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Abstract

Accurate segmentation of pelvic organs (i.e., prostate, bladder and rectum) from CT image is 

crucial for effective prostate cancer radiotherapy. However, it is a challenging task due to 1) low 

soft tissue contrast in CT images and 2) large shape and appearance variations of pelvic organs. In 

this paper, we employ a two-stage deep learning based method, with a novel distinctive curve 
guided fully convolutional network (FCN), to solve the aforementioned challenges. Specifically, 

the first stage is for fast and robust organ detection in the raw CT images. It is designed as a coarse 

segmentation network to provide region proposals for three pelvic organs. The second stage is for 

fine segmentation of each organ, based on the region proposal results. To better identify those 

indistinguishable pelvic organ boundaries, a novel morphological representation, namely 

distinctive curve, is also introduced to help better conduct the precise segmentation. To implement 

this, in this second stage, a multi-task FCN is initially utilized to learn the distinctive curve and the 

segmentation map separately, and then combine these two tasks to produce accurate segmentation 

map. The final segmentation results of all three pelvic organs are generated by a weighted max-

voting strategy. We have conducted exhaustive experiments on a large and diverse pelvic CT 
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dataset for evaluating our proposed method. The experimental results demonstrate that our 

proposed method is accurate and robust for this challenging segmentation task, by also 

outperforming the state-of-the-art segmentation methods.

I. INTRODUCTION

PROSTATE cancer is a common cancer among men, which is the third leading cause of 

cancer death in America [1]. Clinically, radiotherapy is the most effective treatment for 

prostate cancer. For radiotherapy, computed tomography (CT) imaging is necessary since it 

conveys tissue density information which can be used for dose planning. During 

radiotherapy, the high-energy ray should be focused on the prostate, while is spare on the 

nearby normal organs, i.e., bladder and rectum. Thus, in the planning stage, accurate 

segmentation of these three pelvic organs is required. Manual delineation of pelvic organs is 

a routine strategy in the clinic. However, it is less effective and quite time-consuming even 

for experienced clinicians. Therefore, developing an effective segmentation algorithm with 

superior accuracy and robustness is of high demand.

However, accurate segmentation of three pelvic organs is challenging due to the following 

two reasons. 1) Low soft tissue contrast in CT images. As shown in Fig. 1, the contrast 

among prostate, bladder and rectum is quite low, and the organ boundaries are very difficult 

to distinguish. Also, the appearance patterns of these three organs are similar to their 

neighboring tissues, which makes it difficult to identify them. 2) Large anatomical 
variations. The pelvic organs are all deformable soft tissues, and thus both shape and 

appearance of these three organs can have large variations across different individuals, as 

can also be observed in Fig. 1.

Recently, deep leaning methods have shown their outstanding performance particularly for 

the segmentation tasks [2], [3], [4], [5], [6], due to their strong non-linear modeling 

capability. However, these networks cannot be directly applied for the CT pelvic organ 

segmentation due to indistinguishable shape and border. To address this issue, in this paper, 

we propose to employ the morphological representation to help enhance the accuracy and 

robustness of the conventional deep network for this challenging segmentation task.

Generally, two kinds of shape representations, i.e., landmarks and surface, are widely 

adopted in previous studies to help represent the organ shapes [7], [8]. For the landmark-
based representation, some landmarks with anatomical significance are identified to serve as 

the cue for guiding the subsequent shape segmentation or analysis. Although landmarks can 

be identified efficiently, it is not an accurate shape representation for the pelvic organs in CT 

due to the following two reasons. 1) It is difficult to guarantee anatomical consistency of the 

identified landmarks across different individuals. 2) Since pelvic organs may have large 

anatomical variations, several landmarks are not sufficient to represent the whole shape of 

each organ.

On the other hand, the surface is a more informative representation that can describe the 

whole organ boundary. However, there is lots of redundant information by using the surface, 
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which makes it less efficient to represent the organ shape. Also, for the pelvic CT images, it 

is difficult to obtain accurate surface representations of the prostate, bladder and rectum.

To address the aforementioned issues of two existing shape representations for pelvic 

organs, we introduce a novel shape representation, namely distinctive curves, to more 

accurately and efficiently represent the organ shapes in pelvic CT images. The comparison 

of landmark, surface and distinctive curve are shown in Fig. 2.

Basically, the distinctive curve can be regarded as a sequential set of points, sparsely 

delineating the whole organ shape. Obviously, the distinctive curve can take advantages of 

both landmarks and surface, and is thus an informative and efficient shape representation.

In this paper, we propose a two-stage, distinctive curve guided fully convolutional neural 
network (FCN) to tackle the challenging pelvic CT segmentation problem. Under the 

guidance of the beneficial morphological representation, i.e., the distinctive curve, the 

learning ability of the FCN is significantly improved and an accurate and robust 

segmentation model is well established.

Our contributions are three-fold:

• To address the issues of the unclear boundary and large shape variation for the 

pelvic organs in CT images, we introduce a novel shape representation, i.e., the 

distinctive curve, to enhance the capability of the conventional FCN for the 

challenging segmentation task. The distinctive curve is also learned 

automatically. The generalization of the FCN can thus be significantly improved 

under the guidance of this informative morphological representation, which 

eventually contributes to accurate pelvic segmentation.

• In order to better identify the main pelvic organs in the whole CT image, we 

propose a two-stage framework to segment the pelvic organs progressively. The 

first stage is designed to efficiently identify the organ region, and the second 
stage is used to perform accurate segmentation. Under this framework, even 

small pelvic organs can also be segmented robustly and accurately from the 

whole CT image.

• We perform comprehensive experiments on a dataset with 313 CT images from 

the 313 patients. Our proposed method can consistently outperform the state-of-

the-art methods, showing the potential to be applied to real clinical applications.

II. RELATED WORK

The proposed algorithm in this paper is a learning-based segmentation method. Also, the 

distinctive curve delineation is related with landmark detection. Thus, in this section, we will 

review two kinds of methods, i.e., learning-based segmentation methods and landmark 
detection methods.
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A. Learning-based Segmentation

Learning-based segmentation methods have achieved remarkable performance in recent 

years [9], [10], [11], [12], [4], [13], [14], [15]. In this kind of methods, the segmentation task 

is usually regarded as a classification or regression problem, with the goal of explicitly 

labeling each voxel in CT image to the target object or background. A semi-automated 

prostate segmentation method [14] is proposed by applying the spatially-constrained 

transductive lasso on coupled local region features for joint feature selection. Then, the 

selected features are used to classify the voxels into different classes. In order to enhance the 

learning capability, some additional information has also been incorporated into the learning 

framework. For example, Gao et al. [9] proposed to learn a displacement regressor to predict 

3D displacement, which can be used to assist the classifier learning for accurate pelvic organ 

segmentation. Lay et al. [16] proposed to build a discriminative classifier by employing the 

landmarks, which was detected via the global and local texture information jointly. Shao et 
al. [8] presented a boundary detector based on a regression forest, and then used it as shape 

prior to guide accurate prostate segmentation.

One main limitation of the aforementioned learning-based methods is that we need to 

predefine the features for the specific learning model, such as Haar-like [17], Gabor [18], 

SIFT [19], etc. In this case, the distinctiveness of the features may significantly influence the 

learning accuracy. To address this limitation, deep learning methods have been widely used, 

in which the features can be learned automatically and effectively, i.e., through convolutional 

neural networks (CNN) [20]. Cha et al. [13] combined deep networks with level sets to 

improve the segmentation accuracy of the bladder. However, the per-pixel prediction is less 

efficient in the application stage. The Fully Convolutional neural Networks (FCN) [2] can 

generate dense pixel-wise predictions, which is efficient and has been shown outstanding 

performance for segmentation tasks. Nie et al. [21] employed an FCN to segment isointense 

infant brain via multiple modality images. Men et al. [5] proposed a multi-scale FCN based 

network to robustly segment the clinical target volume and organs at risk for rectal cancer. 

Nevertheless, due to the limited size of medical image dataset, the generalization can be 

hardly guaranteed during the training. To alleviate this issue, a special FCN, namely U-net 

[3], was proposed to incorporate low-level and high-level features to train the model. In this 

network, the limited data information is more efficiently used to achieve better performance. 

Accordingly, in this paper, we will use U-net as the basic architecture to construct our 

networks.

B. Landmark Detection

Basically, landmark detection is a common task in many computer vision applications, such 

as human body estimation [22], organ detection [7], and face image analysis [23]. In medical 

images, landmarks are defined as the locations that possess anatomical significance and can 

be used to effectively describe the structures of variant organs, e.g., brain [24], [25], pelvic 

organs [26], fingers [27] and etc. For example, Gao et al. [26] detected landmarks through a 

displacement vector based regression model. The displacement vector for each voxel was 

defined from the current location to the target landmark. Zhang et al. [7] detected landmarks 

of brain MRI using the group comparison method and then adopted these detected 

landmarks for Alzheimer’s disease (AD) diagnosis.
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Recently, the deep learning based methods were also applied for landmark detection. For 

example, Zheng et al. [28] built a landmark detector based on FCN by composing a shallow 

network with a deep network. In this work, instead of directly regressing the landmark 

position, a heatmap was first fitted to the landmark location via a Gaussian kernel, and then 

used as the regression target to make the network more robust and powerful. Based on the 

work proposed in [22], Payer et al. [27] also adopted FCN to regress finger landmarks. 

Actually, the distinctive curve proposed in this paper can be regarded as the sequential 

landmarks (without correspondences), yet more robust and accurate for describing the 

indistinguishable pelvic organ boundaries. We have also adopted FCN network to detect the 

distinctive curve.

III. METHOD

To accurately segment the prostate, bladder and rectum from the raw CT image, we propose 

a distinctive curve guided FCN, with the whole pipeline illustrated in Fig. 3. Since the raw 

CT image covers a large region of the human body while the target pelvic organs are 

relatively small, a two-stage framework is further designed to robustly segment pelvic 

organs from coarse level to fine level. The first stage is implemented with an FCN, which is 

designed for the pelvic organ detection from the raw CT image. In this stage, two stable 

regions, i.e., left and right femoral heads, are employed as references to better identify the 

target pelvic organs as well as differentiate them with other similar tissues. The details of 

this stage will be introduced in Section III-A. The second stage is the distinctive curve 

guided FCN, which is designed for accurate pelvic organ segmentation based on the detected 

regions from the first stage. In this second stage, for each organ, a multi-task FCN is first 

utilized to learn the distinctive curve and the segmentation maps separately, and then 

combine these two tasks together to produce the segmentation result. The details of this 

second stage will be elaborated in Section III-B. Finally, a weighted max-voting algorithm is 

proposed to generate the whole 3D segmentation for all three pelvic organs, with the results 

shown in the right dashed box of Fig. 3. The details of this part will be described in Section 

III-C.

A. Stage 1: Pelvic Organ Detection

The aim of this first stage is to effectively detect the target organ location from the raw CT 

image, and then provide the region proposal of each organ (resulting in a bounding box) to 

the stage 2 for fine segmentation. Conventional region proposal methods often regress some 

locations about the organ, e.g., the mass center [29], to determine the organ region. However, 

it cannot work effectively for the pelvic organs that are adjacent to each other and also 

difficult to distinguish. To locate each organ region accurately, we here perform a joint organ 

localization/segmentation, rather than regressing each of their locations separately. 

Additionally, two stable pelvic bones, i.e., the right and left femoral heads, are also 

incorporated into the joint organ segmentation task, to help better identify the target pelvic 

organs, as shown in Fig. 5.

1) Joint Coarse Segmentation for Pelvic Organs: To effectively perform the organ 

region proposal, in this first stage, we perform coarse segmentation of all five pelvic organs 
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jointly, which can be deemed as a 6-class classification problem, i.e., five classes for the 

organs (prostate, bladder, rectum, left femoral head and right femoral head) and one class for 

the background and remaining regions. An FCN is designed to fast jointly segment the five 

organs based on the down-sampled CT image. There are two kinds of benefit using the 

down-sampled CT image. 1) Coarse segmentation satisfies the goal of accurate region 

proposal, and also using down-sampled image can make the algorithm more efficient. 2) 

More global contextual information can be considered during the network learning, which 

helps better identify the indistinguishable pelvic organs in the raw CT image. Specifically, 

before segmentation, we use a reducing step, to down-sample the original CT image to its 

1/4 size for the coarse segmentation. Then, after segmentation, we use a recovery step to up-

sample the down-sampled segmentation result to the original resolution, which is, used to 

propose the organ region.

For the joint segmentation task, we adopt a U-net [3] like architecture, as illustrated in the 

first part of Fig. 4. The contracting path is composed of several convolutional layers with 

three times max pooling, while the expanding path is deployed by several convolutional 

layers with three times transposed convolution. In the expanding path, the output feature 

maps concatenate with the corresponding scale feature maps in the contracting path, and 

then feed into the subsequent convolutional layers. The final output is the class label for each 

voxel of the whole image. The detailed architecture of the coarse segmentation network is 

shown in Table I. To lower the memory load, we employ patch-wise training rather than the 

training on the whole image, and the patches are cropped in 2D image slice. Specifically, the 

input of the network is the patches extracted from five sequential slices (two slices before 

and two slices after the middle slice), and the output is the corresponding label patch of the 

middle slice. In this way, the adequate neighborhood information of the 3D image can be 

well leveraged to better train the segmentation model. Then, the coarse segmentation of the 

five pelvic organs will be used for the following organ region proposal.

2) Organ Region Proposal: Based on the coarse segmentation of the five pelvic 

organs, we introduce a mixed localization method to robustly locate the centroid of the three 

target pelvic organs, i.e., prostate, bladder and rectum, under the guidance of the two more 

stable organs, i.e., the left and right femoral heads. As shown in Fig. 5, the bone region is 

salient in CT, and also the shape and appearances of femoral heads are stable even across 

different individuals. Thus, it is easy to obtain accurate segmentations of femoral heads. As 

the femoral heads are spatially close to the prostate, bladder and rectum, they can provide a 

beneficial reference to help better identify the three organs. Then, the final centroid of each 

organ can be obtained via the following three steps. 1) A rough centroid is first obtained via 

the coarse segmentation. 2) A reference centroid is estimated based on the femoral heads, 

which is calculated by averaging the corresponding reference points on two femoral heads, 

as shown in Fig. 5.(c). These reference points are defined by adopting the prior knowledge 

of the spatial locations of human organs, between the femoral heads and the pelvic organs. 

Thus, the reference centroid can provide estimated locations of the pelvic organs based on 

the salient femoral heads, and the rough centroid can provide the locations based on the 

coarse organ segmentations. 3) The final centroid is then calculated by averaging the results 
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of the previous two steps. Obviously, the mixed result is more stable than using one of the 

previous estimations for organ localization.

Once the centroid is determined, we crop region for each organ from the raw CT image. To 

easy implement, the region sizes of the prostate, bladder and rectum are 128×128×128, 

160×160×128 and 128×128×160, respectively. The region sizes are large enough to cover 

the different organs across individuals. After organ region proposal, we can then perform the 

fine segmentation based on the specific regions in Stage 2.

B. Stage 2: Fine-Segmentation by Distinctive Curve Guided FCN

In this second stage, we perform the fine segmentation for each target organ individually, 

based on the proposed region from Stage 1. A distinctive curve guided FCN is proposed, as 

illustrated in the right part of Fig. 4. Initially, a multitask learning is first performed to train 

the distinctive curve delineation and segmentation tasks separately. Then, the high-level 

feature maps of these two tasks are combined to work together for the accurate 

segmentation.

1) Distinctive Curve Delineation: We introduce a novel shape representation, namely 

distinctive curve, to serve as a supplementary guidance to help the network better learn the 

segmentation task. Obviously, the distinctive curve can provide a strong reference for the 

organ shape, as shown in Fig. 2; thus it can help the segmentation network better capture 

unclear boundaries between adjacent organs in CT image. The distinctive curve delineation 

is also learned by another FCN, where the ground truth of the curve is defined in the training 

stage. Specifically, for each slice, we use the anteriormost, posteriormost, left, and right 

points of the organ boundary to indicate the organ boundary, and also use the center points 

of the organ to indicate the skeleton of each organ. When composing the points of each slice 

in the entire image, the distinctive curves can be generated, with the four curves located on 

the organ surface and one curve located in the middle of the organ. Obviously, in each slice, 

the curves are represented by several points, which can be detected by a certain point/

landmark detection method. Here, we follow the scheme in [22], in which an FCN is 

adopted to estimate the heatmaps of points/landmarks, rather than directly regressing their 

locations, as shown in Fig. 4. Specifically, each heatmap is defined by fitting a Gaussian 

kernel to each landmark location upon the whole image. Then, we can build the FCN based 

regression network for detecting the points/landmarks in each image slice. Once all points 

are detected, the distinctive curves can be obtained accordingly.

2) Network Architecture: The proposed distinctive curve guided FCN is organ-specific, 

with each model consisting of three sub-networks, i.e., the curve delineation sub-network, 

the segmentation sub-network, and the fusion sub-network, as shown in Fig. 4. These three 

tasks are trained simultaneously so that they can work cooperatively for the final 

segmentation task. Specifically, for each organ, we first crop patches from the region 

proposal (generated by Stage 1). Then, the same patches are fed into the curve delineation 

and segmentation sub-networks. We set these two sub-networks with different architectures. 

The segmentation sub-network is a simple U-Net following the same architecture with the 

coarse segmentation network in Stage 1. The number of input 2D slices is three. The curve 
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delineation sub-network utilizes more convolutional layers, in order to capture more 

structural information.

Unlike the conventional multi-task deep networks that often share the low-level and mid-

level features across different tasks [23], our proposed architecture only combines the high-

level feature maps. As reported by [30], this kind of fusion can better preserve the respective 

information of each task and improve the performance. Specifically, we concatenate the 

second top layer feature maps from the two sub-networks (denoted as ConvX and ConvY in 

Fig. 4), and then train the fusion sub-network that includes two convolutional layers with the 

filter size of 3 × 3 and the channel size of 32. We show the architecture details in Table I. 

Note that, the Rectification Linear Unit (ReLU) is used as the activation function after each 

convolutional layer. The parameters of the whole network can be updated by the m tasks (m 
= 3 in this case) simultaneously in one back-propagation process. In this learning scenario, 

the loss of each task t is given by Losst with the weight λt. Thus the final loss of the whole 

network is defined as:

Loss = ∑
t = 1

m
λtLosst (1)

The loss of curve delineation sub-network is the Euclidean loss, while the loss of 

segmentation and fusion sub-network is the Logarithmic Softmax loss. During the training 

stage, for each organ, we first pre-trained the curve delineation and segmentation sub-

networks separately and then composed their features to train the fusion sub-network (by 

fixing all parameters of the previous two sub-networks). Finally, the whole network is 

optimized together via a standard backpropagation [20].

C. Weighted Max-Voting

In the testing stage, we use a sliding-window method to crop densely overlapped image 

patches from the raw CT image, and feed them into the trained model to predict the label 

maps. Obviously, one voxel can have two different kinds of overlapping predictions. 1) 

Since the three organs are adjacent, the region proposals of three organs can have overlap. 

Then, the same voxel may be labeled differently via the networks trained for different 

organs. 2) For the trained network of a specific organ, one voxel will have overlapping 

predictions since the testing patches have overlap. To effectively fuse these two kinds of 

overlapping predictions, we propose a weighted max-voting approach to make accurate 

predictions. First, given a voxel xi, if it is labeled for the different segmentation networks 

(e.g., labeled as prostate in prostate segmentation network and also labeled as bladder in 

bladder segmentation network), the final label will be obtained by selecting the maximum 

weighted probability, which is defined as:

yi = arg max
c

wc ∑
i = 1

nic
yic (2)
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where nic is the number of predictions for organ C, yi is the predict probability for i-th voxel 

and c is the index for organ C. wc = wp = 2,wb = 1,wr = 1.5 is the weight parameter for class 

c. n is the number of overlapped patches.

We set different weights for different organs here to balance the aforementioned two 

problems. Intuitively, if all of the three networks have high confidences to predict as their 

organs, the final prediction at a certain voxel will be prostate. This will protect the prostate 

segmentations as they are very sensitive to the final results, and accurate segmentation for 

prostate is more important than that for bladder and rectum in clinical applications. If the 

networks have different confidences of their predictions, the final segmentations may vary 

based on the assigned weights.

IV. EXPERIMENTAL RESULTS

A. Algorithm Setting

The experimental dataset consists of 313 CT scans from 313 prostate cancer patients 

acquired during the planning stage of radiotherapy, where 35 of 313 CT scans are contrast 

enhanced. The image size is 512 × 512 × (61 ~ 508), with in-plane resolution as 0.932 ~ 

1.365 mm, and slice thickness as 1 ~ 3 mm. These images were collected from the North 

Carolina Cancer Hospital, using different scanners, with different image sizes and 

resolution. The patient positions also vary across different subjects, thus further increasing 

the variability of the acquired CT images. For the preprocessing, we use the trilinear 

interpolation to resample all the images to the same resolution (1 × 1 × 1 mm3) and then 

crop the image by excluding non-body regions. The contours delineated and agreed by two 

experienced physicians are adopted as the ground truth.

To eliminate the singular values in the CT images, we saturate all the intensity values into 

[0,1000]. The input data from each image is decremented by the mean of the whole image. 

Because the large magnitude of signals will destroy the signal propagation of the deep 

networks, we normalize all the intensities into the range of [−1,1]. We perform five-fold 

cross-validation to conduct fair comparisons with the state-of-the-art methods. Specifically, 

in each round, one fold is used for testing and the remaining four folds are used for training 

and validation (with a ratio of 7:1). We repeat this procedure five times until all the five folds 

are traversed as the testing set.

The dataset we used is challenging for segmentation due to the following reasons: 1) using 

different machines from different manufactories for image acquisition; 2) acquiring CT 

images in different angles, positions and organ statuses; 3) unclear organ boundaries. 4) the 

large amount of noise. 5) the use of only a single planning CT image for each patient, thus 

large shape and appearance variation across subjects.

B. Implementation Details

1) Parameter Setting & Testing Time: The highly remarked open-source framework 

Caffe [31] is used to implement our method. We train the whole network using the standard 

Stochastic Gradient Descent (SGD) algorithm by an invasion learning rate, from 10−4 to 

10−8 with a decreasing rate of 1×10−4 per iteration until reaching the manual stop learning 
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rate. We use the momentum of 0.9 to make a tradeoff between the last observed image and 

the newly coming image. All the network parameters are initialized by Xavier’s method 

[32].

In the training process, we also crop patches randomly through the whole image in Stage 1 

and the organ regions in Stage 2. In the testing process, we crop (the overlapped) patches 

regularly with a constant step size. The patch size is set to 64×64×5 for stage 1, and 

64×64×3 for Stage 2. And the networks are trained by using the training CT images. We do 

not use the pre-trained models as they do not meet the required input size of our method. 

The experiments are conducted on an NVidia Titan X powered workstation. The 

computational time for testing one raw CT image is less than 1 minute, with only 1 second 

used for Stage 1.

C. Segmentation Results

1) Metrics: To evaluate the segmentation performance, the volumetric overlap (DSC, 

PPV, SEN) and surface distance (ASD) are used, as defined below.

a. Dice similarity coefficient (DSC):

DSC =
2 Volgt ∩ Volseg
Volgt + Volseg

(3)

b. Positive predictive value (PPV) and Sensitivity (SEN):

PPV =
Volgt ∩ Volseg

Volseg
SEN =

Volgt ∩ Volseg
Volgt

(4)

c. Average surface distance (ASD):

ASD = 1
2 mean min

a ∈ Volgt, b ∈ Volseg
d(a, b)

+ mean min
a ∈ Volseg, b ∈ Volgt

d(a, b)

(5)

where V olseg denotes the voxel set of predicted volume, V olgt denotes the voxel 

set of ground truth volume, and d(a,b) denotes the Euclidean distance between a 
and b.

We here define a new metric, i.e., Average object coverage rate (AOCR), to 

evaluate the accuracy of the region proposal in Stage 1 in our method, as below.

d. Average object coverage rate (AOCR):
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AOCR = Volin / Volgt (6)

where V olin denotes the voxel set of organ volume inside the cropped organ 

region.

2) Organ Region Detection: Here, we present the organ detection results in Stage 1. 

We compare the region proposal results using the original CT image (Original) and using 

the down-sampled image (Fast), as given in Table II. Since we regard this task as a coarse 

segmentation task, the DSC values of the three target organs are also provided. From Table 

II, we can observe that, although the DSC values of the three target organs are not higher by 

using the proposed down-sampled images, the proposed region is still similar compared with 

the case of using the original image, both of which can cover the whole organ. But the 

efficiency is largely improved by using the proposed fast detection strategy, which is more 

than 300 times faster than using the original image.

3) Evaluation on Network Design:

a) Evaluation on Number of Slices.: In our method, we use the sequential slices as input 

to predict the segmentation map of the middle slice. Fig. 6 shows the influence of the 

number of input slices in Stage 2. We do not evaluate the performance in Stage 1, since the 

segmentation performance of Stage 1 does not affect the final segmentation results as 

verified in the previous section. As shown in Fig. 6, by using more slice as input, the results 

are not very sensitive to the number of input slices when it reaches three. However, more 

input slices make the network computationally expensive. Thus, we finally choose the three 

as the number of input slices.

b) Evaluation on Network Structure.: In order to evaluate the contribution of our 

proposed two-stage multi-task network design, we compare our proposed network 

(Proposed) with 1) the case of directly using one segmentation network (Seg-One) and 2) 

the case of using the two-stage design, but with no guidance from distinctive curve 

delineation sub-network (Seg-noCur). For fair comparison, the architecture of Seg-One and 

the segmentation network in the second stage of Seg-noCur are the same as the architecture 

of the proposed method, by only removing the “Last Conv” layer of CNet and the guidance 

of curve delineation. The mean DSC values of the target pelvic organs after segmentation 

are reported in Table III. The results by Seg-One in Table III shows that the direct use of 

FCN cannot produce reasonable results, for this challenging pelvic CT segmentation task. 

The segmentation performance is improved by employing the proposed two-stage 

framework, as shown by results by Seg-noCur in Table III. This demonstrates the 

effectiveness of the proposed two-stage framework in segmenting the relatively small organs 

from the raw CT image, since the organ region can be first detected robustly and then refined 

on the detected region. The p-value for Seg-noCur and Proposed is calculated and reported 

in the rightmost column. The best performance is achieved by our proposed distinctive curve 

guided multi-task FCN, with significantly improved DSC values of all the three organs. 

From these results, we can summarize that: 1) the proposed distinctive curve is effective in 

He et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



providing shape information for better identifying unclear organ boundaries; 2) the multi-

task learning strategy allows better use of complementary information from different tasks, 

for final accurate segmentation. In addition, since prostate and rectum is more difficult than 

segmenting bladder, the improvements by using the distinctive curve on prostate and rectum 

segmentations are more obvious than on bladder segmentation. This further verifies the 

effectiveness of using the distinctive curve, especially for indistinguishable organ 

boundaries.

c) Visual Results.: The segmentation results of prostate, bladder and rectum by using the 

Seg-noCur method and the proposed method are visualized in Fig. 7. For better 

visualization, we display only the part of raw CT image with three target organs. As can be 

seen from Fig. 7, the prostate and the rectum are more difficult to segment than the bladder, 

due to their unclear boundaries. Therefore, Seg-noCur obtains similar results with our 

proposed method for bladder segmentation. But, for the prostate and rectum, our proposed 

method achieves much better segmentation results compared with Seg-noCur. From these 

visualization results, we can also observe the crucial role of the distinctive curve in guiding 

the segmentation of the prostate and rectum with very low tissue contrast.

Fig. 8 shows the ground truths and automatic segmentations of four randomly-selected 

patients from the testing data. As can be observed, our proposed method can well delineate 

the organ boundaries, with high overlaps of automatic and ground-truth segmentation 

results, despite large shape variation of pelvic organs and the unclear boundaries in CT 

images.

4) Comparison with State-of-the-art Methods: Now we compare our proposed 

method with the state-of-the-art methods. Here, we compare with six methods, as briefly 

introduced below.

• Martines et al.’s method [33], which introduced a Bayesian framework to 

initialize the segmentation and then deformed it by a local deformation function.

• Lay et al.’s method [16], which adopted landmarks as guidance to initialize the 

organ shapes. Landmarks were detected by using both local and global context 

information. This method takes the similar assumption as our proposed method.

• Lu et al.’s method [34], which took additional information to help infer organ 

boundaries, thus improving the segmentation performance.

• Shao et al.’s method [8], which utilized a deformable model-based segmentation 

method, by adopting the shape prior generated from a regression forest trained 

on organ boundaries.

• Gao et al.’s method [35], [9], which were also based on deformable models to 

jointly learn a classifier and a regressor for pelvic organ segmentation.

a) DSC and ASD.: Table IV compare the segmentation performance of our proposed 

method with the six state-of-the-art methods on prostate, bladder and rectum segmentations, 

using the mean DSC and ASD (mm) with standard deviation. Among the state-of-the-art 
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methods, Gao et al.’s method in [9] has achieved the best performance. The Seg-noCur is 

not competitive with Gao et al.’s method in [9], while our proposed method consistently 

wins the best performance for segmentations of all three organs. Specifically, Gao et al.’s 

method in [9] leverages all the voxels to learn for a general displacement regressor to draw 

the organ boundaries explicitly, and our proposed method introduces the distinctive curve to 

effectively guide the segmentation. Besides, Gao et al.’s method in [9] is implemented as a 

four-step hierarchical framework, while our proposed method is a two-stage framework. 

Additionally, our proposed method also wins the best performance in term of ASD. The 

ASD for prostate is 1.86mm in [8] and 1.77mm in [9]. In our method, under the guidance of 

the distinctive curve, we obtain further improvement of 0.43mm compared with [9]. For the 

bladder, similar improvement can also be achieved. For the rectum, our proposed method 

has the comparable performance with [9]; note that Gao et al.’s method in [9] employs the 

smooth surface as the guidance, while our proposed method used only the distinctive curve, 

which is more efficient to describe. Also, our proposed method directly deals with the raw 

image data without preprocessing steps. All these results demonstrate the effectiveness of 

our proposed method in the segmentation of pelvic organs.

b) PPV and SEN.: We further compare the segmentation results in term of PPV and SEN 

with Gao et al.’s method in [9] as well as other four state-of-the-art methods, which are 

described below.

• Rousson et al. [36]’s method, which incorporated a Bayesian framework to 

impose shape constraint on prostate, due to the partially visible of this organ.

• Costa et al.’s method [37], which used different segmentation techniques for 

prostate and bladder, with the assumption that the shape of prostate is statistically 

stable while the shape of bladder is of large variance.

• Freeman et al.’s method [38], which incorporated shape and appearance 

information for segmentation.

• Chen et al.’s method [39], which introduced anatomical constraints for active 

shape models to enhance the segmentation ability.

Since different papers work on different organs, we report the separate results in two 

different tables (Table V and VI) for a fair comparison. Among these existing methods, Gao 

et al.’s method in [9] gets the best performance in most cases. However, our proposed 

method still wins the best overall performance compared with Gao et al.’s method in [9]. For 

example, the PPV is consistently improved in all cases, while the SEN is improved on the 

bladder.

The slightly lower SEN by our proposed method also indicates that our method has less 

issue on over-segmentation. Actually, since the pelvic boundaries are unclear in CT images, 

the over-segmentation is more likely to happen for the automatic segmentation algorithms. 

In this case, by using the distinctive curve, our proposed method has a higher capacity for 

dealing with the indistinctive boundaries. Less over-segmentation is also important in 

clinical applications for well protecting normal tissue during radiotherapy, and eventually 

minimizing side effects.
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V. DISCUSION AND CONCLUSION

We have proposed a two-stage distinctive curve guided FCN to tackle the pelvic organ 

segmentation task in CT images. We employed Stage 1 to robustly detect the prostate, 

bladder and rectum in the raw CT image, and Stage 2 to accurately segment these three 

organs. Specifically, in Stage 2, we introduced a novel shape representation, namely 

distinctive curve, to help the network better identify the unclear organ boundaries. 

Experimental results on a large diverse dataset demonstrated both the accuracy and 

robustness of our proposed method, better than the state-of-the-art segmentation methods.

Although the proposed method has shown its promising results in the experiments, we also 

found it may not work perfectly to accurately segment organ boundaries in some cases (See 

the last row of Fig. 8). As a pixel-wise method, the proposed method may have some under-

segmentation results in some specific slices.

In the future work, we will further improve method from the following two aspects. 1) In 

this work, we simplify the curve delineation task as a sequential landmark detection task. We 

may further investigate a more effective way to more robustly and accurately delineate the 

distinctive curves. 2) The distinctive curve is adopted as a cue for the segmentation task. 

However, this shape delineation can be further explored. For example, we may use these 

curves to generate the organ surface that can guide a deformable model for further 

segmentation refinement.
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Fig. 1. 
CT images of pelvic regions in two typical patients. Red denotes the prostate, Green denotes 

the bladder, and Blue denotes the rectum. We can observe 1) low soft tissue contrast in these 

CT images, and 2) large shape and appearance variations of these three organs across 

subjects.
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Fig. 2. 
The comparison of four types of shape representation for three pelvic organs: segmentations 

(a), surface (b), curve (c-e), and landmark (f). For better visualization, we set the raw image 

as the background in (c-f) to provide references. Besides, we enlarge each point of the 

curves and landmarks in a Gaussian way. Note that, in each view, not all the segmentations, 

distinctive curves or landmarks are visible.
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Fig. 3. 
The pipeline of the proposed method. Note that 2D view is shown for better visualization, 

although real CT images are in 3D. “wp”, “wb” and “wr” denote the weights of prostate, 

bladder and rectum in the final weighted Max-Voting.
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Fig. 4. 
The architecture of the two-stage segmentation of prostate, bladder and rectum. Prostate 

segmentation is used as an example in this figure. Note that the combination of 

segmentations of the three pelvic organs after separate fine organ segmentations is not 

illustrated in this figure.
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Fig. 5. 
(a) A slice of a raw CT image. (b) The labeled five pelvic organs. Cyan denotes the left 

femoral head, and Yellow denotes the right femoral head. (c) The reference locations 

generated by the two femoral heads (symmetrically) for prostate, bladder and rectum, 

respectively. We use the right femoral head as instance.
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Fig. 6. 
The mean DSCs of the proposed method for prostate, bladder and rectum segmentations 

with respect to the use of different number of input slices 1,3,5,7,9.
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Fig. 7. 
Visualization of the segmentation results of prostate, bladder and rectum by using the 

proposed method and Seg-noCur method. The curve delineation results are also provided. 

The gray block at the bottom of the image denotes the DSC of this image. “P” denotes the 

prostate, “B” denotes the bladder, and “R” denotes the rectum. The probabilities of the 

curves are marked from blue to red, which indicates the probabilities from low to high.
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Fig. 8. 
Visual comparison between the segmentation results of our proposed method (yellow) and 

the ground truth (red).
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TABLE II

The mean DSC of coarse organ segmentation (Pro: prostate; Bla: bladder; Rec: rectum) and the mean AOCR 

of region detection results.

Methods
DSC

AOCR Time(s)
Pro Bla Rec

Original 0.70 0.82 0.67 1 380

Fast 0.67 0.77 0.57 1 1
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TABLE III

Quantitative comparison of DSC for segmentation of three pelvic organs on the planning CT images of 313 

patients. (The best results are indicated in bold)

Organ Seg-One Seg-noCur Proposed p-value

Prostate 0.72 ± 0.11 0.79 ± 0.07 0.89 ± 0.02 4.06 × 10−22

Bladder 0.83 ± 0.08 0.88 ± 0.08 0.94 ± 0.03 1.31 × 10−9

Rectum 0.70 ± 0.14 0.75 ± 0.11 0.89 ± 0.05 4.91 × 10−24
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TABLE V

Quantitative comparisons of Mean SEN and PPV for the prostate and bladder segmentation results. (The best 

results are indicated in bold)

Method
Prostate Bladder

SEN PPV SEN PPV

Rousson [36] 0.84 0.79 - -

Costa [37] 0.81 0.85 0.75 0.80

Gao [9] 0.88 0.85 0.94 0.92

Proposed 0.88 0.92 0.93 0.95
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TABLE VI

Quantitative comparisons of Median SEN and PPV for the prostate and rectum segmentation results. (The 

best results are indicated in bold)

Method
Prostate Rectum

SEN PPV SEN PPV

Freedman [38] 0.83 0.85 0.74 0.85

Chen [39] 0.84 0.87 0.71 0.76

Gao [9] 0.90 0.86 0.91 0.89

Proposed 0.88 0.93 0.90 0.93

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 February 01.


	Abstract
	INTRODUCTION
	RELATED WORK
	Learning-based Segmentation
	Landmark Detection

	METHOD
	Stage 1: Pelvic Organ Detection
	Joint Coarse Segmentation for Pelvic Organs:
	Organ Region Proposal:

	Stage 2: Fine-Segmentation by Distinctive Curve Guided FCN
	Distinctive Curve Delineation:
	Network Architecture:

	Weighted Max-Voting

	EXPERIMENTAL RESULTS
	Algorithm Setting
	Implementation Details
	Parameter Setting & Testing Time:

	Segmentation Results
	Metrics:
	Organ Region Detection:
	Evaluation on Network Design:
	Evaluation on Number of Slices.
	Evaluation on Network Structure.
	Visual Results.

	Comparison with State-of-the-art Methods:
	DSC and ASD.
	PPV and SEN.



	DISCUSION AND CONCLUSION
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V
	TABLE VI

