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Abstract

Background: Clinical imaging modalities including Optical Coherence Tomography (OCT) and 

Diffusion Tensor Imaging (DTI) are vital in Multiple Sclerosis (MS), but their relationships during 

the different phases of Retinal ganglion cell (RGC) degeneration are not clear. We hypothesize that 

initial injury in optic nerve causes axonal degeneration leading to RGC loss in retina, which can be 

characterized by a combination of DTI and OCT. Our objective was to examine the correlation 

between noninvasive and histological data to chronicle the degeneration profile of RGCs in the 

retina and optic nerve in a mouse model of MS.

Materials and Methods: Experimental Autoimmune Encephalomyelitis (EAE) was induced in 

11 C57Bl/6 mice, with 8 mice reserved as controls. OCT and DTI was conducted 2–8 weeks after 

induction of EAE. The thickness of the retinal ganglion cell complex (GCC) was measured using 

OCT and compared to DTI indices measured in optic nerves. End-stage histology was used to 

quantify axon/myelin loss in the optic nerve and retinal thinning/RGC loss in the retina.

Results: Significant changes in DTI-derived Axial Diffusivity (AD, −17.2%) and Trace 

Diffusivity (TR, −18.3%) began after 2 weeks of EAE. Later significant reductions in Fractional 

Anisotropy (FA) and AD, with increases in Radial Diffusion (RD) were apparent after 4 and 8 

weeks. OCT-derived measures of GCC thickness were reduced after 4 weeks, and reached 

significant reduction after 8 weeks. Among EAE mice, DTI (FA, AD and RD measures) and OCT 

measures were all significantly correlated after 4 and 8 weeks. Among histology measures, RGC 

density (−23%), RGC size (−27%), and the number of SMI31+ axons (−54%) were reduced 

significantly. DTI measures of FA and AD along with GCC thinning were the best independent 

predictors of axon loss.
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Conclusions: DTI and OCT measures are tightly correlated during the chronic phase of axonal 

degeneration (4–8 weeks) in EAE mice. After 8 weeks of EAE, both OCT and DTI measures are 

strong predictors of axon loss in the Optic Nerve.
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Introduction

Multiple Sclerosis (MS) is a chronic inflammatory disease characterized by demyelination, 

axonal damage and neurodegeneration throughout the central nervous system (CNS). 

Permanent clinical disability of MS is thought to result primarily from cumulative axonal 

and neuronal losses 1. Magnetic Resonance Imaging (MRI) is the gold standard technique 

for the diagnosis of MS, but conventional (T1 and T2) imaging methods are not specifically 

sensitive to axonal and neuronal losses. The inflammatory lesions visible by MRI have 

variable outcomes in terms of long-lasting axonal damage. A discord between imaging 

findings and clinical manifestation has been recognized and new imaging tools are needed to 

better detect the underlying neurodegeneration in MS 2.

Among CNS white matter tracts, the Optic Nerve (ON) is a frequently affected site in MS. 

Among MS patients, 15–20% experience Optic Neuritis (inflammation of the optic nerve) as 

the initial presenting symptom, with 38–50% experiencing it at some point during disease 3. 

Diffusion tensor imaging (DTI) is an imaging technique sensitive to white matter 

microstructure, allowing greater sensitivity to underlying neurodegeneration at the tissue 

level. Metrics derived from the DTI model have shown sensitivity to different 

neurodegenerative events in white matter; increased radial diffusivity (RD, diffusion across 

fibers) has been shown to correspond to demyelination, while axonal damage leads to 

changes in axial diffusion (AD, diffusion along fibers) 4–6. Axial diffusivity has been shown 

sensitivity to degrees of axonal loss in animal models of MS7,8 and to predict visual 

outcomes in human MS 9.

Optical Coherence Tomography (OCT) is another relatively new technique that has quickly 

gained acceptance in the field of MS 10–15. Detectable retinal thinning occurs during MS and 

is concentrated within the most superficial layers, containing RGC axons (Retinal Nerve 

Fiber Layer, RNFL), cell bodies (Ganglion Cell Layer, GCL) and dendrites (Inner Plexiform 

Layer, IPL) 16. Measurements of these changes in the eye have been proposed as diagnostic 

markers for the rate of nerve injury and cell loss during the disease 14. Several clinical 

studies, including a long-term 4 year longitudinal study, have linked changes in OCT-

measured thinning to MRI-measured brain atrophy 10–12 and patient disability 13–15, 

suggesting that OCT may be a useful surrogate to measure and track underlying 

neurodegeneration during the course of MS.

Presumably, different imaging modalities have distinct sets of advantages (and 

disadvantages) during different stages of axonal degeneration in MS. However, it is 

presently unclear how these data relate to each other during the progressive 
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neurodegeneration that manifest during disease. A combination of DTI and OCT data may 

provide complementary information to characterize the progression of RGC degeneration. In 

the present study, we utilized the Experimental Autoimmune Encephalomyelitis (EAE) 

model to characterize changes in the afferent visual system using DTI and OCT across a 

timecourse spanning two months. The underlying changes using these modalities was 

compared during the disease course and evaluated in relation to ground truth tissue 

histology. These results provide better understanding of DTI and OCT data in monitoring 

optic nerve degeneration, which provide new insights for improved clinical management of 

MS.

Materials and Methods

Animal Preparation

This study was conducted in accordance with National Institutes of Health guidelines and 

Statement for the Use of Animals in Ophthalmic and Visual Research, and was approved by 

the Institutional Animal Care and Use Committee at Loma Linda University.

Experimental Autoimmune Encephalomyelitis (EAE) was induced in 11 female, twelve 

week old C57Bl/6 mice using 100μg Myelin oligodendrocyte glycoprotein (MOG), 

emulsified in incomplete Freund’s adjuvant (IFA). Pertussis toxin (200ng, Sigma) was 

injected IP on the day of immunization and three days post-immunization. Eight female 

mice were reserved from treatment in the control group. Mice were graded every three days 

to track disease activity on a clinical scale between 1–5 (Figure 1). Values ranged from 0 (no 

symptoms), 1 (weak tail), 2 (hind limb weakness), 3 (unilateral hind limb paralysis), 4 

(bilateral hind limb paralysis) to 5 (death). OCT scans were acquired at baseline 

(immediately before immunization, 11 mice, N=22 retinal scans) and then again after 2 (4 

mice, N=8 scans), 4 (11 mice, N=22 scans) and 8 weeks (11 mice, N=22 scans). One retina 

was excluded from analysis due to poor quality OCT signal. OCT scans in control mice were 

acquired after 8 weeks (8 mice, N=16). DTI scans from EAE mice were acquired after 2 

weeks (N=4, 8 ONs total). This cohort was only imaged using DTI at 2 weeks. Additional 

DTI imaging was also performed in a separate cohort after 4 (N=7, 14 ONs total) and 8 

weeks (N=7, 14 ONs total). Control mice were DTI scanned after 8 weeks (N=8, 16 ONs 

total).

MRI acquisition, processing and Analysis

MRI acquisitions were collected using a Bruker 11.7T BioSpec small animal MRI 

instrument with slice thickness 0.5mm, FOV of 1.5 × 1.5cm and matrix 128 × 128 (zero 

filling to 256 × 256), repetition time 2.5s, echo time 29ms, Δ20ms, δ 3ms. Twenty-one 

diffusion-weighted images based on the Icosa21 Tensor Encoding Schemes were acquired 

with b=0.85ms/um2 along with two non-diffusion weighted scans 17. Raw diffusion-

weighted images were processed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), 

including steps for skull stripping and eddy current/motion correction using BET and Eddy 

modules, respectively. Corrected image sets were then loaded into 3D Slicer, where 

eigenvalues derived from the diffusion tensor were used to calculate AD, TR, RD and FA, 

defined by the following equations:
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AD = λ1 (1)

TR = λ1 + λ2 + λ3 (2)

RD = λ2 + λ3 * (1/2) (3)

ADC = TR / 3 (4)

FA = 3
2

λ1 − ADC)2 + λ2 − ADC 2 + λ3 − ADC 2

λ1
2 + λ2

2 + λ3
2

Analysis of the optic nerve was carried out in coronal sections using procedures previously 

described 18. In brief, optic nerves were selected based upon FA/RD maps, in which high FA 

and low RD excluded the possibility of selecting neighboring CSF. The central 3×3 portion 

of voxels through four sequential slices (N=36 voxels per ON) were manually selected in 

each optic nerve by a blinded observer.

Optical Coherence Tomography acquisition and analysis—OCT imaging was 

performed using a BioOptigen Envisu C-Class. Our imaging protocol collected data from a 

1.6 × 1.6 mm region centered on the optic disc. The protocol used 1000A scans/B Scan, 100 

B scans total. B scans 320um and 240um superior and inferior to the optic disc (N=4 per 

eye) were selected for analysis. These regions were selected for their consistent layer 

thickness characteristics. Images were processed and analyzed using software created in 

Matlab (Natick, MA). The procedures are illustrated in Figure 1. Specifically, individual B 

scans were pre-processed by manually cropping retinal edges and removing segments 

containing blood vessels along the RNFL surface (1a). A fitted quadratic curve was then 

used to adjust individual A-scan positions to flatten the retina (1b). With each straightened B 

scan, all A scan values were averaged, and the profile of intensity variation across of retina 

was plotted (1d, 1e). All scans were manually reviewed by a blinded observer to assure the 

straightness of each B scan after processing.

As shown in Figure 1e, the measurement of Ganglion cell complex (GCC) thickness 

(composed of axons, soma and dendrites of RGCs) was made based upon the intensity 

differences between retinal layers. Thickness was defined as the distance between retinal 

nerve fiber layer (RNFL) peak intensity and the intermediate border between the inner 

plexiform layer (IPL) maxima and the underlying Inner nuclear layer (INL) minima. The 
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reliability of our method was tested using three control mice (N=6 eyes), scanned every 

week from 12–19 weeks of age (Fig 1f). These measurements revealed 1.17% average 

thickness variation between each week.

Histology—All mice were sacrificed after 8 weeks of EAE. A subset of mice were 

processed for use in histology (7 EAE mice DTI imaged at 8 weeks, 14 ONs/retinas and 5 

Control mice, 10 ONs/retinas). Mice were anesthetized and perfused with PBS and 

Hartman’s fixative. After perfusion, tissues were immersed in decalcification buffer for one 

week. Tissues were then sliced into 3mm-thick sections and processed for paraffin 

embedding. Resulting paraffin blocks were then sectioned at 5μm for sections of optic nerve 

and retina.

Sections of optic nerve were immunostained for markers of healthy axons (phosphorylated 

neurofilament, SMI-31) and myelin sheaths (Myelin basic protein, MBP). Briefly, sections 

were deparaffinized, permeabilized in 0.3% Triton X-100, blocked in 3% NGS then 

incubated overnight in 1° antibodies. Sections were then incubated in 2° antibodies for 1hr 

and mounted for imaging. Slides were imaged using a Keyence fluorescence microscope 

using identical acquisition settings. In the ON, axon numbers were measured using coronal 

sections through each nerve. Stained ONs were imaged using a 40× objective, then analyzed 

using the threshold and analyze particles segmentation functions in ImageJ.

Three central sections from each retina were immunostained for RNA-binding protein with 

multiple splicing (RBPMS), a selective marker of Retinal Ganglion Cells 19–21 and lightly 

counterstained with hematoxylin. An additional three sections were processed using 

standard Hematoxylin and Eosin (H&E, Vector Labs). Sections were acquired at 20× using a 

light microscope and analyzed using ImageJ. Retinal sublayers were measured at three 

locations within each retina in H&E stained sections, within 500um of the central portion of 

the retina. RGC cell body density and cross sectional area (CSA) were measured in RBPMS-

labeled sections. RGCs were selected for CSA-measurement every tenth cell body across the 

tissue section. All measures were performed in a blinded fashion.

Statistical Analysis

All statistical calculations were carried out in Prism 6.0. Comparisons of MRI and OCT data 

between control, baseline, 2, 4 and 8 week EAE groups was performed using a one-way 

ANOVA followed by posthoc Tukey’s test. Analysis of histology data comparing control to 

EAE groups was done using an unpaired t-test. Correlation between MRI/OCT, MRI/

histology and OCT/histology datasets was performed using a Pearson’s correlation 

coefficient. All p values below p<0.05 were considered statistically significant.

Results

EAE Mice

A record of clinical symptoms in the mice is shown in Figure 2. Mice began to show clinical 

symptoms 10–12 days after immunization. These symptoms were present in all mice after 

three weeks. The disease activity was chronic, with slowly increasing average severity over 

eight weeks.
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OCT Findings

Analysis of OCT scans from control and baseline EAE mice reveal an average GCC 

thickness of 57.7±1.7 μm among controls and 58.2±2.7 μm among baseline mice. The mean 

thickness in the EAE group transiently increased after 2 weeks of EAE, rising to 

61.1±2.1μm. Assessment after four weeks showed average thickness was reduced to 

55.8±4.2μm (not significant). After eight weeks, average thickness significantly decreased 

relative to baseline and control measurements, falling to 54±4.2μm (p<0.05 vs. controls, 

p<0.001 vs. baseline) (Figure 3).

Optic Nerve DTI Findings

As shown in Figure 4, after two weeks of EAE we found highly significant reductions in ON 

TR (−18.3%, p<0.0001) and AD (−17.2%, p<0.01), along with nonsignificant reduction in 

RD (−18.1%). After 4 weeks we found significant reductions in FA (−28.6%, p<0.0001), 

AD (−25.9%, p<0.0001) and increases in RD (48.8%, p<0.001) while TR showed no 

difference from controls. Similar changes were seen after 8 weeks, with reductions in FA 

(−24.5%, p<0.0001), AD (−16.0%, p<0.001) and increases in RD (54.3%, p<0.0001).

OCT-DTI Correlations

Contemporary DTI and OCT measures were compared at each timepoint; correlation 

coefficients are shown in Figure 5. These associations were not significant in control mice or 

EAE mice after two weeks of EAE. All significant correlations between OCT and FA, AD 

and RD appeared after 4 or 8 weeks of EAE. Among all mice, FA (r = 0.829), AD (r = 

0.467), TR (r= −0.4449) and RD (r = −0.830) were significantly correlated with OCT GCC 

thickness measures. In all cases, the relationship between DTI and OCT measures were 

more highly correlated after 8wks than after 4wks.

Optic Nerve Histology

Histology data confirmed our imaging findings, showing significant reductions in the 

numbers of healthy axons (SMI-31+) and variable demyelination, shown by reductions in 

MBP signal (Figure 6). Quantification of the staining data showed that EAE ONs had an 

average 54% reduction (p<0.0001) in the number of SMI31+ axons at the time of sacrifice, 8 

weeks after induction of disease. The percent area occupied by MBP signal within the ON 

fell by 18.2% (p<0.05) in the EAE mice cohort.

Comparisons of OCT and DTI to axonal histology

Comparisons between DTI, OCT and histology datasets were performed to understand how 

each noninvasive measurement correlated with different degrees of axon loss measured after 

8 weeks of EAE (Table 1). To make these comparisons, we used DTI ON values measured at 

4 and 8 weeks, OCT- measured GCC thicknesses (μm) and GCC thinning from each eye 

(OCT baseline - thickness). Correlational analysis reveals that DTI and OCT measures from 

before sacrifice at 8 weeks are superior to predicting axon numbers than earlier timepoints at 

4 weeks. DTI measures of ON FA, AD and RD were all significantly associated with axon 

counts. FA (r = 0.737, p = 0.0027) and AD (r = 0.834, p = 0.0002) were the most highly 

correlated. Measures of GCC thickness were non-significantly associated after 4 weeks and 

Nishioka et al. Page 6

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly associated at 8 weeks (r = 0.728, p = 0.0031). This correlation was improved if 

percent thinning from baseline was incorporated (r = 0.744, p = 0.0023 at 4 weeks, r = 

0.879, p<0.0001 at 8 weeks).

OCT vs. retinal histology

Analysis of the retinal histology by H&E confirmed our OCT findings (Figure 7). The 

RNFL/GCL layer thickness was reduced by 29% (p<0.0001), while the IPL was reduced by 

13.8%. Immunostaining with RGC-specific marker RBPMS revealed alterations to the 

ganglion cell layer in EAE mice, relative to the EAE group. Both RGC density (−23.3%, 

p<0.001) and RGC cross sectional area (−27.4%, p<0.01) were both reduced significantly.

Measurements from our 8 week OCT data were significantly correlated with histology-

derived findings (Figure 7). Total OCT-measured GCC thickness was significantly correlated 

with both histology measured RNFL/GCL thickness (r = 0.47, p = 0.02), IPL thickness (r = 

0.54, p = 0.006), RGC density (r = 0.759, p < 0.0001) and cross sectional area (r = 0.47, p = 

0.021).

Discussion

This study has made the first longitudinal co-evaluations of axonal damage in ON and RGC 

damage in the retina using in vivo OCT and DTI in mice affected by EAE. In addition, the 

accuracy and specificity of these measures are validated against end-stage histology. Four 

important findings are highlighted: 1) Early changes to DTI in ON are detectable before 

OCT-detectable alterations to retinal thicknesses. 2) Gradual reductions in GCC thickness 

detectable by OCT are associated with co-evaluated DTI-detected white matter integrity 

changes in the ON. 3) Alterations in OCT-GCC thickness after EAE can be predominantly 

accounted for by shrinkage within the RNFL/GCL sublayers. These changes include both 

loss and shrinkage of RGC cell bodies. 4) After 8 weeks of EAE, there was disproportionate 

axon loss compared with cell body loss. We found an average of 54% of axons lost in the 

ON, compared with 23% loss of RGCs in the retina.

Collectively, OCT and DTI findings are highly correlated during the chronic phases of 

disease, and both showed significant accuracy in detecting the degree of axonal degeneration 

in EAE. Our data support the use of these in vivo biomarkers for longitudinal assessments 

during MS clinical management.

As our datasets are from mice, compared with human retinas, the layers are ~5× thinner, 

making accurate analysis challenging 22‘23. Commercially available tools which utilize layer 

segmentation algorithms are known to be sensitive to noise and signal dropout 24. These 

approaches frequently need to be reviewed manually to correct segmentation errors 25. To 

overcome these challenges, we created a novel way to analyze murine OCT data. We first 

generated an intensity profile from each B scan, from which thickness of the GCC can be 

easily extracted, based upon differing signal intensities (peaks and valleys) of each layer. 

Additionally, this method is tolerant to white noise. The conversion process is equivalent to 

data averaging 100 times which increases the signal-to-noise ratio of the original data ~ 10 

Nishioka et al. Page 7

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



times. As demonstrated in WT mice, this measurement showed high consistency between 

weekly, repeated measurements.

Data from OCT findings reveal a sequence of events similar to what occurs in humans after 

episodes of optic neuritis 26‘27. The acute increases in GCC retinal thickness was found after 

2 weeks of EAE, coincident with the onset of motor symptoms. This finding is similar to 

data from clinical studies showing baseline swelling in 80% of eyes during acute optic 

neuritis 26. This increase gave way to significant reductions in GCC retinal thickness, which 

is typically detectable in humans after ~3 months, once swelling has resolved 27. A recent 

study reported similar trends in GCC thickness among EAE mice, which showed significant 

GCC swelling 11 days post-immunization, and significant retinal thinning after 4 weeks 28. 

While the finding of acute swelling has been inconsistently observed, reductions in GCC 

thickness has been documented in several previous EAE studies at timepoints >30 days, 

reminiscent of the long-term retinal thinning in MS patients 28–31. We interpret these 

findings to suggest that the EAE model has the same key events as human optic neuritis, 

albeit at a more rapid pace.

From the ON, DTI measures paralleled findings from human MS in several respects. The 

findings of increased RD with concomitant decreases in FA after 4 and 8 weeks are 

consistent with long-term findings from MS patients, which show similar DTI changes in 

ON even years after symptoms have resolved 9‘32. These changes in FA and RD have also 

been shown to correspond with visual acuity 33, and discriminate between visual recovery 

groups after optic neuritis 33. These results suggest that the degree of alterations in FA and 

RD are reliable translational biomarkers of axon loss and may provide useful correlates to 

functional change.

Acute reductions of AD and TR are not universally reported in DTI findings from EAE 

studies and MS patients. In our study, a significant initial reduction of AD and TR with a 

non-significant reduction in RD was found starting 2 weeks after disease induction. After 

four weeks this pattern diverged, with continual reduction in AD, with increases in TR and 

RD. Although the biophysical basis behind these diffusion changes are not clear, reductions 

in AD and increases in RD are thought to be caused by axonal and myelin deficits, 

respectively 5‘34. The acute diffusional response at 2 weeks within the ON is one of 

restriction (in AD, RD and TR), which may be explained by axonal swelling. Axonal 

swelling is additionally suggested by the increases in GCC thickness at this timepoint. Later 

increases in RD and normalization of TR is likely caused by demyelination 4‘5. In our 

previous study using cuprizone-fed mice (a selective oligodendrocye toxin), an early 

transient reduction of diffusion (in particular prominent reduction of AD) was also found, 

which occurred before increases of RD 35. In two human studies, an initial reduction of axial 

diffusion has also been observed as a transient phenomena immediately after the onset of 

optic neuritis 36,37 Within acute demyelinating MS lesions, swollen axons with 

accumulations of APP are often found, thought to be reflection of impaired axonal transport 

and a biomarker of injury 3839. During the earliest stages of inflammation in EAE, axonal 

homeostasis is likely impaired, leading to accumulations of axonal cargos, swelling, and 

potentially reductions in AD detectable by DTI. Indeed, evidence from manganese-enhanced 

MRI suggests axonal transport is impaired at the onset of optic neuritis in EAE mice40.
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Highly significant relationships were observed between OCT and DTI (FA, AD and RD) 

datasets four and eight weeks after EAE induction. These timepoints correspond to chronic 

periods of inflammation, during active periods of axon and myelin loss 41. The relationships 

between these two biomarkers have been assessed in MS patients, though there is currently a 

lack of longitudinal data in the literature. Cross-sectional studies in remote optic neuritis 

have revealed significant relationships between OCT-derived RNFL thickness and ON FA, 

AD and RD; though the strength of these correlations vary considerably between studies 
32,42,43. A recent EAE study found significant relations between ON AD/RD changes and 

GCC thinning, though these alterations were only significant among all mice (EAE + 

control) after 4 weeks. No significant correlations were observed specifically in the EAE 

group, though this may be explained by the limited number of mice examined. Our results 

compliment these data, and illustrate the evolving strength of OCT-DTI correlations during 

chronic ON degeneration.

Our histological findings bolster results derived from OCT and DTI. In addition to the well 

characterized axon and myelin loss in the ON 41,44,45, we found noticeable structural 

changes in the EAE mouse retina. This included the reductions in RNFL/GCL layer 

thickness, which mirrored our OCT results. We did not find significant reductions in IPL 

thickness, where the RGC dendrites and bipolar cell axon terminals synapse, suggesting that 

this layer may be more resistant to atrophy. We also measured significant RGC loss, which 

has been noted in several previous studies 46,47 and RGC cell body shrinkage, which has 

been noted in MS patients 48. The etiology of this morphological change is not entirely clear, 

but may be related to the shrinkage seen in RGCs during glaucoma and ON crush models 
49–52. Similar to EAE, both feature initial degeneration of the ON, which precedes cell body 

atrophy. This atrophy is associated with changes in ion homeostasis and are an early step in 

the apoptosis cascade, preceding activation of Bax 50,53,54

As the soma and axons were simultaneously examined in this study, it provided a unique 

opportunity to estimate and compare the compartmental variations in neurons affected by 

EAE. Collectively, both OCT and DTI showed signs of damage as early as 2 weeks after 

EAE induction (initial thickening of GCC on OCT and initial reduction of AD on DTI), 

which was coincident with the beginning of motor deficits in animals. Thus, the somas and 

axons of RGCs may react during the earliest stages of demyelination. In contrast, at later 

time points we found a significant discrepancy between the degree of axon loss vs RGC loss. 

After 8 weeks of EAE, there was an average of >50% of axons lost in the ON, while only 

23% loss of RGCs, suggesting a substantial delay may occur between the loss of axons and 

subsequent loss of cell bodies 55.

The correlations between in vivo biomarkers and neurodegeneration measures derived from 

axon counts revealed close correlations between both DTI and OCT indices. Our results 

suggest that among DTI measures, AD (r = 0.83) and FA (r = 0.74) were the most accurate 

surrogates, and perform similarly to total GCC thickness (r = 0.72). Our data further suggest 

that OCT-axon loss correlations can be improved when a pre-established baseline 

measurement can be utilized (r = 0.88).
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Conclusions

Our findings reveal the correlations between DTI and OCT measures between each other 

and to the extent of axonal losses in the most commonly used animal model of MS. 

Comparisons between OCT and DTI datasets reveal significant correlations between OCT-

derived thinning and DTI-derived AD, RD and FA after 4 and 8 weeks of EAE. Measures 

derived from OCT and DTI both show high degrees of accuracy in detecting the extent of 

axon losses in the ON after 8 weeks of EAE.
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Highlights

• Early changes to DTI in ON are detectable before OCT-detectable alterations 

to retinal thicknesses.

• Gradual reductions in GCC thickness detectable by OCT are associated with 

co-evaluated DTI- detected white matter integrity changes in the ON.

• Alterations in OCT-GCC thickness after EAE can be predominantly 

accounted for by shrinkage within the RNFL/GCL sublayers. These changes 

include both loss and shrinkage of RGC cell bodies.

• After 8 weeks of EAE, there was disproportionate axon loss compared with 

cell body loss. We found an average of 54% of axons lost in the ON, 

compared with 23% loss of RGCs in the retina.
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Figure 1. OCT Processing and Analysis.
a. Selected B scans were preprocessed by manually removing segments containing vessels 

along the RNFL surface and trimming edges (white boxes) to aid subsequent processing 

steps. b. Processed B scans were analyzed using MATLAB which fit the surface of the 

RNFL/vitrius border (red) with a quadratic curve (blue). This curve was used to flatten the 

retina by shifting individual A scans to a common reference level (c). d. Portion of an H&E 

stained retina along with a section of flattened retina (rotated 90°) showing the 

correspondence between individual layers. e. Profile plot showing the average grey values of 

individual layers in the retina. The measurement of the GCC is shown in blue, extending 

from the peak RNFL value to the middle boundary between IPL and underlying INL. f. 
GCC thickness measures (mean ± SD) from 3 untreated, WT mice between 12–19 weeks of 

age.

Nishioka et al. Page 15

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. EAE mice clinical scores.
EAE mice began to show symptoms 10–12 days after disease induction. The means and 

s.e.m. are shown from all EAE mice (n=11)
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Figure 3. GCC thickness measurements in EAE mice.
a. En face OCT image and corresponding data maps (N=17–18 B-scans/retina) showing the 

GCC thickness across the retina in a control and EAE mouse. These maps illustrate the 

reductions in GCC thickness for a single mouse eye during EAE after 4 and 8 weeks. b. 
Total retinal thickness from GCC layers in control, baseline and EAE mice. Retinal 

thicknesses were significantly reduced after 8 weeks of EAE, relative to baseline and control 

mice. c. Individual retina data plotted as percent reduction relative to baseline measures. *, 

p<0.05; ***, p<0.001
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Figure 4. Optic Nerve DTI measurements.
Left, pseudocolored representative images showing the diffusion changes in 8 week EAE 

mice relative to controls. Left and Right optic nerves are shown in coronal section and 

indicated by white arrows in FA maps. Diffusion maps for TR, AD and RD are shown in 

enlarged views below; ON ROIs are shown in black boxes. Right, quantified ON diffusion 

changes across the time-course. **, p<0.01, ***, P<0.001, ****, p<0.0001
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Figure 5. Relationship between ON DTI measures and OCT-derived GCC measurements.
Left, scatter plots show the relationships between ON measurements and individual DTI 

metrics. Right, Pearson r correlations are shown for individual groups.
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Figure 6. Axon and myelin loss during EAE.
Left, axons and myelin labeled using SMI-31 (red) and MBP (green). EAE optic nerves 

show widespread demyelination and axonal loss, relative to controls. Right, quantification of 

axon and myelin loss. *, p<0.05; ****, p<0.0001
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Figure 7. Retinal histology from EAE mice
a. Left image, RBPMS / hematoxylin labeled retinal section. Right, 6 enlarged sections from 

control and EAE retinas showing the RNFL and GCL layers with RGCs labeled in brown. 

Black scale bar shows 20μm. b. Top, quantification of Retinal histology reveals significant 

reductions in RNFL/GCL but not IPL thicknesses. Adjacent scatter plots show relationships 

between histology-measured characteristics and OCT-measured GCC thicknesses. Bottom, 

RGC density and cross sectional area (CSA) are significantly reduced in EAE retinas, 

relative to controls. **, p<0.01; ***, p<0.001; ****, p<0.0001
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Table 1.
Axon numbers correlated to noninvasive imaging biomarkers.

DTI measures (FA, AD, TR, RD) and OCT derived-measures (GCC thickness and GCC thinning) and their 

correlation to histology-measured axon counts. Measures from 4 and 8 weeks after induction of EAE.

FA
r p value

AD
r p value

TR
r p value

4Wk 0.6758 0.008 0.5881 0.027 −0.04963 0.8662

8Wk 0.7365 0.0027 0.8343 0.0002 −0.08213 0.7801

RD GCC thickness GCC thinning

r p value r p value r p value

4Wk −0.5657 0.035 0.5163 0.0587 0.7437 0.0023

8Wk −0.595 0.0248 0.7283 0.0031 0.8793 <0.0001
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