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Abstract

Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neigh-

bors and prime their defenses. Several individual volatile priming cues have been

identified, but whether plants are able to integrate multiple cues from stress‐

related volatile blends remains poorly understood. Here, we investigated how maize

plants respond to two herbivore‐induced volatile priming cues with complementary

information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the

aromatic volatile indole. In the absence of herbivory, HAC directly induced defence

gene expression, whereas indole had no effect. Upon induction by simulated her-

bivory, both volatiles increased jasmonate signalling, defence gene expression, and

defensive secondary metabolite production and increased plant resistance. Plant

resistance to caterpillars was more strongly induced in dual volatile‐exposed plants

than plants exposed to single volatiles.. Induced defence levels in dual volatile‐

exposed plants were significantly higher than predicted from the added effects of

the individual volatiles, with the exception of induced plant volatile production,

which showed no increase upon dual‐exposure relative to single exposure. Thus,

plants can integrate different volatile cues into strong and specific responses that

promote herbivore defence induction and resistance. Integrating multiple volatiles

may be beneficial, as volatile blends are more reliable indicators of future stress

than single cues.
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1 | INTRODUCTION

The capacity to perceive and respond to fluctuating environments is

essential to all life on earth. As primary producers in terrestrial ecosys-

tems, plants are constantly dealing with limiting resources, adverse

abiotic conditions, competitors, pests, and pathogens (Cramer, Urano,

Delrot, Pezzotti, & Shinozaki, 2011; Van Dam, 2009). By consequence,

they have evolved systems to detect these stressors and respond to
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them appropriately (Cui, Tsuda, & Parker, 2015; Felton & Tumlinson,

2008; Hirayama & Shinozaki, 2010). Plants can, for example, perceive

pathogens and herbivores directly via associated molecular patterns or

indirectly via volatile cues from attacked neighbors (Bonaventure, 2012;

Heil, 2014; Zipfel, 2014). The induction and priming of defence

responses by herbivore‐ and pathogen‐induced volatiles in particular is

increasingly recognized as an important aspect of plant immunity and
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Frost et al. 2008; Heil, 2014; Karban, Yang, & Edwards, 2014; Mescher &

De Moraes, 2014; Riedlmeier et al., 2017; Turlings & Erb, 2018).

Although plant perception of individual environmental cues is rel-

atively well understood, less is known about the capacity of plants to

integrate multiple environmental cues (Finch‐Savage & Leubner‐

Metzger, 2006). Integrating multiple cues may enable plants to obtain

more reliable information of a given environmental condition than

individual cues. Many volatiles that are released from leaves upon her-

bivore attack are also released constitutively by other sources, includ-

ing flowers, bacteria, and fungi (Piechulla, Lemfack, & Kai, 2017; Tholl,

Sohrabi, Huh, & Lee, 2011), and thus do not provide reliable informa-

tion about the presence of an herbivore on a neighbouring plant

(Baldwin et al., 2006). By contrast, the overall composition of herbi-

vore‐induced volatile blends is often highly species and stress‐specific

and may thus indicate the presence of herbivores more reliably (Jun-

ker et al., 2017; McCormick, Unsicker, & Gershenzon, 2012). Whether

plants can integrate multiple volatile cues into defence responses is

not well understood (Erb, 2018; Ruther & Kleier, 2005).

The perception of herbivore‐induced plant volatiles has been stud-

ied in detail in maize (Zea mays). Maize plants that are exposed to vola-

tile blends from herbivore‐attacked plants respond more rapidly and

more strongly to subsequent herbivore attack (Engelberth, Alborn,

Schmelz, & Tumlinson, 2004; Ton et al., 2007). This form of priming

includes higher amounts of jasmonates, higher expression of defence‐

related genes, and higher emission of terpene volatiles (Engelberth

et al., 2004, Ton et al., 2007). Furthermore, caterpillar growth is reduced

and herbivore natural enemies aremore strongly attracted to herbivore‐

attacked maize plants that are exposed to herbivore‐induced volatiles

(Ton et al., 2007). So far, two components of the herbivore‐induced vol-

atile blend of maize have been identified to trigger defence priming.

Green leaf volatiles (GLVs) such as (Z)‐3‐hexenal, (Z)‐3‐hexen‐1‐ol, and

(Z)‐3‐hexenyl acetate (HAC) can induce and prime the expression of

jasmonate biosynthesis genes, the production of jasmonates, and the

emission of volatile terpenes (Engelberth et al., 2004). HAC can alsomod-

ulate defense and growth in other plants such as poplar, lima bean and

pepper (Frost et al., 2008, Freundlich & Frost, 2018).The volatile phyto-

hormone ethylene has been shown to increase the release of maize vol-

atiles that are induced by (Z)‐3‐hexen‐1‐ol (Ruther & Kleier, 2005). The

aromatic volatile indole primes jasmonates and volatile terpenes and is

required for within‐plant priming of monoterpenes (Erb et al., 2015).

GLVs are specific for plants, but are released in response tomany stresses

including drought, mechanical wounding, herbivore attack, and pathogen

infection (Ebel, Mattheis, & Buchanan, 1995; Scala, Allmann, Mirabella,

Haring, & Schuurink, 2013). By contrast, indole is produced by many dif-

ferent organisms and plant tissues (Bailly et al., 2014; Stamm, Lottspeich,

& Plaga, 2005), but its release from plant leaves seems to be specific to

herbivore attack, as herbivore‐derived elicitors, but not wounding alone

induce strong indole emissions (Frey et al., 2000), and the indole biosyn-

thesis gene ZmIGL is induced by herbivore attack, but not by other

stresses such as salt stress or fungal infection (Erb et al., 2009). Thus,

GLVs and indole complement each other in terms of the information they

convey, and the simultaneous presence of GLVs and indole may be a bet-

ter predictor of the presence of a herbivore‐attacked plant than each cue

alone. As both GLVs and indole prime jasmonate defenses, it is conceiv-

able that they may have additive effects on defence priming.
Based on these considerations, we investigated how simultaneous

exposure of maize plants to HAC and indole affects maize defenses.

We first quantified the impact of HAC and indole individually on phy-

tohormone production, defence gene expression, and defence metab-

olite accumulation in plants that were induced by simulated herbivory

and measured the influence of these volatiles on plant resistance to

herbivores. We then compared the effects of individual volatile expo-

sure with the effects of simultaneous exposure to HAC and indole.

We tested for synergistic effects of HAC and indole exposure by com-

paring the effects elicited by simultaneous exposure with the calcu-

lated additive effects of the individual exposures (Machado, Arce,

McClure, Baldwin, & Erb, 2018). Our experiments reveal that maize

plants integrate two different herbivore‐induced volatiles into strong

and specific defence signatures.
2 | MATERIALS AND METHODS

2.1 | Plants and herbivores

The maize (Z. mays) genotype B73 was used in this study. Maize seed-

lings were grown as previously described (Erb et al., 2011). Fourteen‐

day‐old plants were used for all experiments. Spodoptera littoralis eggs

were provided by the University of Neuchâtel and reared on artificial

diet as previously described (Maag et al., 2014). Herbivore oral secre-

tions were collected from third instar S. littoralis larvae, which had

been feeding on maize leaves for 48 hr. Briefly, the S. littoralis larvae

were held with a pair of lightweight forceps, and regurgitation was

induced by gently pinching their heads with another pair of forceps.

Oral secretions were collected using a micropipette and collected in

Eppendorf tubes on ice. Oral secretions were stored at −80°C and

diluted 1:1 in autoclaved Milli‐Q water prior to use.
2.2 | Volatile dispensers

Volatile dispensers were manufactured as previously described (Erb

et al., 2015; von Merey et al., 2011). Dispensers consisted of 2‐ml

amber glass vials (11.6 × 32 mm−2; Sigma, St. Louis, USA) containing

20 mg of synthetic indole (>98%, GC, Sigma, St. Louis, USA) or 0.2‐

ml (Z)‐3‐hexenyl acetate (HAC, >98%, Sigma, St. Louis, USA). The vials

were closed with open screw caps that contained a PTFE/rubber sep-

tum, which was pierced with a 2‐μl micropette (Drummond, Millan SA,

Switzerland). The vials were sealed with parafilm and wrapped in alu-

minium foil for heat protection and to avoid photodegradation. The

dispensers release approximately 150 ng h−1 of indole and 70 ng h−1

of HAC, which corresponds to amounts typically emitted by herbi-

vore‐attacked maize plants (Erb et al., 2015, von Merey et al., 2011).

Control dispensers were prepared the same way using empty glass

vials. Dispensers were prepared 24 hr before the start of experiments.
2.3 | Plant volatile exposure

To expose maize plants to synthetic indole and/or HAC, different sets

of dispensers were individually introduced into 2‐L glass vessels con-

taining maize seedlings. The glass vessels were connected to a multi-

ple air‐delivery system via PTFE tubing. Purified air entered the glass
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vessels at a flow rate 0.3 L min−1 and was released through additional

openings. This set‐up ensured sufficient ventilation to avoid the

buildup of unnatural volatile concentrations while effectively isolating

the headspaces of the different plants. The volatile exposure system

was placed into a greenhouse cabin (26 ± 2°C; 14: 10 hr, light [8 a.

m.–10 p.m.]: dark; 55% relative humidity). Dispensers were added into

the glass vessels in the evening (8 p.m.) before herbivore induction.

The following treatment combinations were used in all experiments:

Control (empty dispenser), HAC (HAC dispenser), indole (indole dis-

penser); HAC + indole (HAC dispenser and indole dispenser). Although

HAC is released 1 hr earlier than indole upon simulated herbivory (Erb

et al., 2015), both volatiles are released continuously and simulta-

neously from maize leaves that are attacked by real caterpillars (Erb

et al., 2011). We therefore exposed maize plants to HAC and indole

using the same timing. After 16 hr of exposure (at 10 a.m.), the plants

were carefully removed from the glass vessels, placed on a table in the

same greenhouse cabin, and induced as described in the next section.
2.4 | Plant induction by simulated herbivory

To test how indole and HAC influence herbivore‐induced plant

responses, the pre‐exposed maize plants were induced by wounding

two leaves over an area of ~0.5 cm−2 on both sides of the central vein

with a razor blade, followed by the application of 10 μl of S. littoralis

oral secretions. This treatment results in plant defence responses sim-

ilar to real S. littoralis attack (Erb et al., 2009) and is referred to as “sim-

ulated herbivory” or “induction” throughout the rest of the manuscript.

In three different experiments, leaves were either harvested at 0 min

(no herbivore induction), 45 min, or 5 hr after simulated herbivory

and then flash frozen and used to quantify phytohormones, expression

of defence‐related genes, benzoxazinoids, and volatiles. Whole maize

leaves, excluding the damaged area, were harvested. All analyses

within time points were performed on the same leaf samples.
2.5 | Gene expression analysis

The influence of volatile exposure on the herbivore‐induced expres-

sion of signalling and defence genes was determined by quantitative

real‐time PCR (QRT‐PCR, n = 5). On the basis of earlier studies, we

measured the induction of hormone biosynthesis genes and hormonal

signalling markers 45 min upon simulated herbivory (n = 5) and the

induction of defence‐related genes 5 hr upon simulated herbivory

(n = 5; Seidl‐Adams et al., 2015). In addition, we measured the effect

of HAC and indole on all marker genes at the 0‐min time point to eval-

uate direct induction. Maize leaves were ground to a fine powder

under liquid nitrogen. Total RNA of 80‐mg maize leaf powder was iso-

lated using the GeneJET Plant RNA Purification Kit (Thermo Scientific,

Waltham, MA, USA). Three hundred nanograms of total RNA of each

sample were then reverse transcribed with the SuperScript® II

Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). The QRT‐PCR

assay was performed on the LightCycler® 96 Instrument (Roche, Swit-

zerland) using the KAPA SYBR FAST qPCR Master Mix (Kapa

Biosystems, Wilmington, MA, USA). The maize actin gene ZmActin

was used as an internal standard to normalize cDNA concentrations

(Erb et al., 2009). The relative gene expression levels of the target
genes were calculated using the 2−ΔΔCt method (Wong & Medrano,

2005). The primers of all tested genes are provided in Table S1.

2.6 | Phytohormone analysis

The influence of volatile exposure on herbivore‐induced phytohormone

levels were measured 45 min after induction by simulated herbivory

(n = 5). This time pointwas selected on the basis of established hormone

accumulation kinetics and volatile priming effects, both ofwhich peak at

35–45 min after herbivore induction in maize (Engelberth et al., 2004;

Erb et al., 2015). Jasmonic acid (JA), 12‐oxophytodienoic acid (OPDA),

JA‐isoleucine (JA‐Ile), abscisic acid (ABA), and salicylic acid (SA) were

extracted from 80‐mg frozen maize leaf powder in ethyl acetate spiked

with isotopically labelled standards (1 ng for d5‐JA, d6‐ABA, d6‐SA, and
13C6‐JA‐Ile) and analysed by UHPLC–MS–MS as previously described

(Glauser, Vallat, & Balmer, 2014).

2.7 | Benzoxazinoid analysis

To evaluate the influence of volatile exposure on benzoxazinoid defence

metabolites, maize leaves were measured 5 hr after simulated herbivory

(n = 5). Seventy milligrams of frozen maize leaf powder was extracted in

700 μl of acidified H2O/MeOH (50:50 v/v; 0.1% formic acid) and then

analysed with an Acquity UHPLC–MS system equipped with an

electrospray source (Waters i‐Class UHPLC‐QDA, USA) using a previ-

ously established method (Robert et al., 2017). Compounds were sepa-

rated on an Acquity BEH C18 column (2.1 × 100 mm i.d., 1.7‐μm

particle size). Water (0.1% formic acid) and acetonitrile (0.1% formic acid)

were employed as mobile phases A and B. The elution profile was 0–

9.65 min, 97–83.6% A in B; 9.65–13 min, 100% B; 13.1–15 min 97% A

inB. Themobile phase flow ratewas0.4ml/min. Thecolumn temperature

wasmaintained at 40°C, and the injection volumewas 5μl; 2‐(2‐hydroxy‐

4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose (HDMBOA‐

Glc), 2‐(2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one)‐β‐d‐glucopy-

ranose (DIMBOA‐Glc), and 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐

3‐one (DIMBOA) were quantified in positive mode using single ion mon-

itoring (SIM) atm/z 194with cone voltage of 20 V; 2‐(2,4‐dihydroxy‐6,7‐

dimethoxy‐l,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose (DIM2BOA‐Glc), 2‐

(2,4‐dihydroxy‐1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose (DIBOA‐Glc),

2‐(2‐hydroxy‐4,7,8‐trimethoxy‐1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyra-

nose (HDM2BOA‐Glc), and 6‐methoxy‐benzoxazolin‐2‐one (MBOA)

were acquired in negative scanmode (m/z 150–650) using a cone voltage

of 10 V. The ESI capillary voltage was set to 0.8 kV. The probe tempera-

ture was maintained at 600°C. The detector gain was set to 1 and the

sampling frequencywas 5Hz. Absolute quantitieswere determined using

standard curves obtained from purified or synthetic DIMBOA, DIMBOA‐

Glc, HDMBOA‐Glc, and MBOA as described (Maag et al., 2015).

2.8 | Volatile analyses

To assess the impact of volatile exposure to herbivore‐induced volatile

production, maize leaves were analysed 5 hr upon simulated herbiv-

ory. At this time point, volatile priming significantly increases terpene

release in maize (Engelberth et al., 2004; Erb et al., 2015). Frozen leaf

powder was analysed with solid‐phase microextraction‐gas chroma-

tography–mass spectrometry (SPME‐GC–MS; n = 5). This approach
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allows for the measurement of leaf volatile contents, which are highly

correlated with volatile release rates in maize during daytime (Seidl‐

Adams et al., 2015). Fifty milligrams of leaf powder were placed in a

10‐ml glass vial. An SPME fibre (100‐μm polydimethylsiloxane coating;

Supelco, USA) was then inserted into the vial and incubated at 60°C

for 35 min. The incubated fibre was immediately analysed by GC–

MS (Agilent 7820A GC interfaced with an Agilent 5977E MSD, USA)

following previously established protocols (Huang et al., 2016). Major

volatile compounds were identified by comparing mass spectra with

the NIST Mass Spectral Library (USA) as well as authentic standards,

and the abundance of each compound was determined by integrating

individual peak areas.
2.9 | Herbivore resistance assays

To quantify the impact of volatile exposure on herbivore growth

and plant resistance, individual preweighed second instar S. littoralis
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larvae were introduced into cylindrical mesh cages (1‐cm height

and 5‐cm diameter) and then clipped onto the leaves of individual

maize plants that were previously exposed to different

volatile combinations (n = 10). The position of the cages was

moved every day to provide sufficient food supply for the larvae.

Larval weight was recorded 4 days after the start of the experi-

ment. For damage quantification, the remaining leaves were

scanned, and the removed leaf area was quantified with Digimizer

4.6.1 (Digimizer).
2.10 | Statistical analyses

Gene expression, phytohormone, benzoxazinoid, volatile, larval

growth, and leaf damage data were analysed by analysis of variance

(ANOVA) followed by pairwise or multiple comparisons of least

squares means (LSMeans), which were corrected using the false
b
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FIGURE 1 Simultaneous pre‐exposure to
(Z)‐3‐hexenyl acetate (HAC) and indole
synergistically increases abscisic acid (ABA)
and jasmonic acid (JA) biosynthesis in induced
maize plants. (a)‐(e) Average concentrations of
the stress hormones ABA (a), 12‐
oxophytodienoic acid (OPDA, b), JA (c), JA‐
isoleucine (JA‐Ile, d), and salicylic acid (SA, e)

in plants that were pre‐exposed to HAC,
indole, or both volatiles simultaneously
(HAC + Indole) and induced by simulated
herbivory (+SE, n = 5). (f) Average transcript
levels of ZmLOX10, ZmAOS, ZmPR1, and
ZmPR5 (+SE, n = 5). FW, fresh weight. n.s., not
significant. Treat., treatment. Gene expression
is shown relative to the expression level of the
control treatment. P values of one‐way
analyses of variance (ANOVAs) are shown
(*P < 0.05, **P < 0.01, ***P < 0.001). Dashed
lines indicate calculated additive effects of
single volatile exposures. Letters indicate
significant differences between different
volatile exposure treatments (P < 0.05, one‐
way ANOVA followed by multiple
comparisons through FDR‐corrected
LSMeans). Stars indicate a significant
difference between the double exposure
treatment and the calculated additive effect of
both single treatments (*P < 0.05, Student's t
tests)
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discovery rate (FDR) method (Benjamini & Hochberg, 1995). Normal-

ity was verified by inspecting residuals, and homogeneity of variance

was tested through Shapiro–Wilk's tests using the “plotresid” func-

tion of the R package “RVAideMemoire” (Herve, 2015). Datasets that

did not fit assumptions were loge‐transformed to meet the require-

ments of equal variance and normality. Potential synergism was eval-

uated using a previously described approach (Machado et al., 2018).

Briefly, we calculated additive effects by randomly pairing replicates

of individual volatile treatments (an indole treated plant [In] and a

HAC treated plant [Hn]). For each random pair, we calculated theoret-

ical additive values (An) for the different defence parameters using

the following formula: An = In + Hn − Cav, where Cav corresponds to

the average level of nonexposed control plants. The calculated addi-

tive values were then compared with the measured treatment values

of the double volatile treatment using Student's t tests. Cases in

which the measured level of the double volatile treatment was signif-

icantly greater than the calculated additive level were classified as

synergistic. Principal component analysis (PCA) was furthermore

employed to compare the response profiles at 0 min (defence and

signalling gene expression), 45 min (signalling gene expression, phyto-

hormones), and 5 hr (defence gene expression, benzoxazinoids, vola-

tiles) in an integrated manner (Chapman, Schenk, Kazan, & Manners,

2002). Raw data were scaled with the “scale” function in R, and PCAs

were then performed using the “MVA” function of the

“RVAideMemoire” package and the “rda” function of the “vegan”

package (Herve, 2015; Oksanen et al., 2013). Permutational ANOVAs

were then conducted using the “adonis” function of the “vegan” pack-

age with 999 permutations. All statistical analyses were conducted

with R 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria)

using the packages “car,” “lsmeans,” “vegan,” and “RVAideMemoire”

(Bates, Machler, Bolker, & Walker, 2015; Herve, 2015; Lenth, 2016;

Oksanen et al., 2013).
FIGURE 2 Simultaneous pre‐exposure to

(Z)‐3‐hexenyl acetate (HAC) and indole
specifically and synergistically increases
defence gene expression in induced maize
plants. Average transcript levels of ZmMPI (a),
ZmSerPIN (b), ZmRIP2 (c), and ZmCyst (d) in
plants that were pre‐exposed to HAC, indole,
or both volatiles simultaneously
(HAC + Indole) and induced by simulated
herbivory (+SE, n = 5). n.s., not significant.
Treat., treatment. Gene expression is shown
relative to the expression level of the control
treatment. P values of one‐way analyses of
variance (ANOVAs) are shown (*P < 0.05,
**P < 0.01, ***P < 0.001). Dashed lines
indicate calculated additive effects of single
volatile exposures. Letters indicate significant
differences between different volatile
exposure treatments (P < 0.05, one‐way
ANOVA followed by multiple comparisons
through FDR‐corrected LSMeans). Stars
indicate a significant difference between the
double exposure treatment and the calculated
additive effect of both single treatments
(*P < 0.05, Student's t tests)
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2.11 | Accession numbers and data availability

The sequence data of maize genes can be found in the GenBank/

EMBL database under the following accession numbers: ZmActin

(MZEACT1G), ZmLOX10 (DQ335768), ZmAOS (AY488135), ZmPR1

(U82200), ZmPR5 (U82201), ZmMPI (X78988), ZmSerPIN

(BM382058), ZmCyst (CK371502), ZmRIP2 (L26305), ZmCYP92C5

(ACG28049), ZmTPS2 (AY928081), ZmTPS3 (AY928082), ZmTPS10

(AY928078), ZmIGL (AF271383), ZmBx10 (GRMZM2G311036),

ZmBx11 (GRMZM2G336824), and ZmBx14 (GRMZM2G127418). All

relevant data supporting the findings of this study can be

downloaded from the Dryad repository (doi:10.5061/dryad.f21g54g).
3 | RESULTS

3.1 | Pre‐exposure to HAC and indole synergistically
increases JA and ABA biosynthesis in induced plants

As reported before (Engelberth et al., 2004; Erb et al., 2015), exposure

to HAC and indole individually increased the production of

jasmonates, including OPDA, JA, and JA‐Ile as well as ABA 45 min

after induction by simulated herbivory. Simultaneous exposure to

HAC and indole increased jasmonate and ABA levels beyond their cal-

culated additive levels (Figure 1a‐d). SA levels were not changed by

volatile exposure (Figure 1e). Similar to jasmonates themselves, tran-

script levels of the JA related genes ZmLOX10 and ZmAOS

(Christensen et al., 2013; Engelberth, Seidl‐Adams, Schultz, &

Tumlinson, 2007) were enhanced by exposure to HAC and indole indi-

vidually and synergistically increased by simultaneous HAC and indole

exposure (Figure 1f). The expression levels of ZmPR1 and ZmPR5 were

not changed by volatile exposure (Figure 1f; Morris et al., 1998). Thus,
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HAC and indole enhance ABA and JA biosynthesis in induced plants in

a synergistic manner.
3.2 | Pre‐exposure to HAC and indole specifically
and synergistically increases the expression of defence
genes in induced plants

To further explore the interactions of HAC and indole in regulating

plant defence responses, we measured the expression levels of four

defensive marker genes in volatile pre‐exposed plants 5 hr after induc-

tion by simulated herbivory: the putative proteinase inhibitors ZmMPI

(Farag et al., 2005; Tamayo, Rufat, Bravo, & San Segundo, 2000),

ZmSerPIN and ZmCyst (Erb et al., 2011; Ton et al., 2007), and the

insecticidal ribosome‐inactivating protein ZmRIP2 (Chuang et al.,

2014). Exposure to HAC and indole individually increased the expres-

sion of ZmMPI, ZmSerPIN, and ZmRIP2 (Figure 2a‐c). ZmCyst expres-

sion was increased by HAC, but not by indole (Figure 2d).

Simultaneous exposure to HAC and indole increased the expression

of ZmMPI, ZmSerPIN, and ZmRIP2 in a synergistic manner (Figure 2a‐

c). By contrast, ZmCyst expression was not further increased by the
a a a
a

a

a aa aa a
b b

0

2

4

**
b

0

4

8

DIMBOA-Glc

DIM 2
BOA-Glc

DIBOA-Glc

HDMBOA-Glc

HDM 2
BOA-Glc

DIM

0.0

0.6

1.2

2.1

2.8

3.5

n.s.

* *

a abab b

Z
m

B
x1

0/
11

R
el

at
iv

e 
ex

p
re

ss
io

n
 le

ve
l

Z
m

B
x1

4
R

el
at

iv
e 

ex
p

re
ss

io
n

 le
ve

l

 F
W

)

ANOVA:
Treat.: **

ANOVA:
Treat.: ***

Contro
l

HAC
Indole

HAC+Indole

Contro
l

HAC

Additive effect

ANOVA:
Treat.: *

ANOVA:
Treat.: n.s.

ANO
Trea

ANOVA:
Treat.: P=0.068

ANOVA:
Treat.: ***

ANOVA:
Treat.: n.s.

(a)

(b) (c)

Control
HAC
Indole
HAC+Indole

Indu
herb
double volatile treatment in comparison with individual HAC exposure

(Figure 2d). Thus, HAC and indole differentially regulate the expres-

sion of defence marker genes in induced plants, with combined effects

ranging from neutral to synergistic.
3.3 | Pre‐exposure to HAC and indole synergistically
regulates BX biosynthesis in induced plants

Benzoxazinoids (BXs) are important secondary metabolites, which

strongly respond to herbivore attack (Glauser et al., 2011) and protect

cereals against herbivores (Wouters, Blanchette, Gershenzon, &

Vassao, 2016). Five hours after induction by simulated herbivory,

pre‐exposure to HAC and indole individually did not significantly

change the production of BXs. By contrast, simultaneous exposure

to HAC and indole increased the production of HDMBOA‐Glc,

DIM2BOA‐Glc, and HDM2BOA‐Glc compared with nonexposed plants

(Figure 3a). HDMBOA‐Glc and HDM2BOA‐Glc were regulated syner-

gistically by the two volatiles, whereas the effect on DIM2BOA‐Glc

was not significantly different from the calculated additive effect.

The expression levels of the O‐methyltransferases that produce
a
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BOA
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VA:
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FIGURE 3 Simultaneous pre‐exposure to
(Z)‐3‐hexenyl acetate (HAC) and indole
synergistically regulates benzoxazinoid (BX)
biosynthesis in induced maize plants. (a)
Average concentrations of benzoxazinoids in
plants that were pre‐exposed to HAC, indole,
or both volatiles simultaneously
(HAC + Indole) and induced by simulated
herbivory (+SE, n = 5). (b)‐(c) Average
transcript levels of ZmBx10/11 and ZmBx14
(+SE, n = 5). FW, fresh weight. L.O.D, below
limit of detection. n.s., not significant. Treat.,
treatment. Gene expression is shown relative
to the expression level of the control
treatment. P values of one‐way analyses of
variance (ANOVAs) are shown (*P < 0.05,

**P < 0.01, ***P < 0.001). Dashed lines
indicate calculated additive effects of single
volatile exposures. Letters indicate significant
differences between different volatile
exposure treatments (P < 0.05, one‐way
ANOVA followed by multiple comparisons
through FDR‐corrected LSMeans). Stars
indicate a significant difference between the
double exposure treatment and the calculated
additive effect of both single treatments
(*P < 0.05, **P < 0.01, Student's t tests).
DIMBOA‐Glc, 2‐(2,4‐dihydroxy‐7‐methoxy‐
1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose;
DIM2BOA‐Glc, 2‐(2,4‐dihydroxy‐6,7‐
dimethoxy‐l,4‐benzoxazin‐3‐one)‐β‐d‐
glucopyranose; DIBOA‐Glc, 2‐(2,4‐dihydroxy‐
1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose;
HDMBOA‐Glc, 2‐(2‐hydroxy‐4,7‐dimethoxy‐
1,4‐benzoxazin‐3‐one)‐β‐d‐glucopyranose;
HDM2BOA‐Glc, 2‐(2‐hydroxy‐4,7,8‐
trimethoxy‐1,4‐benzoxazin‐3‐one)‐β‐d‐
glucopyranose; DIMBOA: 2,4‐dihydroxy‐7‐
methoxy‐1,4‐benzoxazin‐3‐one; MBOA: 6‐
methoxy‐benzoxazolin‐2‐one
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HDMBOA‐Glc (ZmBx10/11, (Meihls et al., 2013)) and HDM2BOA‐Glc

(ZmBx14; Handrick et al., 2016) followed the same pattern: The

expression of both genes was not further increased by individual

HAC or indole exposure in induced plants but strongly responded to

simultaneous HAC and indole exposure (Figure 3b,c). Therefore,

HAC and indole synergistically regulate the production of BXs in

induced plants.
3.4 | Pre‐exposure to HAC and indole does not
synergistically regulate volatile production in induced
plants

Exposure of plants to both HAC and indole individually can prime

herbivore‐induced terpene emissions (Engelberth et al., 2004; Erb

et al., 2015). As terpene biosynthesis in maize are regulated by
FIGURE 4 Simultaneous pre‐exposure to
(Z)‐3‐hexenyl acetate (HAC) and indole does
not synergistically regulate volatile production
in induced maize plants. (a)‐(e) Average
relative amounts (peak areas) of linalool (a),

(3E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT,
b), (E)‐α‐bergamotene (c), (E)‐α‐farnesene (d),
and indole (e) in plants that were pre‐exposed
to HAC, indole, or both volatiles
simultaneously (HAC + Indole) and induced by
simulated herbivory (+SE, n = 5). (f) Average
transcript levels of ZmCYP92C5, ZmTPS2,
ZmTPS3, ZmTPS10, and ZmIGL (+SE, n = 5).
FW, fresh weight. n.s., not significant. Treat.,
treatment. Gene expression is shown relative
to the expression level of the control
treatment. P values of one‐way analyses of
variance (ANOVAs) are shown (*P < 0.05,
**P < 0.01, ***P < 0.001). Dashed lines
indicate calculated additive effects of single
volatile exposures. Letters indicate significant
differences between different volatile
exposure treatments (P < 0.05, one‐way
ANOVA followed by multiple comparisons
through FDR‐corrected LSMeans). Stars
indicate a significant difference between the
double exposure treatment and the calculated
additive effect of both single treatments
(*P < 0.05, Student's t tests)
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jasmonates (Schmelz, Alborn, Banchio, & Tumlinson, 2003; Schmelz,

Alborn, & Tumlinson, 2003), we expected additive or synergistic

effects of simultaneous HAC and indole exposure on volatile produc-

tion similar to the defence marker genes and BXs. Exposure of maize

plants to HAC and indole individually followed by simulated herbiv-

ory increased the production of linalool, (3E)‐4,8‐dimethyl‐1,3,7‐

nonatriene (DMNT), (E)‐α‐bergamotene, (E)‐α‐farnesene and indole

5 hr after induction (Figure 4a‐e). Simultaneous exposure to HAC

and indole did not further increase volatile production. For indole,

we even detected significantly lower amounts in plants exposed to

both volatiles than would be expected in an additive scenario. Tran-

script levels of genes involved in terpene synthesis, including

ZmCYP92C5, ZmTPS2, ZmTPS3, ZmTPS10, and ZmIGL (Frey et al.,

2000; Richter et al., 2016; Schnee et al., 2006), showed a similar pat-

tern (Figure 4f).
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3.5 | Pre‐exposure to HAC and indole increases
herbivore resistance of maize in an additive manner

To investigate how HAC and indole pre‐exposure influences herbivore

performance and plant resistance, we measured S. littoralis growth and

damageonvolatile‐exposedplants. Pre‐exposure toHACor indole individ-

ually reduced S. littoralis growth and plant damage (Figure5). Simultaneous

pre‐exposure to HAC and indole further increased this effect, with reduc-

tions of larval growth and damage attaining 40% (Figure 5). Thus, HAC and

indole enhance plant resistance against herbivores in an additive manner.
3.6 | Pre‐exposure of HAC, but not indole, directly
induces defence gene expression

To investigate whether the observed synergistic effects on plant

defenses are due to priming or direct induction by volatile exposure,

we measured the expression of the different defence marker genes

upon HAC and indole exposure without further induction. HAC pre‐

exposure significantly increased the expression of the tested jasmonate,

volatile, and benzoxazinoid biosynthesis genes as well as other defence
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FIGURE 5 Simultaneous pre‐exposure to (Z)‐3‐hexenyl acetate
(HAC) and indole increases herbivore resistance of maize plants. (a)
Average growth rate of Spodotera littoralis caterpillars feeding on
plants that were pre‐exposed to HAC, indole, or both volatiles
simultaneously (HAC + Indole, +SE, n = 10). (b) Average consumed leaf
area (+SE, n = 10). n.s., not significant. Treat., treatment. The results of
one‐way analyses of variance (ANOVAs) are shown (**P < 0.01,
***P < 0.001). Dashed lines indicate calculated additive effects of
single volatile exposures. Letters indicate significant differences
between different volatile exposure treatments (P < 0.05, one‐way
ANOVA followed by multiple comparisons through FDR‐corrected
LSMeans)
genes (Figure 6). By contrast, indole pre‐exposure did not directly

induce any defence marker genes (Figure 6). Expression of the SA‐

responsive genes ZmPR1 and ZmPR5was not changed byHACor indole

exposure (Figure 6). Simultaneous exposure to HAC and indole resulted

in similar gene expression patterns as HAC alone, with the exception of

the DMNT biosynthesis gene ZmCYP92C5, whose expression was syn-

ergistically enhanced by double exposure (Figure 6). Thus, HAC, but not

indole, directly induces a broad spectrum of defence genes. Further-

more, most of the synergistic effects observed upon double exposure

after induction by simulated herbivory (Figures 1–4) are likely due to

priming rather than direct induction by HAC and indole.
3.7 | Individual and simultaneous exposure to HAC
and indole results in specific defence signatures

To evaluate whether HAC and indole double exposure results in spe-

cific defence signatures, we performed PCAs for the individual time

points. Permutational multivariate analysis revealed clear treatment

effects at all time points (Figure 7). Without induction by simulated

herbivory, HAC pre‐exposure resulted in a defence signature that

was clearly separated from control and indole pre‐exposure (Figure 7

a). Double‐exposure clustered together with HAC pre‐exposure

(Figure 7a), reflecting the fact that indole pretreatment does not affect

HAC‐induced signature changes. By contrast, 45 min and 5 hr after

induction by simulated herbivory, a clear separation between controls,

individual volatile exposures, and double volatile exposure was

observed (Figure 7b,c). At 45 min, the treatments were predominantly

separated along PC axis 1 (Figure 7b). The major vectors contributing

to treatment separation were related to jasmonate and abscisic acid

biosynthesis. No clear separation was observed between individual

HAC and indole exposure, but double exposure was clearly separated

from single exposure. The profiles at 5 hr showed a similar structure,

with both PC axes 1 and 2 contributing to the separation of individual

volatile exposures and double exposure (Figure 7c). In this case, the

vectors contributing most to the separation of double and single expo-

sure were benzoxazinoids and a subset of defence marker genes.

Thus, double exposure to HAC and indole leads to distinct defence

signatures.
4 | DISCUSSION

Plants can perceive various environmental cues, but whether they can

integrate multiple cues to regulate defence responses is poorly under-

stood. The present study shows that simultaneous exposure of maize

plants to two different herbivore‐induced volatile cues results in spe-

cific defence signatures, with most defence markers responding in an

additive or synergistic fashion to double exposure. Below, we discuss

the underlying mechanisms and ecological context of this

phenomenon.

Maize plants that are induced by simulated herbivory responded

to simultaneous HAC and indole exposure by markedly increasing

their defence responses compared with nonexposed and single vola-

tile‐exposed plants. In particular, HAC and indole synergistically

enhanced the deployment of jasmonates, the expression of defence



FIGURE 6 Pre‐exposure to (Z)‐3‐hexenyl
acetate (HAC), but not indole, directly induces
defence gene expression in maize plants. (a)
Average transcript levels of genes involved in
JA biosynthesis, SA signalling and
benzoxazinoid biosynthesis in plants that
were pre‐exposed to HAC, indole, or both
volatiles simultaneously (HAC + Indole)
without subsequent induction (+SE, n = 5). (b)
Average transcript levels of putative
proteinase inhibitors and a ribosome‐
inactivating gene ZmRIP2 (+SE, n = 5). (c)
Average transcript levels of genes involved in

terpene and indole biosynthesis (+SE, n = 5). n.
s., not significant. Treat., treatment. Gene
expression is shown relative to the expression
level of the control treatment. P values of
one‐way analyses of variance (ANOVAs) are
shown (*P < 0.05, **P < 0.01, ***P < 0.001).
Dashed lines indicate calculated additive
effects of single volatile exposures. Letters
indicate significant differences between
different volatile exposure treatments
(P < 0.05, one‐way ANOVA followed by
multiple comparisons through FDR‐corrected
LSMeans). Stars indicate a significant
difference between the double exposure
treatment and the calculated additive effect of
both single treatments (*P < 0.05, Student's t
tests)
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marker genes, and the production of defensive secondary metabolites

in plants. Dual exposure also markedly suppressed herbivore growth

and plant damage. These patterns are unlikely due to direct induction,

as HAC, but not indole, directly increased defence gene expression.

Instead, HAC and indole primed maize plants together to respond

more strongly upon induction. A likely mechanism to explain this pat-

tern is convergence of HAC and indole in early defence signalling.

Both HAC and indole act upstream of the jasmonate signalling path-

way, possibly by priming the activity of MAP kinases (Ye, Glauser,

Lou, Erb, & Hu, 2018) and/or WRKY transcription factors (Engelberth,

Contreras, Dalvi, Li, & Engelberth, 2013; Mirabella et al., 2015). As

most of the measured downstream defenses are under the control

of jasmonates (Dafoe et al., 2011; Moraes et al., 2008; Schmelz,

Alborn, Banchio, et al., 2003; Stotz et al., 2002; Ton et al., 2007), the

synergistic effects of HAC and indole on jasmonate signalling likely

explain the enhanced defence responses observed in this study. We

thus propose that maize plants can integrate two different volatile

cues into early defence signalling, resulting in the amplification of a

central phytohormonal signalling pathway and downstream defenses.

This form of signal convergence allows for the translation of two vol-

atile cues into a single quantitative signal, which allows plants to con-

trol the amplitude of defence and resistance expression according to

the presence of different volatiles.

Apart from the amplification of jasmonate‐dependent defenses,

which is similar in HAC and indole treated plants, we also observed
specificity in the responses elicited by HAC and indole. For instance,

HAC, but not indole, directly enhanced defence gene expression. Fur-

thermore, although the expression of most defenses was similarly

enhanced in HAC and indole‐exposed plants after elicitation, the

expression of the putative proteinase inhibitor ZmCyst in plants

induced by simulated herbivory was only enhanced in HAC exposed

plants. Thus, HAC and indole differ in their effects on plant defence

induction and priming and are thus likely to act via different early sig-

nalling mechanisms. We also found that simultaneous exposure to

HAC and indole results in specific defence expression patterns, includ-

ing synergistic effects on the production of jasmonates, defence

marker genes and benzoxazinoid accumulation, and antagonistic

effects on the production of volatiles such as indole in plants induced

by simulated herbivory (Figure 4). Thus, the integration of two volatile

cues can result in specific defence priming responses that cannot be

predicted from single exposure responses and cannot be explained

by signal convergence and amplification alone. In Arabidopsis thaliana,

the GLV (E)‐2‐hexenal regulates GABA signalling and the redox status

of mitochondria (Ameye et al., 2017; Mirabella et al., 2015; Scala et al.,

2017). Indole on the other hand has been shown to inhibit auxin sig-

nalling in A. thaliana roots at high doses (Bailly et al., 2014). Thus, it

is well possible that HAC and indole fine‐tune defence expression

through signalling crosstalk (Machado et al., 2016; Pieterse, Leon‐

Reyes, Van der Ent, & Van Wees, 2009), leading to specific patterns

of defence priming. Further experiments aiming at understanding the



FIGURE 7 Simultaneous pre‐exposure to (Z)‐3‐hexenyl acetate
(HAC) and indole results in specific defence signatures in maize
plants. Principal component analyses of maize defence markers (a)
0 min, (b) 45 min, and (c) 5 hr after induction by simulated herbivory.
Plants were pre‐exposed to HAC, indole, or both volatiles
simultaneously (HAC + Indole, n = 5) prior to induction by simulated
herbivory. PCAs include data on defence gene expression at 0 min,
phytohormones and signalling related gene expression at 45 min, and
defence gene expression and secondary metabolite production at the
5 hr time point. Data points represent individual replicate samples.
Vectors of individual defence markers are shown as grey arrows. P
values of permutational analyses of variance (“Adonis test”) between
treatments are shown

968 HU ET AL.
early signalling events that are directly elicited by indole and HAC and

how they affect hormonal signalling networks from a more holistic

perspective may help to test this hypothesis.
From an ecological point of view, the integration of HAC and

indole into stronger defence priming may allow plants to adjust their

defence investment according to the reliability of the perceived cues.

As GLVs can be emitted in response to many stresses, including for

instance mechanical injury in the absence of herbivory (Ebel et al.,

1995; Scala et al., 2013), they cannot be used as reliable cues by plants

to anticipate herbivory. The same is true for indole alone, which can

emanate from various environmental sources (Bailly et al., 2014;

Stamm et al., 2005) but is emitted from leaves in much greater quan-

tities upon contact with herbivore‐elicitors than wounding alone (Frey

et al., 2000; Zhuang et al., 2012). The simultaneous presence of indole

and GLVs on the other hand may be a relatively robust predictor of

herbivore attack due to the complementary nature of their informa-

tion contents. Given that priming can be costly (van Hulten, Pelser,

van Loon, Pieterse, & Ton, 2006), adjusting the magnitude of priming

according to the reliability of the perceived cues may be beneficial.

Especially when the reliability of individual volatile cues is low, the

ability to integrate multiple volatile cues may confer important advan-

tages to plants. However, it is important to point out that the integra-

tion of multiple volatile cues is not always necessary to obtain reliable

information from the environment. Insect pheromones, for instance,

can be fairly specific and may be sufficient to reliably indicate the

presence of a herbivore. In line with this argument, Solidago altissima

plants respond similarly to the exposure to a single pheromone com-

ponent of the goldenrod gall fly as to the full volatile blend of the her-

bivore (Helms et al., 2017).

Double exposure to HAC and indole enhanced direct defenses

but had no clear effect on the emission of induced volatiles, which

are often viewed as indirect defenses that attract natural enemies

(Turlings & Erb, 2018). Recent work in tomato furthermore demon-

strates that changes in light quality leading to phytochrome B inacti-

vation shifts tomato defenses from direct to volatile‐mediated

indirect defenses (Cortés, Weldegergis, Boccalandro, Dicke, & Ballaré,

2016). Thus, plants seem to be able to integrate various environmen-

tal cues to regulate their relative investment into direct and indirect

defenses. Regarding the results of the present study however, we

would like to remain cautious with our interpretation, as the effects

of the observed patterns on indirect defenses have not been

quantified, and the ecological interpretation of defence responses of

a domesticated plant warrants caution due to possible pleiotropic

effects of domestication. Nevertheless, exploring if and how the

composition of volatile cues influences the relative investment of

plants into direct and indirect defenses is an exciting prospect of

this work.
5 | CONCLUSIONS

Plants perceive a variety of volatiles from the environment. Our

work lends support to the concept that plants are also able to inte-

grate multiple volatile cues into specific, and possibly adaptive,

defence responses. Understanding the mechanisms and ecological

factors that shape the evolution of signal integration will be impor-

tant to improve our understanding of plant responses to complex

volatile blends.



HU ET AL. 969
ACKNOWLEDGMENTS

We thank Monika Hilker and Thomas Schmülling for the invitation to

contribute to this special issue. We further thank Christelle A.M.

Robert for the help with volatile analyses and for insightful discussions

and Klaus Schlaeppi for the help with statistics. The comments of two

anonymous reviewers helped to improve the paper. The work was

supported by the Swiss National Science Foundation (Grants

155781, 160786, 157884), the Sino‐Swiss Science and Technology

Cooperation (Exchange Grant EG 03‐032016), the European Research

Council (ERC) under the European Union's Horizon 2020 research and

innovation programme (ERC‐2016‐STG 714239) and the University of

Bern. The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

L. H. conceived, designed, performed, and analysed experiments and

wrote the first draft of the manuscript. M. Y. designed, performed,

and analysed experiments. M. E. acquired funding, conceived the pro-

ject, designed, supervised, and analysed experiments, and wrote the

first draft of the manuscript. All authors contributed to the final ver-

sion of the paper.

ORCID

Lingfei Hu http://orcid.org/0000-0002-7791-9440

Meng Ye http://orcid.org/0000-0002-6785-0099

Matthias Erb http://orcid.org/0000-0002-4446-9834

REFERENCES

Ameye, M., Allmann, S., Verwaeren, J., Smagghe, G., Haesaert, G.,
Schuurink, R. C., & Audenaert, K. (2017). Green leaf volatile production
by plants: A meta‐analysis. New Phytologist. https://doi.org/10.1111/
nph.14671

Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., & Weisskopf, L.
(2014). The inter‐kingdom volatile signal indole promotes root develop-
ment by interfering with auxin signalling. Plant Journal, 80, 758–771.

Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., & Preston, C. A.
(2006). Volatile signaling in plant–plant interactions: “Talking trees” in
the genomics era. Science, 311, 812–815.

Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear
mixed‐effects models using lme4. Journal of Statistical Software, 67,
1–48.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society, Series B (Statistical Methodology), 57, 289–300.

Bonaventure, G. (2012). Perception of insect feeding by plants. Plant Biol-
ogy, 14, 872–880.

Chapman, S., Schenk, P., Kazan, K., & Manners, J. (2002). Using biplots to
interpret gene expression patterns in plants. Bioinformatics, 18,
202–204.

Christensen, S. A., Nemchenko, A., Borrego, E., Murray, I., Sobhy, I. S.,
Bosak, L., … Kolomiets, M. V. (2013). The maize lipoxygenase,
ZmLOX10, mediates green leaf volatile, jasmonate and herbivore‐
induced plant volatile production for defense against insect attack.
Plant Journal, 74, 59–73.

Chuang, W. P., Herde, M., Ray, S., Castano‐Duque, L., Howe, G. A., & Luthe,
D. S. (2014). Caterpillar attack triggers accumulation of the toxic maize
protein RIP2. New Phytologist, 201, 928–939.

Cortés, L. E., Weldegergis, B. T., Boccalandro, H. E., Dicke, M., & Ballaré, C.
L. (2016). Trading direct for indirect defense? Phytochrome B inactiva-
tion in tomato attenuates direct anti‐herbivore defenses whilst
enhancing volatile‐mediated attraction of predators. New Phytologist,
212, 1057–1071.

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011).
Effects of abiotic stress on plants: A systems biology perspective.
BMC Plant Biology, 11, 163.

Cui, H., Tsuda, K., & Parker, J. E. (2015). Effector‐triggered immunity: From
pathogen perception to robust defense. Annual Review of Plant Biology,
66, 487–511.

Dafoe, N. J., Huffaker, A., Vaughan, M. M., Duehl, A. J., Teal, P. E., &
Schmelz, E. A. (2011). Rapidly induced chemical defenses in maize
stems and their effects on short‐term growth of Ostrinia nubilalis. Jour-
nal of Chemical Ecology, 37, 984–991.

Ebel, R. C., Mattheis, J. P., & Buchanan, D. A. (1995). Drought stress of
apple trees alters leaf emissions of volatile compounds. Physiologia
Plantarum, 93, 709–712.

Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Air-
borne signals prime plants against insect herbivore attack. Proceedings
of the National Academy of Sciences of the United States of America,
101, 1781–1785.

Engelberth, J., Contreras, C. F., Dalvi, C., Li, T., & Engelberth, M. (2013).
Early transcriptome analyses of Z‐3‐hexenol‐treated Zea mays revealed
distinct transcriptional networks and anti‐herbivore defense potential
of green leaf volatiles. PLoS One, 8, e77465.

Engelberth, J., Seidl‐Adams, I., Schultz, J. C., & Tumlinson, J. H. (2007).
Insect elicitors and exposure to green leafy volatiles differentially
upregulate major octadecanoids and transcripts of 12‐oxo
phytodienoic acid reductases in Zea mays. Molecular Plant‐Microbe
Interactions, 20, 707–716.

Erb, M. (2018). Volatiles as inducers and suppressors of plant defense and
immunity—Origins, specificity, perception and signaling. Current Opin-
ion in Plant Biology, 44, 117–121.

Erb, M., Balmer, D., De Lange, E. S., Von Merey, G., Planchamp, C., Robert,
C. A. M., … Turlings, T. C. J. (2011). Synergies and trade‐offs between
insect and pathogen resistance in maize leaves and roots. Plant, Cell
and Environment, 34, 1088–1103.

Erb, M., Flors, V., Karlen, D., de Lange, E., Planchamp, C., D'Alessandro, M.,
… Ton, J. (2009). Signal signature of aboveground‐induced resistance
upon belowground herbivory in maize. Plant Journal, 59, 292–302.

Erb, M., Veyrat, N., Robert, C. A., Xu, H., Frey, M., Ton, J., & Turlings, T. C. J.
(2015). Indole is an essential herbivore‐induced volatile priming signal
in maize. Nature Communications, 6, 6273.

Farag, M. A., Fokar, M., Abd, H., Zhang, H., Allen, R. D., & Paré, P. W.
(2005). (Z)‐3‐hexenol induces defense genes and downstream metabo-
lites in maize. Planta, 220, 900–909.

Felton, G. W., & Tumlinson, J. H. (2008). Plant–insect dialogs: Complex
interactions at the plant–insect interface. Current Opinion in Plant Biol-
ogy, 11, 457–463.

Finch‐Savage, W. E., & Leubner‐Metzger, G. (2006). Seed dormancy and
the control of germination. New Phytologist, 171, 501–523.

Freundlich, G. E., & Frost, C. (2018). Variable costs of eavesdropping a
green leaf volatile on two plant species in a common garden experi-
ment. bioRxiv. https://doi.org/10.1101/370692

Frey, M., Stettner, C., Pare, P. W., Schmelz, E. A., Tumlinson, J. H., & Gierl,
A. (2000). An herbivore elicitor activates the gene for indole emission
in maize. Proceedings of the National Academy of Sciences of the United
States of America, 97, 14801–14806.

Frost, C. J., Mescher, M. C., Dervinis, C., Davis, J. M., Carlson, J. E., & De
Moraes, C. M. (2008). Priming defense genes and metabolites in hybrid
poplar by the green leaf volatile cis‐3‐hexenyl acetate. New Phytologist,
180, 722–734. https://doi.org/10.1111/j.1469‐8137.2008.02599.x

Glauser, G., Marti, G., Villard, N., Doyen, G. A., Wolfender, J. L., Turlings, T.
C., & Erb, M. (2011). Induction and detoxification of maize 1,4‐benzox-
azin‐3‐ones by insect herbivores. Plant Journal, 68, 901–911.

Glauser, G., Vallat, A., & Balmer, D. (2014). Hormone profiling. Methods in
Molecular Biology, 1062, 597–608.

http://orcid.org/0000-0002-7791-9440
http://orcid.org/0000-0002-6785-0099
http://orcid.org/0000-0002-4446-9834
https://doi.org/10.1111/nph.14671
https://doi.org/10.1111/nph.14671
https://doi.org/10.1101/370692
https://doi.org/10.1111/j.1469-8137.2008.02599.x


970 HU ET AL.
Handrick, V., Robert, C. A. M., Ahern, K. R., Zhou, S., Machado, R. A. R.,
Maag, D., … Kollner, T. G. (2016). Biosynthesis of 8‐O‐methylated
benzoxazinoid defense compounds in maize. Plant Cell, 28,
1682–1700.

Heil, M. (2014). Herbivore‐induced plant volatiles: Targets, perception and
unanswered questions. New Phytologist, 204, 297–306.

Helms, A. M., De Moraes, C. M., Troger, A., Alborn, H. T., Francke, W.,
Tooker, J. F., & Mescher, M. C. (2017). Identification of an insect‐pro-
duced olfactory cue that primes plant defenses. Nature
Communications, 8, 337.

Herve, M. R. (2015) Package ‘RVAideMemoire’, diverse basic statistical and
graphical functions. Version 0.9–52 (The Comprehensive R Archive
Network (CRAN), Vienna, Austria). <https://CRAN.R‐project.org/web/
packages/RVAideMemoire/>.

Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress
responses in the post‐genome era: Past, present and future. Plant Jour-
nal, 61, 1041–1052.

Huang, W., Robert, C. A., Herve, M. R., Hu, L., Bont, Z., & Erb, M. (2016). A
mechanism for sequence specificity in plant‐mediated interactions
between herbivores. New Phytologist, 214, 169–179.

Junker, R. R., Kuppler, J., Amo, L., Blande, J. D., Borges, R. M., Dam, N. M.,
… Etl, F. (2017). Covariation and phenotypic integration in chemical
communication displays: Biosynthetic constraints and eco‐evolutionary
implications. New Phytologist. Mar 3, doi: https://doi.org/10.1111/
nph.14505

Karban, R., Yang, L. H., & Edwards, K. F. (2014). Volatile communication
between plants that affects herbivory: A meta‐analysis. Ecology Letters,
17, 44–52.

Lenth, R. V. (2016). Least‐squares means: The R Package lsmeans. Journal
of Statistical Software, 69, 1–33.

Maag, D., Dalvit, C., Thevenet, D., Kohler, A., Wouters, F. C., Vassao, D. G.,
… Glauser, G. (2014). 3‐β‐D‐Glucopyranosyl‐6‐methoxy‐2‐
benzoxazolinone (MBOA‐N‐Glc) is an insect detoxification product of
maize 1,4‐benzoxazin‐3‐ones. Phytochemistry, 102, 97–105.

Maag, D., Erb, M., Bernal, J. S., Wolfender, J. L., Turlings, T. C. J., & Glauser,
G. (2015). Maize domestication and anti‐herbivore defences: Leaf‐spe-
cific dynamics during early ontogeny of maize and its wild ancestors.
PLoS One, 10, e0135722.

Machado, R. A., Robert, C. A., Arce, C. C., Ferrieri, A. P., Xu, S., Jimenez‐
Aleman, G. H., … Erb, M. (2016). Auxin is rapidly induced by herbivory
attack and regulates systemic, jasmonate‐dependent defenses. Plant
Physiology, 172, 521–532.

Machado, R. A. R., Arce, C. C. M., McClure, M. A., Baldwin, I. T., & Erb, M.
(2018). Aboveground herbivory induced jasmonates disproportionately
reduce plant reproductive potential by facilitating root nematode infes-
tation. Plant, Cell and Environment, 41, 797–808.

McCormick, A. C., Unsicker, S. B., & Gershenzon, J. (2012). The specificity
of herbivore‐induced plant volatiles in attracting herbivore enemies.
Trends in Plant Science, 17, 303–310.

Meihls, L. N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M. M.,
… Jander, G. (2013). Natural variation in maize aphid resistance is asso-
ciated with 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside
methyltransferase activity. Plant Cell, 25, 2341–2355.

Mescher, M. C., & De Moraes, C. M. (2014). Role of plant sensory percep-
tion in plant–animal interactions. Journal of Experimental Botany, 66,
425–433.

Mirabella, R., Rauwerda, H., Allmann, S., Scala, A., Spyropoulou, E. A., de
Vries, M., … Schuurink, R. C. (2015). WRKY40 and WRKY6 act down-
stream of the green leaf volatile E‐2‐hexenal in Arabidopsis. Plant
Journal, 83, 1082–1096.

Moraes, M. C. B., Birkett, M. A., Gordon‐Weeks, R., Smart, L. E., Martin, J.
L., Pye, B. J., … Pickett, J. A. (2008). cis‐Jasmone induces accumulation
of defence compounds in wheat, Triticum aestivum. Phytochemistry, 69,
9–17.
Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C.
C., … Uknes, S. (1998). Induced resistance responses in maize. Molecu-
lar Plant‐Microbe Interactions, 11, 643–658.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara,
R., … Wagner, H. (2013) Vegan: Community ecology package. R pack-
age version 2.0‐10 (The Comprehensive R Archive Network (CRAN),
Vienna, Austria. 2013).

Piechulla, B., Lemfack, M. C., & Kai, M. (2017). Effects of discrete bioactive
microbial volatiles on plants and fungi. Plant, Cell and Environment, 40,
2042–2067.

Pieterse, C. M. J., Leon‐Reyes, A., Van der Ent, S., & Van Wees, S. C. M.
(2009). Networking by small‐molecule hormones in plant immunity.
Nature Chemical Biology, 5, 308–316.

Richter, A., Schaff, C., Zhang, Z., Lipka, A. E., Tian, F., Kollner, T. G., …
Degenhardt, J. (2016). Characterization of biosynthetic pathways for
the production of the volatile homoterpenes DMNT and TMTT in
Zea mays. Plant Cell, 28, 2651–2665.

Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., …
Vlot, A. C. (2017). Monoterpenes support systemic acquired resistance
within and between plants. Plant Cell, 29, 1440–1459.

Robert, C. A. M., Zhang, X., Machado, R. A. R., Schirmer, S., Lori, M., Mateo,
P., … Gershenzon, J. (2017). Sequestration and activation of plant
toxins protect the western corn rootworm from enemies at multiple
trophic levels. eLife, 6, e29307.

Ruther, J., & Kleier, S. (2005). Plant‐plant signaling: Ethylene synergizes
volatile emission in Zea mays induced by exposure to (Z)‐3‐Hexen‐1‐
ol. Journal of Chemical Ecology, 31, 2217–2222.

Scala, A., Allmann, S., Mirabella, R., Haring, M. A., & Schuurink, R. C. (2013).
Green leaf volatiles: A plant's multifunctional weapon against herbi-
vores and pathogens. International Journal of Molecular Sciences, 14,
17781–17811.

Scala, A., Mirabella, R., Goedhart, J., de Vries, M., Haring, M. A., &
Schuurink, R. C. (2017). Forward genetic screens identify a role for
the mitochondrial HER2 in E‐2‐hexenal responsiveness. Plant Molecular
Biology, 95, 399–409.

Schmelz, E. A., Alborn, H. T., Banchio, E., & Tumlinson, J. H. (2003). Quan-
titative relationships between induced jasmonic acid levels and volatile
emission in Zea mays during Spodoptera exigua herbivory. Planta, 216,
665–673.

Schmelz, E. A., Alborn, H. T., & Tumlinson, J. H. (2003). Synergistic interac-
tions between volicitin, jasmonic acid and ethylene mediate insect‐
induced volatile emission in Zea mays. Physiologia Plantarum, 117,
403–412.

Schnee, C., Köllner, T. G., Held, M., Turlings, T. C., Gershenzon, J., &
Degenhardt, J. (2006). The products of a single maize sesquiterpene
synthase form a volatile defense signal that attracts natural enemies
of maize herbivores. Proceedings of the National Academy of Sciences
of the United States of America, 103, 1129–1134.

Seidl‐Adams, I., Richter, A., Boomer, K., Yoshinaga, N., Degenhardt, J., &
Tumlinson, J. (2015). Emission of herbivore elicitor‐induced sesquiter-
penes is regulated by stomatal aperture in maize (Zea mays) seedlings.
Plant, Cell and Environment, 38, 23–34.

Stamm, I., Lottspeich, F., & Plaga, W. (2005). The pyruvate kinase of
Stigmatella aurantiaca is an indole binding protein and essential for
development. Molecular Microbiology, 56, 1386–1395.

Stotz, H. U., Koch, T., Biedermann, A., Weniger, K., Boland, W., & Mitchell‐
Olds, T. (2002). Evidence for regulation of resistance in Arabidopsis to
Egyptian cotton worm by salicylic and jasmonic acid signaling pathways.
Planta, 214, 648–652.

Tamayo, M. C., Rufat, M., Bravo, J. M., & San Segundo, B. (2000). Accumu-
lation of a maize proteinase inhibitor in response to wounding and
insect feeding, and characterization of its activity toward digestive pro-
teinases of Spodoptera littoralis larvae. Planta, 211, 62–71.

Tholl, D., Sohrabi, R., Huh, J.‐H., & Lee, S. (2011). The biochemistry of
homoterpenes—Common constituents of floral and herbivore‐induced
plant volatile bouquets. Phytochemistry, 72, 1635–1646.

https://CRAN.R-project.org/web/packages/RVAideMemoire/
https://CRAN.R-project.org/web/packages/RVAideMemoire/
https://doi.org/10.1111/nph.14505
https://doi.org/10.1111/nph.14505


HU ET AL. 971
Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., …
Turlings, T. C. J. (2007). Priming by airborne signals boosts direct and
indirect resistance in maize. Plant Journal, 49, 16–26.

Turlings, T. C. J., & Erb, M. (2018). Tritrophic interactions mediated by
herbivore‐induced plant volatiles: Mechanisms, ecological rele-
vance, and application potential. Annual Review of Entomology, 63,
433–452.

Van Dam, N. (2009). How plants cope with biotic interactions. Plant Biol-
ogy, 11, 1–5.

van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J., & Ton, J.
(2006). Costs and benefits of priming for defense in Arabidopsis. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 103, 5602–5607.

von Merey, G., Veyrat, N., Mahuku, G., Valdez, R. L., Turlings, T. C. J., &
D'Alessandro, M. (2011). Dispensing synthetic green leaf volatiles in
maize fields increases the release of sesquiterpenes by the plants, but
has little effect on the attraction of pest and beneficial insects. Phyto-
chemistry, 72, 1838–1847.

Wong, M. L., & Medrano, J. F. (2005). Real‐time PCR for mRNA quantita-
tion. BioTechniques, 39, 75–85.

Wouters, F. C., Blanchette, B., Gershenzon, J., & Vassao, D. G. (2016). Plant
defense and herbivore counter‐defense: Benzoxazinoids and insect
herbivores. Phytochemistry Reviews, 15, 1127–1151.
Ye, M., Glauser, G., Lou, Y., Erb, M., & Hu, L. (2018). Molecular dissection of
early defense signaling underlying volatile‐mediated defense priming
and herbivore resistance in rice. bioRxiv. https://doi.org/10.1101/
378752

Zhuang, X., Fiesselmann, A., Zhao, N., Chen, H., Frey, M., & Chen, F. (2012).
Biosynthesis and emission of insect herbivory‐induced volatile indole in
rice. Phytochemistry, 73, 15–22.

Zipfel, C. (2014). Plant pattern‐recognition receptors. Trends in Immunol-
ogy, 35, 345–351.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Hu L, Ye M, Erb M. Integration of

two herbivore‐induced plant volatiles results in synergistic

effects on plant defence and resistance. Plant Cell Environ.

2019;42:959–971. https://doi.org/10.1111/pce.13443

https://doi.org/10.1101/378752
https://doi.org/10.1101/378752
https://doi.org/10.1111/pce.13443

