subunit) 

by receptor tyrosine kinases, such as EGFR, to mediate the phosphorylation of PI(4,5)-P2 

into PI(3,4,5)-P3 (Manning and Cantley, 2007; Martini et al., 2014) (Fig. 1A). Isoforms of 

the p110 catalytic subunit include p110α, p110β, and p110δ, the latter of which is the 

predominant isoform found in monocytes (Papakonstanti et al., 2008). Production of 

PI(3,4,5)-P3 allows for the recruitment of Akt to the membrane through the binding of 

pleckstrin homology (PH) domain to PI(3,4,5)-P3. Akt is then phosphorylated by the 

combined actions of phosphoinositide-dependent kinase-1 (PDK1) at T308 and mammalian 

target of rapamycin complex 2 (mTORC2) at S473 (Scheid et al., 2002a; Scheid et al., 

2002b). The production of PI(3,4,5)-P3, and thus Akt activation, is negatively regulated by 

the actions of phosphatase and tensin homolog (PTEN), which converts PI(3,4,5)-P3 back to 

PI(4,5)-P2, and SH-2 containing inositol 5’ polyphosphate (SHIP1), which dephosphorylates 

PI(3,4,5)-P3 into PI(3,4)-P2 (Manning and Cantley, 2007; Martini et al., 2014).

5.1. PI3K/Akt During HCMV Infection

The PI3K/Akt pathway is temporally and differentially regulated by HCMV during all three 

stages of infection. During lytic infection of fibroblasts, a biphasic activation of PI3K/Akt 

occurs with an early transient activation triggered by receptor signaling and a later sustained 

activation mediated by viral immediate early proteins IE72 and IE86 (Cobbs et al., 2008; Yu 

and Alwine, 2002) (Fig. 1B). The early activation of PI3K is required for efficient viral entry 

while the later sustained activation is needed for optimal viral gene expression and viral 

DNA replication (Cobbs et al., 2008; Johnson et al., 2001; McFarlane et al., 2011). However, 

the late activation of EGFR and PI3K represses lytic replication in fibroblasts, hinting at the 
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possibility that EGFR and PI3K promote entry into and/or maintenance of latency (Buehler 

et al., 2016b). In support, pUL138 promotes latency by sustaining EGFR activity in CD34+ 

stem cells (Buehler et al., 2016b). Regardless, the early activation of PI3K during lytic 

replication underscores the importance of the PI3K/Akt signaling pathway to a productive 

HCMV infection. PI3K is also rapidly activated during the initial establishment of latency 

within CD34+ stem cells in order to promote viral entry and alter cellular gene expression 

that favors latency (Kim et al., 2017). Whether elevated PI3K activity is maintained 

throughout latency is unknown; however, the inhibition of PI3K enhances reactivation from 

latently infected CD34+ cells, suggesting a basal level of PI3K is at least required for the 

maintenance of latency (Buehler et al., 2016a). As with lytic and latent infection, recent 

reports have also demonstrated the importance of PI3K/Akt signaling during quiescent 

infection of monocytes. HCMV induces PI3K/Akt within 15 minutes post infection in 

monocytes and remains elevated through 48 hours (Chan et al., 2010; Cojohari et al., 2016; 

Smith et al., 2004b; Smith et al., 2007). Maintenance of PI3K/Akt signaling is critical to the 

long-term survival of HCMV-infected monocytes. Pharmacological targeting of the Akt 

pathway prevents quiescently infected monocytes from surviving through a 48-hour viability 

checkpoint when monocytes must differentiate towards macrophages or undergo cell death. 

Moreover, because of their increased dependency on Akt, infected monocytes had increased 

sensitivity to the effects of Akt inhibition when compared to uninfected monocytes. These 

data indicate the prosurvival function of PI3K/Akt signaling is essential to the progression of 

a quiescent infection by bridging the gap between initial infection and the expression of viral 

antiapoptotic proteins at 2–3 weeks post infection (Cline et al., 1978; Smith et al., 2004a; 

Whitelaw, 1966, 1972). Thus, deciphering the mechanism by which HCMV sustains the 

PI3K/Akt signaling during quiescent infection may provide critical insight to new 

therapeutic targets aimed at selectively eliminating infected monocytes.

HCMV triggers PI3K/Akt signaling in an EGFR-dependent manner during entry into 

monocytes (Chan et al., 2008; Chan et al., 2012a; Chan et al., 2009; Cojohari et al., 2016; 

Smith et al., 2004b; Smith et al., 2007). Yet, HCMV’s persistent induction is in contrast to 

EGF’s transient activation of PI3K, suggesting a virus-specific regulatory mechanism 

controlling PI3K/Akt signaling (Chan et al., 2010; Cojohari et al., 2016; Smith et al., 

2004b). UV-inactivated virus stimulates a chronic PI3K/Akt activation similar to “live” 

virus, indicating that sustained PI3K activity is not mediated by de novo IE gene products as 

it is with lytic infection (Smith et al., 2004a; Yurochko and Huang, 1999). HCMV utilizes a 

multitude of glycoprotein complexes and putative cellular receptors during viral entry. Thus, 

while stimulation of EGFR alone with gB may lead to the canonical activation of PI3K, co-

signaling from other glycoprotein and receptor interactions may be responsible for the 

persistent nature of PI3K/Akt signaling within infected monocytes. Indeed, binding of the 

virus particle to fibroblasts brings EGFR and integrins into close proximity leading to 

receptor clustering within lipid rafts and crosstalk between the two signaling cascades (Chan 

et al., 2012b; Kim et al., 2017; Wang et al., 2005b). Signaling by gB/EGFR and gH/integrins 

needs to occur within 5 minutes of each other in order to facilitate virus entry (Wang et al., 

2005b). In monocytes crosstalk between the gB/EGFR and gH/αvβ3 axes is required for full 

Akt signal strength (Chan et al., 2012b). Together, these data indicate that the unique spatial 
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and temporal kinetics of glycoprotein-initiated signaling lead to the formation of a HCMV-

specific PI3K/Akt signalsome.

Monocytes express all class 1A PI3Ks including the p110α, p110β, and p110δ isoforms 

(Martini et al., 2014). Although highly homologous, PI3K isoforms have divergent, non-

redundant biological functions, as well as differential effects on Akt activity (Thorpe et al., 

2015). PI3K p110δ is the major isoform found in uninfected monocytes and is induced 

following M-CSF treatment to promote long-term survival (Cojohari et al., 2016; Voss et al., 

2005). However, HCMV entry induces a switch from p110δ to p110β as the central PI3K 

isoform regulating the survival of infected monocytes and Akt activity (Cojohari et al., 2016) 

(Fig. 1C). Biologically, we speculate that the preferential usage of p110β is due to its lack of 

negative self-regulatory activity and decreased antiviral activity (Guo et al., 2008; 

Vanhaesebroeck et al., 1999). Simultaneous to the activation of PI3K, HCMV entry into 

monocytes modifies the activities of two major Akt negative regulators, PTEN and SHIP1 

(Cojohari et al., 2016). PTEN directly reverses PI3K activity but is rapidly shutdown during 

HCMV infection allowing for maximum Akt activity (Cojohari et al., 2016). Alternatively, 

SHIP1 antagonizes Akt activation under homeostatic conditions via the conversion of 

PI(3,4,5)-P3 into PI(3,4)-P2 (Kerr, 2011). Yet, HCMV rapidly upregulates SHIP1 expression 

in contrast to normal myeloid growth factors. Inhibition of SHIP1 also reduces rather than 

enhance Akt activity (Cojohari et al., 2016). Accordingly, loss of SHIP1 activity prevents 

HCMV-infected monocytes from acquiring a prosurvival state (Cojohari et al., 2016). 

Interestingly, leukemia cells also overexpress SHIP1 and PI(3,4)-P2 to promote Akt-

dependent cell survival (Kerr, 2011). With PI3K isoform specific inhibitors and SHIP1 

inhibitors available, these data hint at the possibility of selectively eliminating infected 

monocytes by targeting the highly virus-specific changes made to the PI3K signaling 

pathway. Accordingly, inhibition of p110β and SHIP1 stimulates the death of infected 

monocytes, while having minimal effects on the viability of uninfected cells (Cojohari et al., 

2016).

The functional output of PI3K/Akt signaling is largely governed by two main regulatory 

sites on Akt, T308 and S473, both of which are believed to be required for full Akt activity 

(Alessi et al., 1996). However, the diverse cellular effects of Akt appear to be dependent on 

the specific combination of targets activated and/or deactivated by Akt-mediated 

phosphorylation. Recent studies showed the ratio of S473 to T308 phosphorylation to 

modulate Akt target specificity (Yung et al., 2011). HCMV infection of monocytes induces a 

site-specific phosphorylation of Akt at S473 (Cojohari et al., 2016). In contrast, GM-CSF 

and M-CSF treatments stimulate both S473 and T308 phosphorylation (Baran et al., 2003; 

Goyal et al., 2002), indicating that the growth factor and HCMV-initiated PI signaling have 

distinct functional outputs. Indeed, global analysis revealed differential phosphorylation of 

downstream targets between HCMV- and growth factor-activated Akt (Peppenelli et al., 

2018). One major downstream target differentially regulated was mTOR (Peppenelli et al., 

2018), which is responsible for controlling protein translation. HCMV rapidly 

phosphorylated mTOR in an Akt-dependent manner following HCMV infection, while GM-

CSF and M-CSF treatment had no effect on mTOR activity despite also activating Akt, 

suggesting that downstream targets may provide increased selectivity in terms of antivirals 

(Peppenelli et al., 2016).
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6. mTOR Pathway

MTor is found in two complexes, mTORC1 and mTORC2 (Helliwell et al., 1994; Loewith et 

al., 2002). MTORC2 plays a central role in phosphorylating and activating Akt, as detailed 

previously. MTORC1’s major function is the control of protein synthesis through the 

regulation of protein translation (Kim et al., 2002; Thoreen, 2013) (Fig. 2A). MTORC1 is 

repressed by AMP-regulated protein kinase (AMPK) and the tuberous sclerosis complex 

(TSC) in times of nutrient stress (Gao and Pan, 2001; Inoki et al., 2003a). When resources 

are plentiful AMPK is not activated, while Akt phosphorylates and inhibits the TSC, leading 

to activation of mTORC1 and increased cap-dependent translation (Hardie et al., 2016; Inoki 

et al., 2003b; Manning et al., 2002). In times of stress, such as during viral infection, AMPK 

becomes activated and increases cap-independent translation through initiation of IRES-

dependent translation (Mizrachy-Schwartz et al., 2011). MTORC1 regulates translation 

initiation through phosphorylation of the eIF4F complex and S6 kinase (S6K) (Faller et al., 

2015; Shahbazian et al., 2006; Wang et al., 2001). EIF4E is normally bound in the 

hypophosphorylated state to eIF4E-binding protein 1 (4E-BP1), which prevents the 

formation of a functional translation initiation complex (Pause et al., 1994). MTORC1 

phosphorylates 4E-BP1, reducing its affinity for eIF4E and allowing for eIF4F complex 

formation and increasing translation through direction of the ribosome to the 5’ cap on 

mRNA (Fadden et al., 1997). Overall levels eIF4F directly relate to levels of protein 

synthesis within a cell (Pestova et al., 2001; Vincent et al., 2016). Phosphorylation of S6K 

leads to activation of several other translation factors, which increase translational scanning 

(ze et al., 2011), repress translational inhibitors (Faller et al., 2015; Wang et al., 2001), and 

stimulate the addition of amino acids to nascent peptide chains (Redpath et al., 1996; Wang 

et al., 2000). Overall, mTORC1 serves as a master regulator of translation in the presence of 

growth factors and/or plentiful resources.

6.1. mTOR During HCMV Infection

Multiple studies have established the importance of mTOR during lytic infection. Typically, 

during times of cellular stress, such as during a viral infection, mTOR activity is decreased. 

Although AMPK serves as an inhibitor of mTOR activation and is upregulated during 

HCMV infection, this relationship appears to be uncoupled in infected cells (Kudchodkar et 

al., 2007; McArdle et al., 2012; Terry et al., 2012). HCMV pUL38 disrupts the negative 

regulatory effects of AMPK by binding to TSC1/2, a mechanism distinct from Akt-mediated 

inhibition through phosphorylation (Moorman et al., 2008) (Fig. 2B). Consequently, 

increased phosphorylation and levels of eIF4E are maintained during lytic infection allowing 

for continued cap-dependent protein translation (Clippinger et al., 2011a, b; Vincent et al., 

2016). Blocking eIF4F complex formation reduces viral replication and progeny production, 

underpinning the critical need to maintain mTOR activity during a productive HCMV 

infection (Kudchodkar et al., 2004; Lenarcic et al., 2014; Moorman and Shenk, 2010). There 

is little known about the role of mTOR during latency. MTOR has been found to 

phosphorylate KAP1, a transcriptional co-repressor that can force HCMV out of latency 

when phosphorylated, suggesting that suppression of mTOR may be required for the 

maintenance of latency (Rauwel et al., 2015). Other results suggest that mTOR does not play 

a role in reactivation from latency (Glover et al., 2014). During a quiescent infection of 
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monocytes, HCMV stimulates mTOR activity in a PI3K/Akt dependent manner (Peppenelli 

et al., 2018). Despite increasing mTOR activity, lytic replication is not initiated indicating 

either a threshold level is needed to drive replication or additional factors are required in 

combination with mTOR to drive replication. Nonetheless, similarly to lytic infection, 

cellular stress appears to be uncoupled to decreasing mTOR activity; however, in the 

absence of pUL38 during a quiescent infection, the mechanism employed by HCMV to 

uncouple mTOR and stress is unclear.

Activated during times of cellular stress, heat shock factor 1 (HSF1) transcription factor 

responsible for the expression of stress-associated proteins, which are generally independent 

of cap-mediated translation (Calderwood et al., 2010; Wu, 1995). HCMV rapidly 

phosphorylates HSF1 in an Akt-dependent fashion while myeloid growth factors have little 

effect on HSF1 activity (Peppenelli et al., 2018). A positive feedback loop from HSF1 to 

mTOR was found to exist in HCMV-infected monocytes where inhibition of HSF1 activity 

decreased mTOR activity (Figure 2B). Thus, HCMV-activated Akt specificity towards HSF1 

provides a mechanism by which HCMV is able to activate mTOR during times of stress. 

Biologically, although generally a switch from cap-dependent to IRES-mediated translation 

occurs during cellular stress, HCMV appears to simultaneously drive the translation of both 

cap-dependent and independent survival proteins within infected monocytes in part due to 

the substrate specificity of Akt for HSF1.

The unique interplay between mTOR and HSF1 during HCMV infection of monocytes 

stimulates the synthesis of a unique milieu of prosurvival proteins, including myeloid 

leukemia cell differentiation protein 1 (Mcl-1), X linked inhibitor of apoptosis (XIAP), and 

heat shock protein 27 (HSP27), that were not or marginally induced in growth factor-treated 

cells (Collins-McMillen et al., 2015; Peppenelli et al., 2016; Peppenelli et al., 2018). 

Consistent with our previous studies, we found that inhibition of Mcl-1 with C10 (a selective 

Mcl-1 small-molecule inhibitor (Abulwerdi et al., 2014)) led to significant induction of 

apoptosis and death of infected monocytes (6.6% in untreated versus 46.9 in treated) (Burrer 

et al., 2017; Chan et al., 2010; Peppenelli et al., 2018). Although uninfected cells are 

naturally programmed to undergo apoptosis, we now show that the loss of Mcl-1 has 

minimal effect on accelerating this process (57.9% in untreated versus 67.1% in treated), 

suggesting the possibility of selectively eliminating HCMV-infected monocytes while 

allowing uninfected monocytes to maintain normal immune surveillance functions (Fig. 3). 

Inhibition of XIAP with small molecule inhibitors also induces death of infected monocytes 

but had minimal effect on uninfected cells (Burrer et al., 2017; Chan et al., 2010; Peppenelli 

et al., 2018). Thus, this select pool of upregulated prosurvival proteins represents novel 

cellular antiviral targets aimed at selectively eliminating HCMV-infected monocytes while 

permitting uninfected monocytes to maintain their normal function. Interestingly, latently 

infected CD34+ stem cells are also highly dependent on Mcl-1 for viability (Reeves et al., 

2012). Consequently, Mcl-1 inhibitors have the potential to eliminate quiescently and 

latently infected cells.
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7. Conclusions

The use of antiviral agents as prophylaxis to limit virus replication has significantly reduced 

the incidence of early infection to ≤10% in transplant patients (Fishman et al., 2007a; 

Sagedal et al., 2004). However, prophylactic treatment appears to have simply shifted the 

kinetics of HCMV infection to later after transplantation (≥100 days), and thus HCMV still 

remains a serious post-transplantation problem (Fishman et al., 2007b; Rubin and Colvin, 

1986; Sagedal et al., 2004). Since therapies against HCMV are designed to block specific 

steps along the virus replication cycle, the delayed onset of disease indicates that current 

antivirals are ineffective at preventing viral spread mediated by quiescently infected 

monocytes. We advocate that the suppression of HCMV replication with current 

prophylactic treatments must be done in combination with drugs capable of directly 

eliminating infected monocytes. Inhibiting cellular factors crucial to the survival of HCMV 

infected cells provides an alternative strategy to the development of replication inhibitors as 

targeting host proteins has the advantage of also affecting the dormant phases of the viral life 

cycle. Moreover, targeting cellular factors would decrease the likelihood of drug resistance 

as host factors are highly conserved.

The PI3K/Akt/mTOR pathway has critical function during all three stages of HCMV 

infection by 1) ensuring metabolic requirement are met for optimal virus production during 

lytic infection, 2) altering cellular transcription that favors the establishment of latency, and 

3) maintaining the survival of quiescently infected monocytes. However, PI3K plays a 

critical role to normal cellular function, thus inhibition may have significant bystander 

effects. HCMV-infected cells display increase dependency on this pathway often 

significantly altering the IC50 of the kinases within the signaling cascade. Ultimately, these 

virus-induced changes may provide a therapeutic window for the use of PI3K/Akt inhibitors 

for the treatment of HCMV infection. In addition, HCMV makes highly specific alterations 

to kinase activities during both lytic and quiescent infection. Targeting these unique changes 

may provide increased selectivity in eliminating the virus-infected cell populations. As a 

proof-of-concept, several drugs targeting the components of the PIK/Akt cascade led to 

death of infected monocytes while having little effect on uninfected cells (Burrer et al., 

2017; Cojohari et al., 2016; Peppenelli et al., 2018). Consequently, inhibition of the 

PI3K/Akt signaling pathway is positioned to play a dual role in inhibiting HCMV replication 

and eliminating reservoirs of persistently infected cells, which is critical to the long-term 

prognosis of transplant patients.
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HCMV human cytomegalovirus

IE immediate early
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E early

L late

MCMV murine cytomegalovirus

gB glycoprotein B

gH glycoprotein H

gL glycoprotein L

gO glycoprotein O

EGFR epidermal growth factor receptor

PDGFR-α platelet-derived growth factor receptor α

NRP1 neuropilin 1

BST2 bone marrow stromal antigen 2 (tetherin

PI3K phosphoinositide 3-kinase

Akt protein kinase B

PI(4,5)-P2 phosphatidylinositol (4,5)-bisphosphate

PI(3,4,5)-P3 phosphatidylinositol (3,4,5)-triphosphate

PH pleckstrin homology

PDK1 phosphoinositide-dependent kinase 1

mTORC1 mammalian target of rapamycin complex 1

mTORC2 mammalian target of rapamycin complex 2

PTEN phosphatase and tensin analog

SHIP1 SH-2 containing inositol 5’ phosphatase 1

UV ultraviolet

EGF epidermal growth factor

αvβ3 integrin αvβ3

M-CSF macrophage colony-stimulating factor

GM-CSF granulocyte-macrophage colony-stimulating factor

AMPK adenosine monophosphate kinase

TSC tuberous sclerosis complex

eIF4F eukaryotic initiation factor 4F
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S6K S6 kinase

eIF4E eukaryotic initiation factor 4E

4E-BP1 eIF4E-binding protein 1

mTOR mammalian target of rapamycin

KAP1 KRAB-associated protein-1

HSF1 heat shock factor 1

IRES internal ribosomal entry site

Mcl-1 myeloid cell leukemia-1

HSP27 heat shock protein 27

XIAP X-linked inhibitor of apoptosis protein
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Highlights

• Targeting cellular signaling pathways as a new anti-HCMV strategy.

• HCMV induces the aberrant activation of the PI3K/Akt signaling network 

during HCMV infection.

• Selectively inducing death of infected monocytes with small molecule 

inhibitors.
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Fig. 1. 
Model of differential activation of PI3K/Akt signaling by growth factors and HCMV 

infection. (A) Growth factors binding to their cognate receptors activate canonical PI3K 

signaling, leading to activation of Akt through phosphorylation at T308 and S473 by PDK1 

and mTORC2, respectively. (B) During lytic infection, a biphasic activation of PI3K/Akt 

occurs with an early transient burst of activation mediated by PDGFR, EGFR, and/or 

integrin engagement followed by a sustained secondary activation mediated by viral proteins 

IE72 and IE86. Both T308 and S473 appear to be phosphorylated during lytic infection. (C) 
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The atypical activation of PI3K/Akt during quiescent infection of monocytes is initiated by 

HCMV binding to EGFR and integrins. The coordinated action of PI3K’s catalytic isoform 

p110β, as opposed to the predominant p110δ isoform found in monocytes, and SHIP-1 leads 

to preferential phosphorylation of Akt at S473 by a yet to be identified mechanism. While 

not much is known about the PI3K activity during latency, EGFR is believed to be activated 

during HCMV entry in CD34+ cells and PI3K has been observed to be rapidly upregulated 

during early latent infection.
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Fig. 2. 
Model of regulation of cellular translation by growth factors and HCMV infection. (A) 

Growth factor activation of Akt leads to the inhibitory phosphorylation of TSC2, thereby 

relieving the suppressive effect of the TSC complex on mTORC1. Activation of mTORC1, 

in turn, stimulates translation of cap-dependent mRNAs through S6K and eIF4E. (B) 

MTORC1 is activated through distinct mechanisms during lytic and quiescent infections. 

Activated during times of cellular stress, such as HCMV infection, AMPK stabilizes the 

TSC complex through activating phosphorylation of TSC2, thereby inhibiting mTORC1 

activation, even in the presence of activated Akt. Simultaneously, AMPK activation has also 

been associated with an upregulation of IRES-dependent, cap-independent translation. 

However, during lytic infection, TSC complex inhibition is achieved despite AMPK 

activation through a yet uncharacterized interaction with pUL38 in order to sustain cap-

dependent translation. In contrast, the atypical activation of Akt that occurs during quiescent 

infection maintains mTORC1 activity and cap-dependent translation by circumventing the 

TSC complex via HSF1. Overall, HCMV infection leads to the simultaneous translation of 

cap- and IRES-dependent proteins during both quiescent and lytic infections.
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Fig. 3. 
HCMV utilizes Mcl-1 to prevent apoptosis in infected monocytes. Primary human 

monocytes were mock or HCMV infected for 24 hours (h), after which infected cells were 

treated with Compound 10 (C10), an Mcl-1 inhibitor, for an additional 24 h. Viability was 

measured by flow cytometry using Sytox Blue (live/dead stain) and Annexin V (early 

apoptotic marker) staining. Gates represent live cells (Sytox Blue and Annexin V negative), 

apoptotic cells (Sytox Blue low and Annexin V high), and late apoptotic or dead cells (Sytox 

Blue and Annexin V positive).
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