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Abstract

Theories in soil biology, such as plant-microbe interactions and microbial coopera-
tion and antagonism, have guided the practice of ecological restoration (ecorestora-
tion). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the
development of above-ground biodiversity (vegetation structure). The role of rhizos-
phere bacteria in plant growth has been largely investigated but the role of phages
(bacterial viruses) has received a little attention. Below the ground, phages govern
the ecology and evolution of microbial communities by affecting genetic diversity,
host fitness, population dynamics, community composition, and nutrient cycling.
However, few restoration efforts take into account the interactions between bacte-
ria and phages. Unlike other phages, filamentous phages are highly specific, nonle-
thal, and influence host fitness in several ways, which make them useful as target
bacterial inocula. Also, the ease with which filamentous phages can be genetically
manipulated to express a desired peptide to track and control pathogens and con-
taminants makes them useful in biosensing. Based on ecology and biology of filamen-
tous phages, we developed a hypothesis on the application of phages in environment
to derive benefits at different levels of biological organization ranging from individual
bacteria to ecosystem for ecorestoration. We examined the potential applications of
filamentous phages in improving bacterial inocula to restore vegetation and to moni-
tor changes in habitat during ecorestoration and, based on our results, recommend a
reorientation of the existing framework of using microbial inocula for such restora-
tion and monitoring. Because bacterial inocula and biomonitoring tools based on fila-
mentous phages are likely to prove useful in developing cost-effective methods of
restoring vegetation, we propose that filamentous phages be incorporated into na-
ture-based restoration efforts and that the tripartite relationship between phages,
bacteria, and plants be explored further. Possible impacts of filamentous phages on
native microflora are discussed and future areas of research are suggested to pre-

clude any potential risks associated with such an approach.
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1 | INTRODUCTION

Theories in soil biology guide the efforts to restore vegetation in
degraded habitats. Natural attenuation—banning any activity that
results in environmental degradation—is useful only in those eco-
systems that are in the early stages of degradation. Currently, a vast
majority of degraded ecosystems show altered abiotic and biotic
components and lowered resilience. Consequently, assisted resto-
ration practices, such as planting native species, replacing or treat-
ing contaminated soil, and managing water resources, represent the
only land restoration options for most of the degraded ecosystems.
The Society of Ecological Restoration defines ecorestoration as “the
process of assisting the recovery of an ecosystem that has been de-
graded, damaged or destroyed” (SER, 2004). Restoration practices de-
veloped on the principles of plant-microbe mutualism and microbial
cooperation, synergism, and antagonism have facilitated ecoresto-
ration (Heneghan et al., 2008; Perring et al., 2015; Young, Petersen,
& Clary, 2005).

Over 65% of the earth's surface has been degraded or con-
taminated, which has resulted in the loss of its potential to benefit
human society—which is why ecorestoration is held to be a global
need by the United Nations. Restoration practices have site-specific
goals, such as to repair environmental damage after deforestation
or overharvesting, to stabilize soil after mining, to restore the pro-
ductivity of saline soils after heavy irrigation, and to remediate soils
contaminated as a result of industrial activity. However, major goals
of all land restoration continue to be the restoration of biodiversity,
revival of ecosystem services for socio-economic security, and im-
proved resilience of ecosystems to future environmental change.
Restoration may be voluntary, undertaken to improve the quality
of life, or mandatory, a legislative directive to ensure sustainable
development.

Degraded lands need specialized restoration efforts rather
than conventional soil amelioration methods, because such
lands are often exposed to multiple sources of stress such as
high levels of contaminants, toxins, and pathogens (Perring et al.,
2015). Traditionally, soil scientists use agronomic practices and
chemical amendments to improve soil fertility (Filiberto & Gaunt,
2013), although different sources of stress need source-specific
efforts to improve soil and plant health. The traditional methods
commonly used for treating farmlands or small patches of de-
graded lands are not only too costly for restoring vast stretches
of degraded ecosystems but also of limited efficacy in con-
trolling pathogens and biological toxins and coping with changes
in the environment (Figure 1). In contrast, microbial inocula
(free-living, associative, and endosymbiotic) repair normal bio-
logical processes affected by degradation, ameliorate contam-
inated soils, and control phytopathogens in degraded habitats.
Microbial inocula are thus an ecologically sound option to speed
up revegetation and revive ecosystem services under diverse en-
vironmental regimes (Tables 1-3). Some bacterial genera, such
as Bacillus, Bradyrhizobium, Enterobacter, and Pseudomonas, have

been widely used as inocula and even commercial formulations

have been developed for use with economically and ecolog-
ically important plants (Table 1). Microbes may possess multi-
ple traits that may be deployed in combating both abiotic and
biotic sources of stress; however, restoration ecologists select
bacteria with specific traits to tackle the most serious envi-
ronmental challenges (Rau et al., 2009; Sharma, Mishra, Rau, &
Sharma, 2015). Alternatively, consortia of microbes may also be
developed to deal with multiple challenges, but their efficacy is
reduced because members of such consortia differ in their envi-
ronmental and nutritional requirements, and the use of consortia
continues to face unpredictable challenges.

As a result of advances in molecular and genomic studies, bac-
terial viruses (bacteriophages or simply phages) have emerged as
one of the key elements governing the structure and functioning of
microbial communities (Kauffman et al., 2018). Phages play an im-
portant role in developing a resilient microbial community (Koskella
& Brockhurst, 2014; Silveira & Rohwer, 2016) and in driving adapta-
tion, competition, and antagonism in bacteria and thereby influence
the evolution of bacteria and the assembly of microbial community
(Rodriguez-Valera et al., 2009; Mai-Prochnow et al., 2015; Shapiro,
Williams, & Turner, 2016) (Figure 2). However, applying these the-
ories of microbial ecology to ecorestoration has not received due
attention.

Among phages, the use of filamentous phages—rod-shaped sin-
gle-stranded circular DNA viruses characterized by a long helical
nonenveloped protein coat (King, Lefkowitz., Adams, & Carstens,
2011)—has evolved from answering fundamental questions in biol-
ogy to developing biotechnological tools (Rakonjac, 2012; Rakonjac,
Bennett, Spagnuolo, Gagic, & Russel, 2011). Filamentous phages are
of interest to microbial ecologists and biotechnologists because the
phages have unique morphological, biological, and genomic features.
The life cycle of these phages is marked by chronic infections: The
phages multiply continuously within their bacterial host, which re-
leases them into the immediate environment without undergoing
cell lysis (Calendar & Inman, 2005; Maniloff, Cadden, & Putzrath,
1981; Rakonjac et al., 2011). Owing to their small and simple ge-
nome, filamentous phage can be easily manipulated to display on
their surface a variety of peptides or polypeptides, which makes
them useful in developing versatile biosensors (Harper & Kutter,
2008; Rakonjac et al., 2011; Table 4). These phages, therefore, have
been studied extensively for their morphology and biology (Das,
2014; Krupovic & Forterre, 2015; Marvin, 1998; Opella, Zeri, & Park,
2008; Rakonjac, 2012), for their influence on the physiology of their
bacterial hosts (Mai-Prochnow et al., 2015), for their traditional ap-
plications in displaying specified peptides or proteins (Benhar, 2001;
Kehoe & Kay, 2005; Willats, 2002), and for their nontraditional ap-
plications to develop tools for diagnostic purposes and in nanobio-
technology and synthetic biology for exploring the secretomes of
microbes (Rakonjac et al., 2011; Henry, Arbabi-Ghahroudi, & Scott,
2015; Gagic, Ciric, Wen, Ng, & Rakonjac, 2016; Szekely & Breitbart,
2016; Mai-Prochnow et al., 2015).

The growing knowledge of the ecology of filamentous phages
from diverse bacterial genera and environmental settings makes
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FIGURE 1 Ecosystem and other environmental challenges for ecological restoration of degraded lands, where current techniques face

challenges but filamentous phage has potential to provide solutions.

them an important biological resource for environmental restoration
(Fauguet, Mayo, Maniloff, Desselberger, & Ball, 2005; Rakonjac,
2012; Henry et al., 2015; Szekely & Breitbart, 2016; Mai-Prochnow
etal., 2015). More than sixty filamentous phages have been reported
from terrestrial and aquatic ecosystems in temperate and trop-
ical regions (Fauquet, Mayo, Maniloff, Desselberger, & Ball, 2005;
Rakonjac, Bennett, Spagnuolo, Gagic, & Russel, 2011). Metagenomic
analyses show a high frequency of filamentous phages in such con-
taminated environments as industrial wastewater and sewage dis-
posal sites, which need ecorestoration (Alhamlan, Ederer, Brown,
Coats, & Crawford, 2013; Cantalupo et al.,, 2011). A recent and
exhaustive metavirome study also showed the prevalence of fila-
mentous phages in many diverse environments including soils and
sediments, saline water and freshwater, and air and food (Szekely
& Breitbart, 2016). Bacteria associated with higher animals, insects,
corals, and even people (as gut bacteria) also harbor filamentous
phages (Weynberg, Voolstra, Neave, Buerger, & van Oppen, 2015),
and they have been reported from bacterial genera associated

FP, filamentous phage

with ecologically important plant families (Brassicaceae, Poaceae,
Rutaceae, and Solanaceae) widely employed in environmental res-
toration (Berg, Marten, & Ballin, 1996; Tseng, Lo, Lin, Pan, & Chang,
1990). Despite emerging evidence on the prevalence of filamentous
phages, current knowledge of the ecology of filamentous phages in
soil and plants and of their potential application in restoration con-
tinues to be limited because of the challenges in purifying and iden-
tifying the phages and in assaying their activities.

Infection by filamentous phages affects the fitness of their
bacterial hosts, a feature that can be exploited for securing de-
sired ecological benefits. Mostly, a phage infection enhances the
host's ability to combat abiotic and biotic stress, to invade a new
habitat, and to partake in the development of microbial communi-
ties (Askora & Yamada, 2015; Bille et al., 2005; Derbise & Carniel,
2014; Jian, Xiao, & Wang, 2013; Mai-Prochnow et al., 2015; Rice et
al., 2009; Shapiro et al., 2016; Waldor & Mekalanos, 1996; Webb,
Lau, & Kjelleberg, 2004; Yu et al., 2015). However, at times a phage
infection lowers the fitness of the host bacterium, which is also
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TABLE 1 Potential bacterial targets to explore filamentous phage to improve the benefits of commercial inoculants being used to
promote plant growth under different environmental stresses

Target function

Biofungicide

Bioinsecticide

Bionematicides

Multifunctional
PGPR

Target organism(s)/activity

Rot diseases caused by Fusarium
and Rhizoctonia

Seed-borne disease caused by
fungus Ascochyta spp.

Rots, blights, wilt, leaf spot, and
mildew

Leaf spot caused by different
genera of fungus

Seed-borne diseases: Common
wheat bunt (Tilletia caries), wheat
leaf spot (Septoria nodorum)

Lepidoptera larvae and beetles

Insecticide/miticide: Infection by
aphids, psyllids, whiteflies, lygus
and mealybugs, thrips and
phytophagous mites

Insect pests of lepidoptera, diptera,
coleoptera, hymenoptera

Meloidogyne spp, Hetrodera spp,
Helicotylenchus spp, Hoplolaimus
spp. causing root-knot, cyst,
lesion

e Fire blight (Erwinia amylovora)

e Antibiosis (via production of
siderophore)

e Biocontrol of fire blight

e Protection from frost damage

e Biofungicide (sheath blight
caused by several fungal
species)

e Bionematicide (root-knot, cyst)

e Biocontrol of bacterial
pathogens (via production of
siderophores and hydrogen
cyanide)

e Biofungicide,

o N,-fixer

e |AA producer

e N,-fixer

e Biocontrol of pathogens

o N,-fixer

e Bionematicide

e Bioinsecticide (flea beetles, leaf
aphids, root worms)

e Bionematicide (cyst, root-knot,
root-lesion)

e Provide silicates
e Develop resistance for abiotic
and biotic stresses in plants

Bacterial composition

Bacillus subtilis

Pseudomonas chlororaphis

Bacillus subtilis

Pseudomonas fluorescens

Pseudomonas chlororaphis

Bacillus thuringiensis var. kurstaki

Chromobacterium subtsugae strain
PRAA4-1

B. thuringiensis var. kurstaki

Bacillus firmus

Pseudomonas fluorescens A506

P. fluorescens IIHR PF-2

Pseudomonas chlororaphis subsp.
aurantiaca SR1

Azotobacter Chrococcum

Azotobacter chroococcum, Pseudomonas

fluorescens

Bacillus, Firmus, Clothianidin

Bacillus species

Trade name of
inoculants
Kodiak HB
Cedress; Cedomon
Biotilis

Bactvipe

Cerall

Bioscrop BT16

Grandevo

Lipel

Bionemagon

BlightBan A506

Sheathguard

Liquid PSA

Bio Azo

Bio Gold

Poncho/Votivo

Si Sol B

Filamentous phage
Needs investigation
Known for

Pseudomonas
Needs investigation
Known for

Pseudomonas
Known for

Pseudomonas

Needs investigation

Needs investigation

Needs investigation

Needs investigation

Known for
Pseudomonas

Known for
Pseudomonas

Known for
Pseudomonas

Needs investigation
Known for

Pseudomonas

Needs investigation

Needs investigation

(Continues)
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TABLE 1 (Continued)

Target function

Nutrient
Solubilizer/
Mobilizer

Soil amendment

Target organism(s)/activity

N,-fixation

Provide inorganic and organic
nutrients

Improved bioavailability of
phosphate and uptake of N and K

Provides N and P

Iron mobilization

K Mobilization through production
of organic acids and enzymes
e N,-fixation
e Phosphate mineralization
e Increase in soil urease and
dehydrogenase activity

Phosphate solubilization

Zinc mobilization
Potash solubilization

Reclaim alkaline soil (oxidizes sulfur
and secretes organic acids)

Fcology and Evolution o 2267
& WILEY- 2

Bacterial composition

Bradyrhizobium japonicum

B. japonicum (USDA 138 for USA, 532C for
Canada)

Acetobacter diazotrophicus
Bradyrhizobium japonicum, Penicillium bilaii

Delftia acidovorans, Bradyrhizobium
japonicum

Glomus intraradices, Rhizobium legumino-
sarum bv. viciae

Bacillus subtilis
Bradyrhizobium japonicum, Trichoderma sp.
Bradyrhizobium japonicum

Pseudomonas azotoformans

Bacillus amyloliquefaciens, Trichoderma
virens

Acidovorax facilis, Bacillus subtilis, B.
licheniformis, B. megaterium, B. oleronius,
B. marinus, & Rhodococcus rhodochrous

Acidithiobacillus ferrooxidan

Frateuria aurantia

Azotobacter vinelandii-B 1795, Bacillus
megaterium B1091, Clostridium pasteuri-
anum, Azospirillum sp., Bacillus subtilis,
Rhodobacter sp., Lactobacillus sp.,
Trichoderma reesei, Saccharomyces
cerevisiae, Streptomyces sp.

Rhizobium leguminosarum biovar viceae
Azospirillum brasilense; Rhizobium
Bradyrhizobium sp.

Consortium of Rhizobium

High load of Rhizobium

Acetobacter diazotrophicus (MTCC 1226),
Azotobacter chroococcum (MTCC 3853),
A. vinelandii (NCIM 2821), Azospirillum
lipoferum (NCIM 2908), Rhizobium
japonicum (NCIM 2743)

Azospirillum brasilense, Azotobacter vinelandii,
Bacillus megaterium, B. polymyxa,
Pseudomonas fluorescens, Streptomyces
albus

Bacillus subtilis
Bacillus megaterium

Pseudomonas striata (NCIM 2847), Bacillus
polymyxa (NCIM 2188), B. megaterium
(NCIM 2087)

T. thiooxidans NCIM-5065
Frateuria aurantia

Thiobacillus thiooxidans (NCIM 5069)

Trade name of

inoculants Filamentous phage

Optimize liquid Needs investigation
Soybean; Rhizo-Flo

Nodulest 10

Bio Aceto

TagTeam LCO

Bioboost

AGTIV

HiStick N/T
Graph-Ex SA
Dyna-Start; Vault SP

Amase

QuickRoots

Accomplish LM

Fe Sol B
K Sol B

Microbion UNC Known for

Clostridium; needs
investigation for
other

Nodulator XL Needs investigation
Nitrofix and Bioenraiz

Vault SP

Rhizo-Flo

Primo

Agrilife Nitrofix

Bactofil A 10 Known for
Pseudomonas; for
other needs
investigation

Bio Phospho Needs investigation

Bio Phos

P Sol B Known for
Pseudomonas

Zn Sol B Needs investigation

Bio Potash Needs investigation

SSolB Needs investigation
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FIGURE 2 Anunsolved problem related to exploiting bioremediation potential of Pseudomonas in phenol contaminated field environment
highlighting the potential of filamentous phage to provide solutions and path of research to arrive at them (based on Goldstein, Mallory, &
Alexander, 1985; Mrozik, Miga, & Piotrowska-Seget, 2011). FP, filamentous phage.

beneficial if the bacterial host happens to be a plant pathogen
(Ahmad, Askora, Kawasaki, Fujie, & Yamada, 2014; Yamada, 2013).
Filamentous phages are useful for manipulating bacteria for envi-
ronmental applications because the phages are stably produced in
their bacterial hosts and are easy to manipulate using genetic and
chemical methods—however, they remain underexploited in current
practice. A chronic infection by a filamentous phage induces long-
term changes in the host physiology, which is desirable for develop-
ing microbial inocula.

Besides a relatively persistent relationship with the bacterial
host, filamentous phages also show high host specificity up to the
level of a strain, which qualifies them as a stable biomarker of their
host (Henry et al., 2015; Lin et al., 1999). For example, ¢Lf filamen-
tous phage infects only Xanthomonas campestris pv campestris,
whereas ¢pXv filamentous phage infects only X. campestris pv. vesi-
catoria: Cross-inoculation of the filamentous phages and their bac-
terial hosts did not result in successful infection. Gene Ill (glll) of the
phage encodes a virion-associated protein (plll), which shows struc-
tural features essential for a phage to be adsorbed on the surface
of its host. A hybrid phage of ¢pXv with plll derived from ¢Lf could
infect X. campestris pv. campestris successfully but not X. campestris

pv. vesicatoria, showing that the host specificity is governed by glll.

As filamentous phages possess unique forms of plll, such high host
specificity makes them useful in tracking and infecting bacterial in-
ocula for environmental applications.

Based on the role of filamentous phages in soil and the ease with
which they can be put to biotechnological use, we want to high-
light their potential for environmental applications. Specifically, we
examined the evidence on (a) the influence of filamentous phages
on the ecological and evolutionary potential of their bacterial hosts
and (b) the use of filamentous phages in developing biosensing tools
for environmental monitoring of microbes and contaminants. We
neither provide an in-depth comparison of different bacterial tech-
nologies for environmental restoration nor suggest that the use of
filamentous phages along with bacterial inocula can solve every
environmental problem. Instead, we highlight the opportunities
that filamentous phage present to a practitioner of environmental
restoration, especially to design appropriate bacterial inocula and
to develop efficient biomonitoring tools. We examine the role of
filamentous phages in community ecology and assembly, particu-
larly microbial adaptation, synergism, competition, and antagonism.
Finally, we identify priority research areas to realize the potential
environmental benefits of filamentous phages and to prevent pos-

sible risks in their environmental applications.
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TABLE 4 Comparison of structural, biological, genomic, and functional properties of filamentous phages to that of tailed phages

Property

Classification

Morphology

Genome

Host

Receptor

Infection

Life cycle

Progeny release

Detection

Character

Order
Family

Shape

Segmentation

Genome size respect to
body length

Host
Receptor
No. of receptor

Adsorption rate

Nature

Type

Lysis

Progeny release

Plaque formation
Observation on plate assay

Electron-microscopic assay

Filamentous phage

Not assigned
Inoviridae, Plectrovirus

Long cylindrical

Nonsegmented body

Smaller genome size as compared to body
length (almost double; 3-9.5 kb)

Infect F* bacteria only

Pilus of the male bacteria

Limited numbers (2-4 per cell)

Adsorption rate constant = 3 x 107! cm®/
min

Chronic

3 types (episomal, constitutively replicating
lysogen and inducible lysogen)

Does not kill its host

Progeny released throughout the life span
of the host

Absent or turbid (in some cases)
Difficult

Generally neglected as debris or pili of
bacteria because of its shape and size

Tailed phages

Caudovirales
Myoviridae, Podoviridae, Siphoviridae

Diverse shape (vary in tail length and type)

Generally segmented body (head, collar,
tail, etc.)

High genome size

No preference for F* or F~
Receptor present on the cell surface
Many (up to few hundreds per host cell)

Adsorption rate constant = 2.4 x 10”7 cm®/
min

Lytic, Temperate
2 types (lytic and lysogenic)

Kills the host

Progeny released once in host's life

Clear, turbid or centered
Easy

Quite easy to distinguish due to character-
istics shape and size

Note. Rakonjac et al. (2011), Mai-Prochnow et al. (2015).

2 | POTENTIAL AREAS FOR THE
APPLICATION OF FILAMENTOUS PHAGES
IN ENVIRONMENTAL RESTORATION FOR
SUSTAINABLE DEVELOPMENT

Environmental restoration is acceptable to ecological economists
as a tool for ensuring human well-being and developing a sustain-
able society, which is characterized by improved soil health, reduced
negative impacts of industrial activity, and lower poverty (Lei, Pan, &
Lin, 2016; Martin, 2017; Millennium Ecosystem Assessment, 2005;
Sachs & Reid, 2006; Tallis, Kareiva, Marvier, & Chang, 2008). In fact,
the policy to encourage environmental restoration proved promising
in helping people to escape the poverty trap in China (Cao, Zhong,
Yue, Zeng, & Zeng, 2009). Poverty traps represent a vicious circle
formed due to a complex interaction between the poverty and en-
vironmental degradation, in which “poverty leads to environmental
degradation, and environmental degradation then deepens poverty”
(Tallis et al., 2008). Poverty forces the native people to engage in
unsustainable exploitation of natural resources, which degrades the
environment and reduces the resource base for the poor people.
Environmental degradation makes the land unproductive, there-
fore, reduces the income of native people. In this context, ecological
restoration programs, which take into account the livelihood of the
native people, also restore ecosystem goods and services besides
economic and social development. In Changting County of China,
the ecological restoration resulted in reduced soil erosion (68.3%),

increased vegetation cover (75%), and species number (6 times)
accompanied with increased employment (12.4%) and net income
(11.2%) of native people (Cao et al., 2009). Policymakers, ecolo-
gists, economists, and social scientists were unanimous in empha-
sizing that ecosystem restoration was vital to achieving at least 7
of the 17 Sustainable Development Goals (SDGs) outlined by the
United Nations as part of Transforming our World: The 2030 Agenda
for Sustainable Development (United Nations, 2015). Those seven
goals are as follows. Goal 1: End poverty in all its forms everywhere;
Goal 2: End hunger, achieve food security and improved nutrition
and promote sustainable agriculture; Goal 3: Ensure healthy lives
and promote well-being for all at all ages; Goal 6: Ensure availability
and sustainable management of water and sanitation for all; Goal 8:
Promote sustained, inclusive and sustainable economic growth, full
and productive employment and decent work for all; Goal 13: Take
urgent action to combat climate change and its impacts; and Goal
15, which specifically mentions ecorestoration: “Protect, restore and
promote sustainable use of terrestrial ecosystems, sustainably manage
forests, combat desertification, and halt and reverse land degradation
and halt biodiversity loss.”

Soil restoration may involve ex situ or in situ methods to treat and
restore degraded lands (Azubuike, Chikere, & Okpokwasili, 2016). In
ex situ treatment methods, soil is removed from the affected site and
treated either in a bioreactor or on the ground to trigger microbial
degradation by manipulating environmental factors such as oxygen,
moisture, and nutrients. We may manipulate environmental factors
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in a bioreactor using an automated controlling system, whereas in
the treatment on the ground, we may add organic matter (compost)
or fertilizers to the soil, with tillage (land farming) or without tillage
(soil biopiles). In situ methods, on the other hand, involve little or no
disturbance to soil structure and rely on either natural attenuation
by natural physico-chemical and biological processes or on assisted
restoration through enhanced microbial activity. Microbial activity
can be enhanced by injecting nutrients, water, chemicals, and even
air, using underground pipes, to the contaminated site, that is to the
saturated soil zone (biosparging) or to the unsaturated zone (biovent-
ing; Azubuike et al., 2016). Bioventing may be combined with vac-
uum-enhanced pumping for treating the contaminants in saturated
and unsaturated zones (bioslurping). We may also either introduce
specific bacteria to enrich the target bacteria (bioaugmentation) or
add specific nutrients to stimulate the activity of targeted bacteria
(biostimulation; Malhotra, Mishra, Karmakar, & Sharma, 2017).

In situ and ex situ soil treatments involve costly and labor-in-
tensive physicochemical methods, and copious use of water puts
additional pressure on existing water resources. Also, the use of
chemicals to control pathogens adds to the cost, pollutes soil and
water, and harms even useful microbes. To avoid these adverse ef-
fects, restoration ecologists prefer assisted phytoremediation, which
uses plants and their associated microbes to remove or manage the
toxicants through such biological processes as rhizofiltration, phyto-
stabilization or biotransformation, biosorption, bioaccumulation or
phytoextraction, biodegradation, and biovolatilization (Pilon-Smits,
2005). Restoration ecologists also select microbial inocula based on
their potential to promote plant growth. Microbes promote plant
growth by improving soil properties, solubilizing minerals, mobi-
lizing nutrient supply to plants, producing plant growth regulators,
and controlling phytopathogens (Rau et al., 2009; Sharma, Mishra,
Mohmmed, & Babu, 2011; Sharma, Mohmmed, Mishra, & Babu,
2005; Wubs, Putten, Bosch, & Bezemer, 2016). Thus, the link be-
tween below-ground biodiversity (microbes) and above-ground
biodiversity (plants) is fundamental to ecorestoration. Because con-
taminated lands harbor fewer forms of life and in smaller numbers,
for assisted restoration of vegetation we need to rely on bacteria
that not only promote plant growth but are also ecologically com-
petitive (Wubs et al., 2016).

To improve the efficacy of assisted restoration of vegetation, we
need to make the outcomes of restoration more predictable and to
develop ultrasensitive tools to assess the functionality of sites under
restoration (Halme et al., 2013). The tremendous in vitro potential
of selected microbes, plants, and a combination of plants and mi-
crobes has not been fully realized in the field because these organ-
isms are sensitive to biological toxins, pathogens, contaminants, and
such ecosystem challenges as acid or saline soil, inadequate mois-
ture, extreme temperatures, and open soil (Figure 1). Microbial in-
ocula chosen on the basis of their activity in vitro may fail to show
similar activity in the field (Figure 2). These challenges may be due
to the failure of microbial inocula (poor survival and colonization)
or the lack of real-time biomonitoring tools for tracking the inocula,
pathogens, and contaminants—and both can be countered by using
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filamentous phages to modify the ecophysiology of their bacterial
hosts suitably and as ultrasensitive biosensors for real-time biomon-
itoring. Filamentous phages carry genes or influence the expression
of bacterial genes that help the bacterial hosts to adapt to abiotic
and biotic stresses (Shapiro et al., 2016) by developing tolerance
to microbial toxins and such abiotic sources of stress in the envi-
ronment as salinity, desiccation, high temperatures, and high levels
of contaminants (Secor et al., 2015; Shapiro et al., 2016; Yu et al.,
2015). Filamentous phages may also make their bacterial hosts less
virulent or lower our dependency on pesticides to control patho-
gens, thereby contributing to sustainable restoration (Ahmad et al.,
2014; Askora, Kawasaki, Fujie, & Yamada, 2012). Modified filamen-
tous phages may also produce specific peptides or proteins that
are useful in monitoring targeted toxins, toxicants, and pesticides
in the environment and in holding soil particles together to reduce
soil erosion (Curtis, Dunbar, & Macgillivray, 2013; Curtis, Hewitt, &
Macgillivray, 2009; Curtis, Macgillivray, & Dunbar, 2011; Goldman
et al., 2003; Goldman, Pazirandeh, Charles, Balighian, & Anderson,
2002). In fact, filamentous phages can bridge the gap between the
efficacy of microbial activity in vitro and in the field. For example,
Pseudomonas can mineralize phenols in vitro but not in vivo in the
presence of contaminated soil, water, and raw sewage (Goldstein et
al., 1985; Mrozik et al., 2011; Figure 2). This failure of Pseudomonas
to mineralize phenols completely has been attributed to several fac-
tors, such as high levels of predation of Pseudomonas by phages, stiff
competition from native bacteria, greater sensitivity to bacterial tox-
ins, and inadequate mobility of Pseudomonas. These factors reduce
the viability and survivability of inocula. Filamentous phages have
the potential to meet such challenges to the expression of micro-
bial activity in vivo. For example, bacteria infected with filamentous
phages proved immune to predation by other phages and to bacte-
rial toxins, were mobile enough to reach the toxicants, and capable
enough to degrade them (Addy, Askora, Kawasaki, Fujie, & Yamada,
2012b; Chouikha, Charrier, Filali, Derbise, & Carniel, 2010; Kimsey
& Waldor, 1998; Sun & Webster, 1986; Yang et al., 2010). The path
of research to develop remediation methods based on filamentous
phages that improve microbial action is shown in Figure 2.
Filamentous phages can drive the ecology and evolution of mi-
crobial communities (Figure 3). Greater understanding of the role of
filamentous phages in promoting host fitness and host diversity and,
in turn, their impact on the dynamics of host populations, commu-
nity composition, and nutrient cycling will help in developing and
applying sustainable microbial technologies (Figure 3). Filamentous
phages mediate lateral transfer of genes between bacterial strains
and drive the evolution of bacterial hosts (Faruque et al., 2005) and
also induce phenotypic changes in their bacterial hosts (Table 5),
changes that affect the growth of the associated plants directly or
indirectly. Based on a meta-analysis of such studies, we identified
potential areas of research to exploit the tripartite relationship be-
tween phages, bacteria, and plants (Figure 4). Greater environmental
fitness of phage-infected bacterial hosts strengthens our hypothe-
sis of using filamentous phages that infect plant growth-promoting
rhizobacteria (PGPR) to develop the next generation of bacterial
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FIGURE 3 Potential significance of filamentous phages to enhance the ecological and evolutionary potential of the bacterial community

to ensure vegetation development at degraded lands

inocula. These inocula consisting of PGPR assist plants in colonizing
degraded environments either directly, by promoting root growth,
enriching the soil with nutrients, and increasing chelator-mediated
uptake of nutrients, or indirectly, by controlling pathogens and re-
ducing the level of contaminants (Kaur, Pandove, & Gangwar, 2018).
However, filamentous phages should also enable PGPR to outcom-
pete native bacteria in colonizing the soil and the rhizosphere. To
achieve this goal, we recommend co-inoculation with filamentous
phages and bacteria for ecorestoration (Figures 3 and 4). To this end,
we first need to identify the filamentous phages that can bring about
the desired changes in the biology and ecology of target bacteria to
improve their efficacy as inoculants. Secondly, we need to identify
filamentous phages—or modify them—to develop biosensors to track
the inocula and the contaminants through time and space. Research
in these areas will contribute to making microbial technologies both

sustainable and effective.

3 | PLANT-ASSOCIATED BACTERIA IN
ECORESTORATION: CURRENT STATUS
AND OPPORTUNITIES FOR FILAMENTOUS
PHAGES

3.1 | Bacteria as restoration inocula: Potential
targets for modulation by filamentous phages

The bacteria used in commercial formulations as inocula for such
environmental applications as improving soil health and promoting
plant growth serve as potential targets for research involving fila-
mentous phages. Table 1 lists such bacterial taxa and their specific

beneficial traits (solubilizing and mobilizing nutrients, ameliorating

soils, and controlling phytopathogens). At least 47 such commercial
formulations are available in the global market. The single-function
formulations use a single bacterial strain or a consortium of bacte-
rial species for improving soil health and promoting plant growth
(Table 1), whereas multifunctional formulations rely either on a con-
sortium of bacteria with different activities or a single bacterial strain
with multiple desired traits. The most common bacterial genera in
these formulations include Acetobacter, Acidithiobacillus, Acidovorax,
Azospirillum, Azotobacter, Bacillus, Bradyrhizobium, Chromobacterium,
Delftia, Frateuria, Lactobacillus, Pseudomonas, Rhizobium, Rhodobacter,
and Thiobacillus. To make these formulations more effective, we sug-
gest that these genera be used as potential targets for exploring the
benefits of filamentous phages, although filamentous phages for
Pseudomonas have already been reported.

Some genera also show potential to remediate soil and water
contaminated with inorganic and organic toxicants (Table 2) and
therefore form another set of target bacteria for phage research.
For example, Azotobacter, Bacillus, Clostridium, Enterobacter, E. coli,
Pseudoalteromonas, Rhizobium, Shewanella, and Thermus help in deal-
ing with different heavy metals (Table 2). Agrobacterium, Acinetobacter,
Bacillus, Erwinia, Enterobacter, E. coli, Flavobacterium, Herbaspirillum,
Micrococcus, Pseudomonas, Ralsotonia, Stenotrophomonas, Vibrio, and
Yersinia degrade different classes of pesticides (Umadevi, Ayyasamy,
& Rajakumar, 2017). However, Acinetobacter, Erwinia, Neisseria,
Propionibacterium, Pseudomonas, Ralstonia, Rhizobium, Shigella, and
Stenotrophomonas degrade diverse organic contaminants including
aromatic amines, azo dyes, phenols, benzenes, toluenes, xylenes, oils,
polyaromatic hydrocarbons, halogens, and phthalate esters (Table 2).

Besides their potential in environmental remediation, some bacte-

rial genera also promote plant growth through such means as mineral
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TABLE 5 Experimental evidences showing influence of filamentous phage on competitiveness of host bacteria

Influence on host bacterial
competitiveness

Filamentous phage - host bacterium

Changes in host phenotype

Phages in theory of bacterial adaptation: As an agent to improve adaptation of bacterial host toward abiotic stresses

Increase in tolerance to high
temperature (35°C)

Development of adaptive
phenotype due to reduction in
rate of cell division and growth
rate

Tolerant to radiation

Regulation of host bacterial
community under seasonal
fluctuation in extreme arctic
environment

Development of freeze-fracture
resistance

Provide adaptive fitness to ensure
survival in limited-energy deep
sea environment

Increase in adaptation to tolerate
and sequester high levels of
copper and other heavy metals

Increase in tolerance to alkaline pH
and salt stress; maintenance of

redox and energy state

Tolerant to desiccation

Generation of high cellular energy
during early growth phase;
reduction in survival during acid
shock

Xf2 - X. campestris pv. Oryzae N5850

M13 - E. coli S-26

9RSM (pRSM3, pRSM4) - R.
solanacearum (MAFF730139,
MAFF106611, UW551)

@RSS1, 9RSM1 - R. solanacearum C319;
Ps29

¢®M13 - E. coli W6

®M13-km - E. coli TOP10F

M13 - E. coli HfrC

327 - Pseudoalteromonas sp. BSi20327
M13 - Escherichia coli 112-12

Cflc - X. campestris pv. Citri
@RSS1, pRSM1 - R. solanacearum C319;

Ps29

@RSM (9RSM3, pRSM4) - R.
solanacearum (MAFF730139,
MAFF106611 UW551 )

327 - Pseudoalteromonas sp. BSi20327

fd - E. coliHB11

SW1 - Shewanella piezotolerans WP3

Unknown - Ralstonia pickettii strains

(12D and 12)J)

f1 - E. coli

Pf - P. aeruginosa

M13 - E. coli

o Altered growth pattern (a slow growth in first 60 hr
followed by fast growth)

e Reduction in growth rate due to increase in mean
generation time (25%) and duration of lag phase

e Reduction in growth rate by ~60%

e Reduction in growth rate

e Increase dark coloration and pigmentation

e Reduction in cell density and tolerance to NaCl and
H,0, coupled with increase in motility and chemotaxis
(escape from nutrient-deficient, highly saline
environments during arctic winter; and avoid over
blooming under H,0,, nutrient and radiation abundance
of arctic summer)

e Increased total lipid content (25%) of outer membrane
without affecting relative concentration of
phospholipids

e Reduction in swarming motility due to decreased
production of lateral flagella with concomitant increase
in number of filamentous phages

o Horizontal transfer of metal resistance and transporter
genes, and zot-like toxin

e Induction of phage shock protein response (secretion of
plV secretin); maintenance of PMF- and ATP-dependent
protein secretion

e Increased cellular viscosity, aggregation, and adhesion;
promotion of liquid crystalline organization of biofilm
matrix

o Upregulation of phosphotransferase; downregulation of

acid stress and stationary phase transition genes;
impairment of oxidative and acid-resistance systems

Phages in theory of microbial competition: As an agent to protect the bacterial inoculant from allelopathy effect

Development of tolerance to
multiple colicins (E1, E2, and E3)

Provide heteroimmunity

f1 - E. coli K38

f1 - E. coli GM1, JM1

CTX¢ - V. cholerae

e Increase in deoxycholate sensitivity, leakage of
b-lactamase, and number of defective F-pili

* Modifications in tolA and tolB colicin transporter

* Divergence of phage repressors and their cognate
operators (rstR-ig-2)
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Reference

Kamiunten and
Wakimoto (1981)

Brown and Dowell
(1968)

Askora, Kawasaki,
Usami, Fujie, and
Yamada (2009)

Yamada et al. (2007)

Wan and Goddard
(2012)

Lin et al. (2011)
Roy & Mitra (1970a)
Yu et al. (2015)

Salivar, Tzagoloff,
and Pratt (1964)

Kuo, Tan, Su, and
Yang (1991)

Yamada et al. (2007)

Askora et al. (2009)

Yu et al. (2015)

Bayer and Bayer
(1986)

Jian, Xiao, and Wang
(2013)

Yang et al. (2010)

Joly et al. (2010)

Secor et al. (2015)

Karlsson,
Malmborg-Hager,
Albrekt, and
Borrebaeck (2005)

Boeke, Model, and
Zinder (1982)

Sun and Webster
(1986)

Kimsey and Waldor
(1998)

(Continues)
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TABLE 5 (Continued)
Influence on host bacterial
competitiveness Filamentous phage - host bacterium Changes in host phenotype Reference
Provide homoimmunity Ypfd - Y. pestis biovar Orientalis (CO92), o Stable integration of Ypf® genome as multiple tandem Chouikha et al.
Antiqua (IP550-HC1), Medievalis repeats into host chromosome providing homoimmunity (2010)
(IP1865-12)) to phages
Phage in theories of microbial colonization and antagonism: As an agent to ensure better colonization of host bacteria and control bacterial pathogens
Increase in colonization potential Nf or MDA - Neisseria meningitidis e Prevalence (90%) of hyper invasive pathogenic strains Bille et al. (2005),
to new surfaces by increase 72491 e Development of virulence due to transfer of Joseph et al. (2011)
virulence, transmissibility, infect meningococcal disease associated (MDA) pathogenic-
wide host range, toxin ity island and zonula occludens toxin (zot)-like protein
production, biofilm and Pf4 - P. aeruginosa PAO1 e Increase in virulence and evolution of super infective Rice et al. (2009)
aggregation form; enhanced stability of biofilms

o Triggering of biofilm formation with small size hollow
colony formation

CTX¢ - Vibrio cholerae 0395 e Development of virulent cholera causing strain Waldor and

e Acquiring of ability to produce cholera toxin ctxAB Mekalanos (1996)
Xf2 - X. campestris pv. Oryzae N5850 e Increase in virulence (larger size lesions) Kamiunten and

e Increase in EPS production Wakimoto (1981)
Ypfo - Yersinia pestis biovar Orientalis e Emergence of highly competitive, virulent (low LD50) Derbise et al. (2007)

plague causing new pathogen with epidemic spread

e Increase in toxin production, stability of Ypfe
integration in bacterial host chromosome, secretion of
phages having ability to infect new hosts; horizontal
transfer of toxin genes

@RSS1 - R. solanacearum MAFF 106603 e Enhanced virulence of bacterial host leading to an Addy, Askora,
and MAFF 106611 early onset of wilting and spread of infection in tomato Kawasaki, Fujie,
e Increase in extracellular polysaccharide (EPS) and Yamada
production, cell surface hydrophobicity, cell (2012a)

aggregation and density; pathogenicity traits (increase
in twitching motility and pilin production; early
expression of phcA global virulence regulator)

VPl - V. cholera strains (N16961 and e Evolution of potentially pathogenic, nonepidemic Li, Kotetishvili, Chen,
395) strains (non-O1 and non-0139) and Sozhamannan
e Horizontal transfer of toxin-coregulated pilus gene (2003)

(tcpA) residing in vibrio pathogenicity island
fs2 - V. cholera O1 e Increase in virulence and reduction in colonizing Nguyen et al. (2008)
ability; increase in in vivo production of cholera toxin
(CT) and phage CTXf
e Lateral transfer of rstC gene in V. cholerae O1 and
0139; reduction in type IV fimbrial production and
hemagglutination activity; increase in in vivo
detachment of cells
Cflc - X. campestris pv. Citri o Evolution of virulent pathogenic variants Kuo et al. (1991)
Pf4 - P. aeruginosa PAO1 e Increase in colonization potential to new surfaces Webb et al. (2004)
e Triggering of attachment and biofilm formation;
development of small colony variants (SCVs)
f1, c2 - Enterobacteria sp. e Development of superinfective forms due to high Kuo, Yang, Chen,
frequency of mutations and Kuo (2000)
e Development of small colony variant; loss of cell
viability and reduction in rates of RNA and protein
synthesis
Pf - P. aeruginosa e Increase in transmissibility, pathogenic persister Secor et al. (2015)
phenotype
e Increased cellular viscosity, aggregation and adhesion;
promotion of liquid crystalline organization of biofilm

matrix
@RSS1, gRSM1 (Ff-type) - R. e Enhanced virulence to cause early onset of wilting in Yamada et al. (2007)
solanacearum C319; Ps29 tobacco plants

(Continues)
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TABLE 5 (Continued)

Influence on host bacterial

competitiveness Filamentous phage - host bacterium

Pf1 - Pseudomonas aeruginosa PAO1

PE226 - R. solanacearum SL341

Ypfd - Y. pestis biovar Orientalis (CO92),
Antiqua (IP550-HC1), Medievalis
(IP1865-12)

Enhance host cell aggregation for XacF1 - Xanthomonas axonopodis pv.
colonization but reduced citri

virulence

®RSM1 and pRSM3 - R. solanacearum
MAFF 106603 and MAFF 106611

@RSM (pRSM3, pRSM4) - R.
solanacearum (MAFF730139,
MAFF106611 UW551)
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Changes in host phenotype Reference
e Development of antimicrobial tolerant biofilms Whiteley et al.
o Transfer of genes within biofilms due to phage (2001)

induction

e Emergence of high virulence to infect wide host range Murugaiyan et al.

(pepper, tomato and tobacco); (2010)
e Acquiring of zot-like protein (putative bacterial

virulence factor)

Chouikha et al.
(2010)

e Emergence of highly virulent and pathogenic strain by
transformation of Y. pseudotuberculosis after
horizontal acquisition of filamentous phage Ypf® over
the last 20,000 years

e Reduction in colonization ability, biofilm formation and Ahmad et al. (2014)
virulence to cause citrus canker

e Reduction in swimming, swarming, and twitching
motility; low levels of PilA type IV pili; reduction in cell

adhesion due to EPS production; slow growth rate
e Loss of virulence to show wilting symptoms in tomato
e Reduction of twitching motility, type IV pili,
B-1,4-endoglucanase activity, EPS production; and

Addy et al. (2012b)

expression of pathogenicity genes (egl, pehC, phcA,
phcB, pilT, and hrpB)
e Extreme reduction in pathogenic potential to cause Askora et al. (2009)
wilting in tomato

o Increase cell aggregation and colony size

Phages in theory of community assembly and evolution: As an agent to influence evolutionary potential of bacterial inoculant and trigger microbial community development

f1 - E. coli K38
Ike - E. coli K12 RM98

Reduction in conjugative ability
and plasmid transfer function

Diversification in Isogenic M13 - E. coli

population

Maintenance of conjugation rate ®M13 - E. coli W6
and spread of antibiotic

resistance within population @M13-km - E. coli TOP10F

Evolution and Development of Cflc - X. campestris pv. Citri

superinfective forms and virulent f1, c2 - Enterobacteria sp.

pathogenic variants due to high
frequency of mutations

solubilization, nitrogen fixation, phytohormone production, and antag-
onism toward pathogens (Table 2). These bacteria can enhance plant
growth because they can solubilize insoluble phosphates. Such phos-
phate-solubilizing bacteria (PSBs) include Acinetobacter, Agrobacterium,
Bacillus, Flavobacterium, Lysinibacillus, Microbacterium, Micrococcus,
Paenibacillus, Pseudomonas, Ralstonia, Salinicola, Serratia, Shewanella,and
Vibrio, and some of them may also fix nitrogen, namely Agrobacterium,
Azospirillum, Azotobacter, Bacillus,

Acinetobacter, Bradyrhizobium,

Rhizobium,  Sinorhizbium, Ensifer, Mesorhizobium, Herbaspirilum,

Micrococcus, Phylobacterium, Salinicola, and Vibrio. Some bacteria pro-
duce indole acetic acid (IAA), a plant growth regulator essential for
plants to colonize degraded sites. These IAA-producing bacteriainclude

e Number of defective F-pili Boeke et al. (1982)

o Alteration in cell membrane proteins lyer , Darby, and

Holland, (1976)

o Induction of high variability in individual viral De Paepe, De
Monte, Robert,
Lindner, and Taddei
et al. (2010)

Wan and Goddard

(2012)
Lin et al. (2011)

production than other phenotypic traits in isogenic
bacterial population

e Reduction in conjugation efficiency by ~10%

e Reduction in average number of pili; decrease in

conjugation rate with increase in pfu/ml
e Variation in gene structure and sequence Kuo et al. (1991)

e Loss of cell viability and reduction in rates of RNA and Kuo et al. (2000)

protein synthesis

Azospirillum, Acinetobacter, Microbacterium, Micrococcus, Rhizobium,
Salinicola, Vibrio, Xanthomonas, and Vibrio. Some bacteria are an-
tagonistic to phytopathogens; these include Bacillus, Micrococcus,
E. coli, Paenibacillurs, Rhizobium, Pseudomonas, Salinicola, and Vibrio.
Therefore, research on filamentous phages to infect these bacterial
genera deserves higher priority.

3.2 | Bacteria with known filamentous phages
potentially useful in restoration

Filamentous phages have been reported from many bacterial gen-
era potentially useful in ecorestoration. These genera include
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FIGURE 4 Potential of filamentous phages to assist in the tripartite relation of phage-bacteria-plant to positively influence the upstream
effects on plant health, growth, and colonization for ecosystem restoration

Acinetobacter, Clostridium,Enterobacteria, Neisseria, Propionibacterium,
Pseudoalteromonas, Pseudomonas, Ralstonia, Shewanella, Shigella,
Stenotrophomonas, Thermus, Vibrio, Xanthomonas, Xylella, and Yersinia
(Addy et al., 2012b; Ahmad et al., 2014; Derbise et al., 2007; Jian
et al., 2013; Kuo et al., 2000; Waldor & Mekalanos, 1996; Whiteley
et al,, 2001; Yu et al., 2015; Table 2). These genera include species
that cause diseases in plants and animals, show bioremediation ac-
tivity, and promote plant growth. The filamentous phage-mediated
ecological fitness of host bacteria has been investigated in selected
species for pathogenicity, survival, colonization, multiplication, and
distribution in a given ecological niche (Table 5). However, other spe-
cies that may be potentially useful in bioremediation and restoration
of vegetation are yet to be fully exploited.

Most bacterial genera also include species, which have as-
sociation with plants. For example, Acinetobacter, Enterobacter,
Pseudoalteromonas, Pseudomonas, Ralstonia, Shewanella,
Stenotrophomonas, Vibrio, Xanthomonas, and Xylella represent pre-
dominant endophytes, rhizobacteria, or both, with beneficial ef-
fects on plant growth (Bhattacharyya & Jha, 2012; Borriss, 2011;
Chandra & Singh, 2016; Kobayashi & Palumbo, 2000; Tilak et al.,
2005). Neisseria, Propionibacterium, Ralstonia, and Stenotrophomonas

form hydrocarbon-degrading bacterial communities that inhabit

the phyllosphere of plant species that have been widely used for
phytoremediation of air and soil contaminated with hydrocarbons
(Al-Awadhi et al., 2013; Al-Mailem et al., 2010). Pseudoalteromonas
shioyasakiensis and Vibrio sagamiensis SMJ18 are important members
of endophytic bacterial populations that inhabit Spartina maritima,
a species of cordgrass that accumulates heavy metals and is found
in most of the polluted estuaries worldwide (Mesa et al., 2015). Of
these bacteria, Pseudomonas spp. have been widely exploited for
bioremediation. Pseudomonas also produces diverse molecules to
promote plant growth: for example, P. fluorescens produces sidero-
phores to promote the growth of plants; P. chlororaphis produces
phenazine, an antibiotic to control fungal pathogens; and P. auran-
tiaca secretes di-2,4-diacetylfluoroglucylmethane, an antibiotic to
control Gram-positive bacterial pathogens.

In fact, species of these bacterial genera have shown their po-
tential in bioremediation and they have been reported from contam-
inated sites that need to be restored. For example, Acinetobacter spp.
(A. calcoaceticus MM5, A. Iwoffii ISP4, A. venetianus, Acinetobacter
sp. RTE1.4, Acinetobacter sp. HC8-3S, and Acinetobacter sp. A3) de-
grade such aromatic contaminants as crude oil, halogens, phthalate
esters, and phenols in soil and water (Fondi et al., 2013; Vamsee-
Krishna et al., 2006). Acinetobacter spp. have also been employed
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for treating industrial wastewater (Liu et al., 2016), and a protocol
has also been developed for their mass multiplication. Strains of
Acinetobacter, Neisseria, Xanthomonas, and Pseudomonas dominate in
a petroleum-degrading consortium purified from contaminated soils
in China (Xu et al., 2011). Thermus spp. (T. scotoductus, T. thermophilus
DSM 579, and T. aquaticus DSM 625) favor terrestrial hot springs
but T. thermophilus HB8 has also been reported in organic waste,
sewage sludge compost, thermogenic compost, cattle manure, and
garden waste (Fujio & Kume, 1991; Marteinsson, Birrien, Raguenes,
Costa, & Prieur, 1999). These bacterial genera and species have a
high potential for processing and bioremediation of wastes even at
temperatures as high as 65-84°C.

Some bacterial genera infected with known filamentous phages
also show features useful for ecorestoration (bioremediation, pro-
motion of plant growth, and development of vegetation). For exam-
ple, Clostridium is one of the common bacterial genera reported from
the rhizosphere (Dinesh et al., 2015): C. glycolicum and C. collageno-
vorans volatilize As (V) (Meyer, et al., 2007; Michalke, et al., 2000).
Singh et al. (2004) reported the potential of Enterobacter cloacae
B2-DHA to bioremediate heavy metals (Cr VI, Pb, Cd, and Ni Il) and
radioactive elements and that of Enterobacter B-14 to biodegrade
organophosphate pesticides in contaminated soils. A bacterial con-
sortium comprising Pseudomonas, Acinetobacter, and Neisseria miner-
alizes DDT (Carrillo-Pérez, Ruiz-Manriquez, & Yeomans-Reina, 2004)
and a consortium comprising Acinetobacter faecalis, Neisseria elon-
gate, and Staphylococcus sp. efficiently degrades crude petroleum oil
(Mukred, Hamid, Hamzah, & Yusoff, 2008). Pseudoalteromonas has
proved useful in bioremediation of substrates contaminated with
inorganic and organic pollutants. For example, Pseudoalteromonas
sp. SCSE709-6 from the deep sea showed a great capacity (96%) to
remove Cd(ll) at varying temperatures and varying levels of pH and
salinity (Zhou, et al., 2013). Pseudoalteromonas TG12 solubilizes Fe,
accumulates different metals (Gutiérrez, Shimmield, Haidon, Black,
& Green, 2008), and degrades alkanes and cycloalkanes (Dubinsky
et al., 2013). Pseudoalteromonas and Vibrio purified from sediments
in San Diego Bay degraded hydrocarbons and a toxic organic pol-
lutant (phenanthrene or chrysene; Coelho, Rivonkar, Bhavesh,
Jothi, & Sangodkar, 2003; Melcher, Apitz, & Hemmingsen, 2002),
and P. haloplanktis from Minamata Bay, Japan, was investigated for
its resistance to mercury (Lohara et al., 2001) and as a model or-
ganism for genetic manipulation in bioremediation studies (Kivela,
Madonna, Krupovi¢, Tutino, & Bamford, 2008). Pseudomonas spp.
have received attention for their bioremediation potential to deal
with diverse organic contaminants. For example, P. alcaligenes, P.
mendocina, and P. putida degrade polycyclic aromatic hydrocarbons
(e.g., toluene); P. veronii degrades different simple aromatic com-
pounds; P. resinovorans degrades aromatic heterocyclic compounds
(e.g., carbazole and quinoline); P. stutzeri KC degrades haloalkanes
(e.g., carbon tetrachloride); and P. pseudoalcaligenes uses cyanide as
a nitrogen source. In populations of Ralstonia pickettii 12D and 12J,
infection by filamentous phages makes their bacterial hosts more
adaptable to heavy metals by increasing horizontal gene trans-
fer in the bacterial populations (Yang et al., 2010). The metabolic
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versatility of Shewanella also makes it a member important in cycling
metals and organic matter (Fredrickson et al., 2008). For example, S.
oneidensis has the potential to remediate substrates contaminated
with Cr(VI1), Fe(lll), Mn(IV), U(VI), and V(V). The role of Shewanella in
nutrient cycling becomes important because Mn is the second most
abundant metal in the earth's crust, an essential trace element for all
living organisms, and also influences the cycling of other elements.
Thermus scotoductus is widely used for immobilizing toxic metals
and radionuclides (Cr, Co, Fe, Tc, U, etc.) from wastewater from hot
springs or heated streams of nuclear waste (Brim, Venkateshwaran,
Kostandarithes, Fredrickson, & Daly, 2003; Kashefi & Lovley, 2000;
Kieft et al., 1999; Opperman & van Heerden, 2008; Slobodkin,
2005). Thermus oshimai can remove heavy metals (Poli et al., 2009),
and Thermus sp. removes selenite and tellurite (Chiong et al. 1988;
Slobodkin et al. 2006; Sokolova et al., 2004).

Enterobacter, Pseudoaltermonas, and Vibrio species are not only
significant for bioremediation but also for promoting plant growth.
Enterobacter sp. RNF 267 promotes the growth of coconut palms
(Cocos nucifera) and maize (George, 2013), and inoculation of green
gram (Vigna radiata) with Enterobacter EG-ER-1 and KG-ER-1 to-
gether with Bradyrhizobium sp. increased nodulation (Gupta et al.
2003). P. shioyasakiensis and V. sagamiensis SMJ18 tolerate not only
salt and heavy metals (As, Cu, and Zn) but also show multiple traits
that promote plant growth: They can fix nitrogen; solubilize phos-
phates; and produce IAA-, siderophores, and ACC (1-aminocyclopro-
pane-1-carboxylate deaminase). Spartina maritima inoculated with
V. sagamiensis SMJ18 shows more efficient photosynthesis, greater
intrinsic water-use efficiency, and lower metal uptake—which is why
the combination of V. sagamiensis and S. maritima has been recom-
mended for ecorestoration of polluted estuaries.

As most of the above-mentioned bacterial genera can be com-
mercialized and filamentous phages of these genera are known
(Table 2), co-inoculation with bacteria and filamentous phages needs

to be tested for environmental use (Figures 3 and 4).

3.3 | Phytopathogenic bacteria particularly
useful in ecorestoration as targets of research on
filamentous phages

Filamentous phages of bacterial phytopathogens also provide
an opportunity to improve assisted phytoremediation as part of
ecorestoration (Table 3; Figure 4). Filamentous phages have been
characterized for six of the world's ten most serious bacterial phy-
topathogens. These six pathogens belong to four genera, namely
Pseudomonas, Ralstonia, Xanthomonas, and Xylella (Mansfield et al.,
2012). For three more phytopathogenic bacteria, namely Dickeya,
Erwinia, and Pectobacterium, filamentous phages have been re-
ported from related bacterial genera. Filamentous phages of other
phytopathogenic genera, namely Acinetobacter, Clostridium, and
Pseudoalteromonas, are also relevant because these genera also have
species that are pathogenic to plants used for remediation. However,
filamentous phages of Propionibacterium and Yersinia, opportunistic
pathogens of the human body, are also important because these
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pathogens use plants as temporary hosts and therefore need to
be controlled. Filamentous phages determine the pathogenicity of
some bacteria, which is why the biochemical and molecular mecha-
nisms of phages-bacteria interactions can be the key to develop-
ing biocontrol methods for phytopathogens. Filamentous phages of
avirulent bacterial strains would also be useful as competitors to the

filamentous phages of virulent bacterial strains.

4 | FILAMENTOUS PHAGES TO BOOST
ENVIRONMENTAL COMPETITIVENESS OF
BACTERIAL INOCULA

In many bacteria, filamentous phages influence the expression of
phenotypic traits and trigger the appropriate ecophysiological mech-
anisms that help the bacteria to adapt better to sources of stress
in the environment. Sometimes, a phage infection triggers a high
level of cellular organization to prevent the host cells from being ex-
posed to the sources of stress in the outside environment (Table 5).
Experimental evidence shows that filamentous phages drive the
ecological success of their host bacteria in a given niche. Such
mechanisms have been investigated in Acinetobacter, Clostridium,
Enterobacteria, Neisseria, Propionibacterium, Pseudoalteromonas,
Pseudomonas, Ralstonia, Shewanella, Shigella, Stenotrophomonas,
Thermus, Vibrio, Xanthomonas, Xylella, and Yersinia (Addy et al.,
2012b; Ahmad et al., 2014; Derbise et al., 2007; Jian et al., 2013;
Kuo et al., 2000; Waldor & Mekalanos, 1996; Whiteley et al., 2001;
Yu et al,, 2015). As discussed earlier, these genera are also impor-
tant in bioremediation and in promoting plant growth. Filamentous

Biomonitoring
................................. (Inoculants/pathogens,"contaminants)

phages therefore have the potential to improve the ecological and
evolutionary potential of bacterial inocula so that the bacteria sur-
vive environmental stress, evolve in the changing environment, and

contribute to the growth of plants (Figure 3).

4.1 | Phages and microbial adaptation

Filamentous phages influence the growth of their bacterial hosts to
increase the adaptive potential of the hosts (Table 5). For example,
E. coli (112-12, S-26, Wé), Pseudoalteromonas sp. (f327), Ralstonia
solanacearum (C319, Ps29), and Xanthomonas campestris (pv.
N5850) infected with filamentous phages show slower growth and
greater adaptability to stress (Brown & Dowell, 1968; Kamiunten
& Wakimoto, 1981; Salivar, et al.,, 1964; Wan & Goddard, 2012;
Yamada et al., 2007; Yu et al., 2015). The bacterial host survives
either because its growth is put on hold until favorable conditions
return or because it gets adequate time to activate appropriate
mechanisms to combat stress from abiotic sources. Therefore, E.
coli infected with a filamentous phage shows reduced growth but
greater resilience to changes in the environment; the noninfected
and fast-growing bacterial hosts, on the other hand, show a high
metabolic rate and use up the energy for growth, thereby becoming
more susceptible to stress (Tamman, Ainelo, Ainsaar, & Horak, 2014;
Tuomanen, Cozens, Tosch, Zak, & Tomasz, 1986; Yu et al., 2015).
Such phage-mediated phenotypic and ecophysiological changes
in bacterial hosts are immensely useful in ecorestoration. These
changes in bacterial inocula will help the bacterial hosts to adapt
to stress from abiotic sources, to maintain effective bacterial popu-

lations, and to perform their desired ecological functions (Arora,

Biocontrol of Pathoges
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FIGURE 5 Potential significance of filamentous phages to develop efficient biomonitoring system for tracking and management of
targeted inoculated strain, pathogens, and contaminants
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Tiwari, & Singh, 2014; Gopalakrishnan et al., 2015; Lahav, 1962;
Malusd, Sas-Paszt, & Ciesielska, 2012).

Other evidence shows that filamentous phages enhance the
adaptive potential of bacterial hosts by influencing specific phe-
notypic traits or biological processes (Table 5). In E. coli HB11, in-
fection from fd phage increases the total lipid content, which helps
the host to resist freeze-fracture stress (Bayer & Bayer, 1986). Cells
of Shewanella piezotolerans WP3 infected by the SW1 phage show
fewer lateral flagella and poor swarming motility (Jian et al., 2013),
which enables the bacteria to survive the limited-energy environ-
ment. In Ralstonia pickettii (12D, 12)J), filamentous phages mediate
horizontal gene transfer and enable the bacterial host to adapt to
a high level of Cu and other heavy metals in lake sediment (Yang
et al., 2010). M13-km phage infection of E. coli TOP10F decreases
conjugation and prevents the spread of antibiotic resistance genes
in bacterial populations (Lin et al., 2011); M13 infection of E. coli K12
leads to loss of lipopolysaccharide, which makes the strain more sus-
ceptible to actinomycin D (Roy & Mitra, 1970b); and f1-infection of
E. coli enables the bacterial cell envelope—by means of phage shock
proteins in the bacterial host—to tolerate stress in many forms (high
pH, high concentration of salts, etc.; Joly et al., 2010).

Besides these mechanisms, filamentous phages also trigger
highly structured organization of bacterial populations or commu-
nities (biofilm, for example), which protects their members from
several sources of environmental stress (Table 5): Suspensions of
Pseudomonas aeruginosa cells infected with Pf filamentous phage
become more viscous, which helps the host cells to aggregate and
adhere together to form a biofilm, which enables the assembly to
survive desiccation and offers protection from aminoglycoside an-
tibiotics and toxic chemicals (Secor et al., 2015; Webb et al., 2004).
A biofilm consisting of multiple species is a cross-species commu-
nication network that enables the constituent species to use nu-
trients including C more effectively when they are in short supply
(Flemming et al., 2016). Based on the evidence discussed here, we
suggest that (a) filamentous phages of target bacteria be isolated and
analyzed to develop ecologically competitive bacterial inocula and
(b) bacteria used in commercial inocula and potential PGPR be used
as hosts to isolate suitable filamentous phages and the adaptive po-

tential of such phages-bacteria co-inoculation be tested.

4.2 | Phages to make beneficial bacteria more
competitive

Bacteria that form the inocula used for remediation may tolerate
stress from abiotic sources but they also need to overcome bi-
otic adversaries, especially the well-adapted native microbial spe-
cies (Amarger, 1981; Barnet, 1980; Bashan, 1998; Diaz-Ramirez,
Escalante-Espinosa, Schroeder, Foécil-Monterrubio, & Ramirez-
Saad, 2013; Gopalakrishnan et al., 2015; Vincent, 1954). Some
researchers believe that stressful habitats favor toxin producers,
which invade such habitats and outcompete the toxin-susceptible
strains (Hibbing, Fuqua, Parsek, & Peterson, 2010; Majeed, Gillor,
Kerr, & Riley, 2011; Riley & Gordon, 1999). In fact, the markedly
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lower biodegradation efficacy of bacterial inocula in vivo than that
inin vitro has been attributed to their sensitivity to toxins produced
by native bacteria (Goldstein et al., 1985; Mrozik et al., 2011).
Infection of E. coli (K38, GM1, JM1) and V. cholerae by filamentous
phages not only increases the ability of the hosts to tolerate toxins
but also makes the hosts resistant to infection by other (homo- or
heterologous) phages. In E. coli, infection by f1 filamentous phage
leads to irreversible changes in the membrane protein that serves
as a common receptor for colicin and phages (Table 5; Boeke et al.,
1982; Sun & Webster, 1986; Zinder, 1973). Therefore, we propose
the use of filamentous phages to develop ecologically competitive
bacterial inoculants that can tolerate toxins and resist other phages
in the soil. In E. coli K38, infection by filamentous phage triggers a
phenotypic change in the membrane, which makes it more sensitive
to deoxycholate, promotes leakage of p-lactamase, and increases the
number of defective pilli on the host cell. Due to these changes, E.
coli K38 tolerates colicins but shows a reduced frequency of conjuga-
tion (Boeke et al., 1982). Cells of Vibrio cholerae infected with CTX¢
develop heteroimmunity against lambdoid phages and show a diver-
gence in phage repressors and their cognate operators (rstR-og-2;
Kimsey & Waldor, 1998). These changes confer a competitive ad-
vantage on the infected cells in countering attack by other bacterial
species (Davies & Davies, 2010; Feldgarden & Riley, 1998). Thus, fila-
mentous phages have the potential to protect their hosts from biotic
sources of stress as well, both chemical and viral, which are common

features of the ecosystem in which the inoculants find themselves.

4.3 | Phages to improve colonizing
abilities of bacteria

Bacterial inocula used in remediation should not only survive, by
competing successfully with other microbes, but also thrive, coloniz-
ing the contaminated sites to provide the desired ecological benefit.
Bacteria can become virulent after infection by filamentous phages:
Such virulent bacteria can then invade and colonize a particular
niche (a habitat or an organism; Table 5). The most noteworthy ex-
amples of such bacterium-phage association include Neisseria men-
ingitidis and Nf/MDA (Bille et al., 2005), Pseudomonas aeruginosa and
®Pf4 (Rice et al., 2009), Ralstonia solanacearum and ¢RSS1 (Addy et
al., 2012b), Vibrio cholerae and CTXg (Waldor & Mekalanos, 1996),
Xanthomonas campestris and Xf2 (Kamiunten & Wakimoto, 1981),
and Yersinia pestis and Ypf® (Derbise & Carniel, 2014).

In these bacterial hosts, filamentous phages either carry the vir-
ulence gene(s) (Addy et al., 2012b; Derbise & Carniel, 2014; Waldor
& Mekalanos, 1996) or regulate the expression of virulence factors
(Addy, Askora, Kawasaki, Fujie, & Yamada, 2012a, b; Ahmad et al.,
2014). For example, N. meningitidis and Y. pestis are transformed
into virulent strains capable of causing epidemics after receiving
the toxin gene from Nf or MDA and from Ypf® phage, respectively
(Bille et al., 2005; Derbise et al., 2007). The filamentous phage CTX®
transfers to V. cholerae O395 the gene ctxAB, which encodes the
cholera toxin (Waldor & Mekalanos, 1996). Other strains of V. chol-
erae, namely N16961 and 395, develop into potential pathogens after
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they receive the gene vibrio pathogenicity island (VPI) from the fil-
amentous phage VPI® (Li et al., 2003): That potential is realized if a
helper phage, namely fs2, infects V. cholerae O1 thereby convert-
ing the host into a virulent strain. The phage-mediated transfer of
rstC gene into V. cholerae O1 increases the production of the cholera
toxin and triggers the multiplication of the resident CTX® phage,
thus making the host highly virulent (Nguyen et al., 2008).

Filamentous phages can also convert pathogens into their su-
perinfective forms by changing the phenotypic traits associated
with virulence. For example, Xf2 infection converts Xanthomonas
campestris pv oryzae N5850 into a highly virulent phytopatho-
gen by increasing the production of extracellular polysaccharide
(Kamiunten & Wakimoto, 1981). Virulent pathogenic variants of
X. campestris pv citri evolve after infection by CFlc phage (Kuo
et al.,, 1991), and infection by the phage PE226 transfers into
Ralstonia solanacearum SL341 the genes responsible for producing
toxins and thus widens the host range of the pathogen (Askora,
Kawasaki, Usami, Fujie, & Yamada, 2009). Similarly, Pseudomonas
aeruginosa PAO1 evolves into a superinfective phenotype after in-
fection with the phage Pf4 (Rice et al., 2009; Webb et al., 2004).
Other plant-associated bacteria, such as E. coli (Bayer & Bayer,
1986), Enterobacteria (Kuo et al., 2000), P. aeruginosa (Secor et
al., 2015), and R. solanacearum (MAFF106603 and MAFF106611,;
C319 and Ps29), also evolve into infective phenotypes if they are
infected by their specific filamentous phages (Addy et al., 2012b;
Yamada et al., 2007; Table 5). Although E. coli and Enterobacter
are part of the microbiome of the human gut, recent research has
shown that these bacteria are also native soil bacteria, which pro-
mote plant growth and remediate the environment. For example,
E. coli has been reported from soils from seven geo-climatic zones
of India, and inoculating Zea mays with E. coli enhances nutrient
uptake and plant growth (Nautiyal & Shono, 2010). In fact, plants
exert niche-specific selection pressure on the organisms asso-
ciated with them; for example, strains of E. coli associated with
plants are a distinct phenotype and make an independent phy-
logroup different from that purified from mammalian hosts (Méric,
Kemsley, Falush, Saggers, & Lucchini, 2013). E. coli strain USML2
has been shown to be a growth-promoting endophyte in leaves of
the oil palm (Elaeis guineensis; Tharek, Sim, Khairuddin, Ghazali,
& Najimudin, 2017). Different species of Enterobacter have been
reported as rhizobacteria associated with different plant species
(E. sakazakii and E. agglomerans with soybean; E. cloacae with cit-
rus, maize, and soybean; and E. asburiae with sweet potato). These
species possess multiple growth-promoting traits and enhance
plant growth (Ramesh, Sharma, Sharma, Yadav, & Joshi, 2014).
Recent studies suggest that E. coli and Enterobacter also occur as
endophytes in different plants and enhance nutrient uptake and
growth of their hosts plants and are useful for environmental
clean-up (Santoyoa, Moreno-Hagelsieb, Orozco-Mosqueda, & C.,
& Glick, B.R., 2016). Based on these examples, we propose the use
of filamentous phages to enable bacterial inocula to colonize con-
taminated habitats, control phytopathogens, and promote plant
growth for ecorestoration.

Filamentous phage-infected P. aeruginosa shows high potential
to colonize different habitats because of its ability to form bio-
films, which have a liquid crystalline organizational structure (Rice
et al., 2009; Secor et al., 2015). The biofilm is not an inert struc-
ture but a cooperative and interactive network that develops into
an ecologically cohesive microbial community, which can rapidly
colonize the target site (Hengzhuang, Wu, Ciofu, Song, & Hgiby,
2011, 2012; Hgiby et al., 2011; Hgiby, Bjarnsholt, Givskov, Molin,
& Ciofu, 2010). In fact, Pf1-infected P. aeruginosa PAO1 strains out-
compete the noninfected strains in forming a biofilm and also form
a cohesive group for exchanging genes—exchanges from which
the noninfected strains are excluded (Whiteley et al., 2001). Such
gene exchanges within a biofilm help the bacterial hosts to develop
into superinfective phenotypes that can adapt to and colonize new
surfaces effectively (Rice et al., 2009; Webb et al., 2004). Lytic
phages specific to native bacteria can also create a niche for the
bacterial inocula (Kuykendall & Hashem, 1998; van Elsas & van
Overbeek, 1993). Therefore, a consortium of lytic phages, filamen-
tous phages, and the target bacterial inocula should be tested for
improved colonization by the bacterial inocula of the contaminated
site (Figures 3, 4).

Further, the genome of a filamentous phage itself can be manipu-
lated to increase the ability of bacterial hosts that make up the inoc-
ulum to colonize diverse environments. Immediate opportunities for
such manipulation are available in some plant-associated bacterial
genera such as Pseudomonas, Ralstonia, and Xanthomonas for which
filamentous phages have already been reported (Table 5). At the
same time, the little-explored plant growth-promoting bacteria such
as Acinetobacter, Clostridium, E. coli, Enterobacter, Propionibacteria,
Shewanella, and Vibrio (Table 2) need immediate attention. Concerted
efforts are required to extend the similarities in the relationships
between filamentous phages and bacteria as revealed in laboratory
tests to the bacteria used in commercial formulations and for ecores-
toration (Table 1).

4.4 | Phages to promote community
assembly and evolution

A bacterial strain with high genetic stability confers desirable ben-
efits in terms of plant growth and soil health after inoculation;
however, successive generations of the strain should also have the
ability to diversify and adapt to the changing environment (Sharma,
Mishra, Mohmmed, et al., 2011). Filamentous phage may promote
genetic stability as well as genetic diversity in a bacterial population
depending upon the relative proportions of the filamentous phages
and their bacterial hosts.

Environmental stress promotes genetic instability in bacteria; as
aresult, desirable bacterial phenotypes progressively disappear from
the population (Mohmmed, Sharma, Ali, & Babu, 2001; Rau et al,,
2009; Sharma et al., 2005; Sharma, Mishra, Mohmmed, et al., 2011;
Sharma, Mishra, Rau, & Sharma, 2011). Plasmids, which are extrach-
romosomal genetic elements, carry environmentally relevant gene(s)

in bacteria and help them to adapt to specific niches or confront
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environmental challenges. Often, the desired bacterial phenotype is
lost after inoculation because the plasmid that encodes ecologically
competitive gene(s) is lost (Bergstrom, Lipsitch, & Levin, 2000; Hall
et al,, 2015; Hall, Wood, Harrison, & Brockhurst, 2016; Harrison &
Brockhurst, 2012; Mohmmed et al., 2001). At a high phage-to-bac-
terium ratio, infection by the filamentous phage inhibits conjugation
in E. coli population (K38 and TOP10F) and ensures genetic stability
(Boeke et al., 1982; Lin et al., 2011; Table 5). However, the filamen-
tous phage and the F recipient bacterial cells compete for a com-
mon receptor (pilus) of F* donor bacterial cells. Therefore, the ratio
of phage to F~ recipient bacterial cells determines which of the two
events will be more frequent: infection of F* donor bacterial cells by
the filamentous phage or conjugation between F* and F~ bacterial
cells (Novotny, Knight, & Brinton, 1968; Ou, 1973; Wan & Goddard,
2012). The role of filamentous phages in preventing conjugation (Lin
et al., 2011; Wan & Goddard, 2012) shows their potential in ecores-
toration to maintain genetic stability of bacterial inocula. In fact, the
role of protein g3p of a filamentous phage in hindering conjugation
process has already been demonstrated. Although a filamentous
phage infects and persists within its bacterial host, regular reacqui-
sition by the host may be required to maintain such infected bacteria
in a population in sufficient numbers. Also, prior knowledge of the
right ratio of filamentous phages to bacterial cells that ensures ge-
netic stability in target bacteria is a prerequisite to using filamentous
phages as co-inoculants.

Independent studies on E. coli strains have confirmed the po-
tential of M13 filamentous phage to trigger genetic heterogeneity
in an isogenic population of E. coli (De Paepe et al., 2010) or to main-
tain genetic homogeneity in E. coli Wé population (Wan & Goddard,
2012; Table 5). Using quantitative analysis, Lin et al. (2011) showed
that as the M13 filamentous phage-to-E. coli ratio increases, the con-
jugation frequency decreases: A lower ratio favors conjugation and
gene exchange, whereas a high ratio lowers the frequency of conju-
gation. We suggest that strains of bacterial inoculants be examined
for the filamentous phages associated with them and the optimum
ratio of filamentous phages to their bacterial hosts be determined
for triggering gene exchange and genome diversification in the host
population.

However, it is important to ask a fundamental question: Are the
filamentous phages that trigger genetic stability or promote genetic
diversity in bacterial populations different for different bacterial
species or is the difference due to the relative proportions of phages
and bacteria? To answer this question, we must isolate filamentous
phages from different bacterial genera or species from the natural
environment and then analyze the impact of their relationships on
the ecology of the bacterial hosts using well-designed laboratory
studies. We may use bacterial species with known filamentous
phages for identifying the optimal ratio of phages to bacteria for
genetic stability and that for genetic diversity in bacterial popula-
tions. Such studies will guide in situ genetic engineering of bacterial
inocula. Figure 6 outlines a suggested path of research for develop-
ing ecologically competitive phage-bacterium inocula based on the
ecological impact of the phages-to-bacteria ratio.
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5 | ROLE OF FILAMENTOUS PHAGES IN
THE MONITORING BACTERIAL INOCULA
AND IN DETECTING AND CONTROLLING
PLANT PATHOGENS AND CHEMICAL
CONTAMINANTS

5.1 | Phages as sensors

The success of restoration efforts depends on the tools available for
detecting and controlling pathogens and contaminants. To evaluate
and guide restoration, restoration ecologists monitor inocula, patho-
gens, and contaminants in time and space (Felici et al., 2008; Harvey,
1993; Lynch et al., 2004; van Elsas, Duarte, Rosado, & Smalla,
1998). However, to monitor multiple contaminants and pathogens
in degraded environments, we need different physicochemical and
biological methods. Because we employ a consortium of bacterial
strains and species to tackle multiple contaminants and pathogens,
monitoring a consortium (multiple targets) for survival, coloniza-
tion, and performance also warrants the use of an array of biological
methods.

Compared to the conventional monitoring tools, those based on
filamentous phages can be more easily tailored for diverse targets
and even for detecting a target when it is present in ultralow levels
and that too in real time (Figure 5). Tracking of organisms (bacteria,
viruses, etc.) and biological materials (spores, toxins, proteins, and
DNA) relies on different methods, which may be (a) microbiologi-
cal (culture, colony counting, chemical and biological plate assays),
(b) biochemical and immunological (enzyme- or antibody-based
assays), and (c) biomolecular (marker sequences, gene expression,
polymerase chain reaction, etc.). Similarly, the tracking of toxicants
involves chemical and analytical methods (titrimetric, spectropho-
tometric, fluorometric, chemiluminescence, etc.). Despite immense
advancements, the use of biochemical and molecular methods for
environmental studies continues to face such challenges as high
costs, the need to process samples, longer time required for assays,
and low sensitivity of methods aimed at detecting biological targets
in samples from the environment (Felici et al., 2008; Liu, Li, Khan,
& Zhu, 2012). In contrast, filamentous phage-based sensors are
economical, can be used in real time without having to process the
samples, and detect targets even when they are present at ultralow
concentrations in the environment. Because of these benefits, such
biosensors may become an important item in the toolkit of the res-
toration ecologist.

Filamentous phages offer flexibility in modifying surface pro-
teins to develop target-specific receptors or probes and ease in
combining different transducers or sensor surfaces such as nano-
or micromechanical, electrochemical, and optical sensing plat-
forms (Bernard & Francis, 2014; Sagona, Grigonyte, MacDonald, &
Jaramillo, 2016; Templier, Roux, Roupioz, & Livache, 2016; Tables
6 and 7). Depending upon the sensor platform, biosensors differ
in the principles of transduction of the signal and detection of the
analyte. The ease and flexibility in tailoring the surface of the fila-
mentous phage using genetic and chemical methods offer a better
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opportunity to restoration ecologists to develop ultrasensitive, spe-
cific, and cost-effective biosensors for targets that may differ in size
and their chemical nature. Such biosensors detect specific targets at
ultralow levels in complex environmental samples without any prior
treatment. Besides these properties, filamentous phage-based sen-
sors are stable and robust even under harsh environments and can
be reused by regenerating the receptor surface, which makes them
ideal for environmental use (Rakonjac et al., 2011; Singh, Poshtiban,
& Evoy, 2013). In restoration ecology, such biosensors may serve as
bioindicators (specific to bacteria, viruses) or as biomarkers (specific
to pathogen-specific biomolecules such as DNA and protein or to a
specific biological activity). Because they are robust, such biosen-
sors may track different biomaterials in complex environmental sam-
ples both in vivo (on plant surfaces and inside tissues) and in vitro
(Table 5).

Micromechanical biosensors have exploited modified filamen-
tous phages to develop sensors for detecting bacterial cells (analyte)
at ultralow levels. Quartz crystal microbalances (QCMs), magneto-
elastic (ME) resonators, and nano-cantilevers represent the micro-
mechanical type of biosensors. The analyte mass accumulates on
the surface of the micromechanical biosensor and results in a cor-
responding shift in the vibrational resonance of the transducer. A
QCM sensor comprises a piezoelectric plate coated with metallic
electrodes on both sides. The modified filamentous phage immobi-
lized on the surface of a QCM detects the wet mass of the target
bacteria even in nanograms. Bacterial cells bound to the phage-dis-
played probe cause a resonance shift under a magnetic field, which
makes detection possible in real time. An ME sensor consists of an
amorphous ferromagnetic ribbon, which is an advantage in environ-
mental monitoring due to its small size, low cost, and passive and
wireless nature. Detecting a target requires neither prior sample
preparation nor enrichment of bacterial cells. Biosensors in the form
of QCM with E2 phage modified to express specific peptides de-
tected extremely low numbers of the target pathogen (Salmonella
typhimurium: 102 cfu/ml) within 3 min (Huang et al., 2007; Lee,
Song, Hwang, & Lee, 2013); an ME-filamentous phage biosensor also
detected bacterial pathogen in ultralow numbers (S. typhimurium:
50 cfu/ml) on the surface of tomato (Li, Johnson, et al., 2010; Li, Li,
et al., 2010); and another ME biosensor with modified JRB7 detected
spores of B. anthracis (10° spores/ml) in vitro.

Electrochemical biosensors have used filamentous phages to de-
tect chemical changes in a cellular environment: The sensor phages
display target-specific peptides, which detect and report the analyte
as a change in current (amperometric sensor), impedance (imped-
ance sensor), and voltage potential (light-addressable potentiometric
sensor). Modified M13 helper phage expresses an electrochemically
active reporter, such as alkaline phosphatase, at the surface; the re-
porter measures the current flow (oxidation-reduction reaction) and
detects the signal in an amperometric sensing system. An ampero-
metric electrochemical biosensor with modified M13 detected E. coli
TG1 at concentrations as low as 1 cfu/ml by monitoring the activity
of the reporter enzyme (Neufeld, Mittelman, Buchner, & Rishpon,
2005). A filamentous phage-based imaging system also detects

pathogen-related chemical changes (acid-base homeostasis) in opti-
cally diffuse tissue (Hilderbrand, Kelly, Niedre, & Weissleder, 2008);
for example, phage M13 was modified to ligate a pH-responsive cy-
anine dye (HCyc-646) to pVIIlI and thus developed into a ratiometric
probe. The engineered phage-based sensor can also use impedance
spectroscopy, an electrochemical technique, for such applications.
These methods are highly sensitive and easy: For example, a biosen-
sor with engineered M13 filamentous phage covalently attached to
a gold electrode measures electrical impedance over a wide range
of frequencies (in kHz) and can detect ~120 nanomolar prostate-
specific membrane antigen at signal-to-noise ratios greater than 10.
Filamentous phage-based light-addressable potentiometric sensors
(LAPS) represent another such biosensor, which is composed of a
semiconductor-insulator base activated by directed light pulses.
These label-free biosensors detect target enzyme activity or cellular
pH, redox condition, or ion gradients, and LAPS have proved flexible
enough to modify covalently with as many as four different phages.

Optical sensors, which rely on either spectrometry-based or
resonance-based sensing, have the potential to detect target bio-
molecules at ultralow levels. Spectrometry-based methods such
as UV/Vis spectrometry, bio/chemiluminescence, fluorescence or
phosphorescence spectrometry, and infrared spectrometry measure
changes in intensity at a particular wavelength whereas resonance-
based methods such as surface plasmon resonance (SPR), fluores-
cence resonance energy transfer (FRET), and colorimetry measure
changes in chemical properties upon a change in the wavelength.
Opto-fluidic ring resonator (OFRR) integrates microfluidics and pho-
tonic sensing technologies to develop an ultrasensing platform for
detecting the target at ultralow levels (as low as nanoliters or at con-
centrations of 10 pg/mm?). Low cost, high sensitivity, and good re-
usability of filamentous phage-based OFRR biosensors make them a
promising platform for detection of biomolecules in the environment
(Table 6): An OFRR (a lab-on-a-chip device) comprising immobilized
phage R5C2 on silicon microfluidics detected targeted protein/DNA
at picomolar levels in real time (Suter et al., 2008; Zhu, White, Suter,
& Fan, 2008; Zhu, White, Suter, Zourob, & Fan, 2008).

Filamentous phage-based field effect transistors (FET) can po-
tentially track target viruses in environmental samples: FET com-
prise a source, a gate, and drain electrodes and detect the target
biomolecule in a fluid system based on the change in current-volt-
age characteristics of the transistor (electrical transduction). Such an
electrical biosensor houses a modified filamentous phage as a probe
and a semiconductor device as a transducer. The miniaturization
and integration into a small chip make the biosensor useful for high-
throughput analysis, whereas integration of nanowires provides an
opportunity to develop next-generation ultrasensitive biosensors:
label-free polymer-nanowires-based FET transistors or chemiresis-
tors as biosensors detected bacterial pathogens even at 1 cfu/ml and
phages at 10° pfu/ml in untreated environmental samples (Lee et al.,
2013).

Thus, filamentous phages as biosensors are fast, reliable, and
easy to use and do not rely on costly probes and are particularly
suitable for environmental restoration programs because they are
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highly specific and highly sensitive, can be mass-produced cheaply,

and can withstand harsh environments.

5.2 | Phages for biological control

Quick detection and control of phytopathogens facilitate plant re-
cruitment and restoration of vegetation (Al-Karaki, 2013; Barea,
2015; Bashan, 1998; Sharma et al., 2005). Filamentous phages
(modified and natural) can help in detecting and controlling targeted
pathogens in environmental samples containing a mixture of even
closely related strains. Filamentous phages control the emergence of
bacterial pathogens through their effects on the physiology of their
bacterial hosts (Table 7; Figure 5). Recombinant filamentous phages
have been developed to target such bacterial phytopathogens as
Pseudomonas (P. putida, P. aeruginosa), E. coli (Hagens & Blasi, 2003),
and Ralstonia solanacearum (Yamada, 2013) and filamentous phages
have been genetically modified to be antagonistic toward bacterial
pathogens through (a) expression of restriction endonucleases, (b)
initiation of programmed cell death, (c) development of sensitivity to
antimicrobial substances, and (d) development of oxidative burst in
host cells (Table 6).

Filamentous phages have been modified as environmentally safe
biocontrol agents for target pathogens. Filamentous phages are
host-specific but their nonlytic life cycles initially limited their use in
biological control of pathogens (Loc-Carrillo & Abedon, 2011; Henry
et al., 2015; Mai-Prochnow et al., 2015). However, filamentous
phages may serve as a vehicle for delivering toxins into target patho-
genic strains—the nonlytic life cycle then becomes an advantage
because it prevents the release of toxic cellular waste or endotox-
ins into the immediate environment (Goodridge, 2010; Lu & Koeris,
2011; Viertel, Ritter, & Horz, 2014) and also prevents undesirable
changes in the structure and functioning of the microbial community
due to the release of toxic waste from the lysed pathogenic cells. For
example, a modified M13 phage delivers “addiction toxin” genes (Gef
and ChpBK), which triggers programmed cell death in target bac-
teria in vivo (Table 6). Such “suicide” systems have shown their po-
tential to control some environmentally significant bacteria, namely
Pseudomonas (P. putida, P. aeruginosa) and E. coli (Hagens & Blasi,
2003). Phage M13 has been modified to encode restriction endonu-
clease (Bglll) for killing the target bacteria with efficiency compara-
ble to that of lytic phages. Therefore, modified filamentous phages
not only control the target bacteria but also minimize the risk of the
toxins being released into soil. Considering these benefits, we be-
lieve that filamentous phage-based biocontrol of pathogens will also
add to the efficacy of bacterial inocula in restoration of vegetation.

The use of filamentous phages to control pathogens that are
resistant to multiple antibiotics is yet to win the attention of res-
toration ecologists that it deserves. For example, M13mp18 mod-
ified phage targets SOS and non-SOS networks of bacterial hosts
and controls antibiotic-resistant and persister strains of E. coli
(EMG2, RFS289; Lu & Collins, 2009). Also, silverized antimicrobial
phage fibers developed with E3 modified M13 kill bacterial con-
taminants in water during filtration through phage-coated fibers

Fcology and Evolution o 2291
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(Mao et al., 2010; Table 6). Fusion phages (fd-pllICTX) can control
diverse pathogens as effectively as phage cocktails or mixtures can
(Pires, Cleto, Sillankorva, Azeredo, & Lu, 2016). In some cases, nat-
ural filamentous phages can also reduce the pathogenicity of their
bacterial host. Such filamentous phages offer an opportunity for en-
vironmentally safe biocontrol of pathogens. For example, Addy et
al. (2012a) reported a filamentous phage (pRSM) of the wilt-causing
bacterial pathogen Ralstonia solanacearum: RSM infection made
the pathogen less virulent and thus prevented damage to its host
plants (Yamada, 2013). Ecologists have also been interested in gRSM
because R. solanacearum is a serious threat to phytorestoration pro-
grams (Zhang et al., 2017), for example to programs to grow tobacco
for ecorestoration of nutrient-deficient and contaminant-rich soils.
In fact, degraded soils show greater abundance of not only R. sola-
nacearum but also of pathogenic members of Pseudomonas, Erwinia,
and Xanthomonas. Controlling R. solanacearum is a challenge because
it survives as a latent infection in indigenous weeds for many years
(Hayward, 1991; Wenneker et al., 1999). However, it would also be
useful to isolate and engineer filamentous phages of other patho-
genic bacteria and test the potential of these phages to control the
pathogens of other wild plants. Such use of filamentous phages to
lower pathogenicity, virulence, and spread of dreadful phytopatho-
gens may mark a new milestone in restoration programs.

The increasing numbers of bacterial genera discovered to have
an association with filamentous phages and the ease with which the
phage genome can be modified to produce antimicrobial peptides
represent an untapped but most promising opportunity for biocon-
trol of pathogens. Using suitably modified filamentous phages along
with other biocontrol agents can revolutionize the integrated man-
agement of phytopathogens. However, these phages are at times
unstable in their host populations, even when they do not result in
the evolution of host resistance (Lerner & Model, 1981). This char-
acteristic, and the loss of filamentous phages during molecular ap-
plications (Mai-Prochnow et al., 2015), is obstacles to their use as
inhibitors of pathogenic bacteria.

However, other species or strains of Ralstonia also develop sym-
biotic endophytic associations with plant species that show high po-
tential for phytoremediation. For example, poplars (Populus spp.) and
willows (Salix spp.), which are used for phytoremediation, also carry
Ralstonia as an endophyte besides Acinetobacter, Pseudomonas, and
Xanthomonas. Ralstonia is also an endophyte of Anthurium, Brassica
juncia, Geranium, Gerbera, Heliconia, Mimosa, Salvia, sunflower, to-
bacco, Verbena, and Zinnia, which are also used for phytoremediation
of sites contaminated with inorganic and organic pollutants (lkeura
et al,, 2016; Kabra, Khandare, Kurade, & Govindwar, 2011; Liu, Xin,
& Zhou, 2017; Madera-Parra, Pefia-Salamanca, Pena, Rousseau, &
Lens, 2015; Mahdieh, Yazdani, & Mahdieh, 2013). For example, R. eu-
tropha was effective in combination with sunflower (Helianthus) for
phytoremediation of sites contaminated with Cd and Zn (Marques,
Moreira, Franco, Rangel, & Castro, 2013), with maize for phytore-
mediation of sites contaminated with Cd (Moreira, Marques, Franco,
Rangel, & Castro, 2014), and with Juncus acutus for biotransfor-
mation of Cr(VI) (Dimitroula et al., 2015). Filamentous phages that
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Improving Engineering FP
Priority areas of research inoculant for % for biosensing Priority areas of research
plant growth % Cohesive vision & bioremediation
g for
«  Identification of the ratio of FP and bacteria ~ Microbial future actions Environmental Engineering FP to develop label-free
to Improve genetic stability to ensure community sensing monitoring of phytopathogens, inoculants,
genetic diversity of bacterial inoculant assembly & contaminants at ultra low level in the field
& evolution
: : Integrated
+ Development and testing of consortium of Microbial 9 t of ing FP to control the
FP, Iytic phage, & bacterial inoculant for colonisation phytopathogen phytopathogens without release of toxic
improved colonization to the target site cellular waste
Microbial Environmental . Enpgineering FP to detect and reduce the
+ Isolation and characterization of FP of adaptation remediation level of specific contaminant in the
target bacteria to develop inocula widely environment
adapted to abiotic stress . . Bioleaching &
Microbial biomini 9 Engineering FP to biomine selective
competition romining minerals/metals
+ Isolation and characterization of FP of
target bacterig to develop competitive
phage bacterium inoculant Biodiversity & Soil ) ) ) )
biogeography of conservation « Engineering FP to sequester soil particles,

fil t h
+ Assessment of diversity & distribution of FP remaniouspage

in different environment

Potential risk in
environment

FP may serve as helper .
phages and trigger .
multiplication of other

satellite phages

Development of phage-
resistant bacterial mutant
with an enhanced virulence

Limited environmental .
benefits of FP application

Ecological cost of FP "
on other microbial
functional groups

Unpredictable effect of
engineered phage in nature

promote soil aggregates & prevent erosion

Priority Areas of Research

Prior testing of FP with native soil in controlled environment
Use of suicidal vectors with useful gene of filamentous phages to
limit the replication of non-targeted native phage

- In vitro analyses of phage-resistant mutant for the cellular fitness cost
Testing of phage to bacterium ratio on development of mutants

Selection of FP-based on tests involving multi-species envirenment
(micro-, mesocosm)

Testing of co-evolutionary patterns and population dynamics of FP & its host
Fitness test of FP-bacterial inoculant with other microbial functional group

Multi-generational field & lab studies on engineered phages to assess its
impact on essential soil biolegical processes

FIGURE 6 Outline of multi-branched course of research proposed with a cohesive vision for future actions for environmental application
of filamentous phage (i) for improving inoculants for plant growth, (ii) for engineering filamentous phage for biosensing and bioremediation,
and (iii) for preventing potential risks of filamentous phage application in the environment. FP, filamentous phage

affect members of Ralstonia are useful in controlling phytopatho-
genic strains of the bacteria and in improving the efficacy of endo-

phytic bacterial strains used in phytoremediation.

5.3 | Phages for remediation of contaminated sites

Restoration ecologists use microbial technologies for remediation of
contaminated sites and for restoring ecosystem goods and services
(UNCCD, 2013), and filamentous phages have been engineered to
detect contaminants (physical, organic, and inorganic) and to remove
or to reduce them in the environment. To assess the success of such
efforts, it is necessary to examine the environment for the presence
of such contaminants (Brown, 1997; Henry et al., 2015; Viertel et al.,
2014; Table 3).

Phages display specific peptides on phage coat proteins (pVIII
and plll), which have been used for detecting, binding to, or decom-
posing the contaminants (Henry et al., 2015; Nambudripad, Stark, &
Makowski, 1991; Petrenko & Makowski, 1993; Thiriot, Nevzorova,
& Opella, 2005). Display technology can screen billions of poten-
tial toxicants and help in developing fusion phages that retain not
only their infectivity and immunogenicity but also their degrada-
tion ability (Lerner, Benkovic, & Schultz, 1991). Such properties of
modified phages make them potential co-inoculants with the host

bacteria to extract specific pollutants from the environment. For re-
mediation of contaminated soils, phage inoculation thus represents a
cost-effective method of setting up a factory in situ to produce large
quantities of contaminant-specific biomolecules for remediation of
the soil environment. This environment-friendly approach may not
be a permanent solution for bioremediation but it is worthwhile to
test its potential to reduce the concentration of contaminants in the
environment.

Modified filamentous phages also offer another method of
separating and processing minerals (bioleaching or biomining) for
restoring abandoned mines. For example, modified phages show
specificity and selectivity in binding to environmental sources of
sphalerite (ZnS, a major ore of zinc) and chalcopyrite (CuFeSzva major
ore of copper; Table 7). These phages separate sphalerite efficiently
despite the presence of such natural contaminants as silica (a waste
mineral) and pyrite (Curtis et al., 2009). The modified phages can po-
tentially mine minerals and metals selectively from natural ore and
remediate abandoned mines by acting on waste and industrial scrap
and thus contribute to economic and ecological security.

Filamentous phages VP12 and VP14 have been modified to dis-
play a specific peptide (DSQKTNPS on pVIll) that sequesters phys-
ical pollutants (fine silt and clay particles; Curtis et al., 2011; Curtis

et al., 2013). In fact, the mechanism by which the peptide binds to
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chalcopyrite has also been elucidated: The two phages sequester on
their surface particles smaller than 45 pum in diameter under a wide
range of pH (3-11) and cation concentrations. The potential of such
phages to aggregate soil particles and thereby prevent erosion can
be tapped as a novel strategy in soil management.

Phages have also been modified to display peptides (12-mer)
specific to organic contaminants, namely 2,4,6-trinitrotoluene (TNT)
and 2,4,6-trinitrobenzene (TNB; Table 7). Such modified phages can
detect the target organic contaminants at ultralow levels (10 ng/
ml) even in heterogeneous environmental samples (Goldman et al.,
2002). Modified M13 phages displaying antibodies detected TNT
and its derivatives even at concentrations of 1 ng/ml (Goldman et
al., 2003). The modified phages displaying specific antibodies are
highly selective and sensitive and can detect even minute quantities
of such contaminants as morphine at ultralow levels (5 ng/ml within
2 min) in environmental samples (Pulli et al., 2005). Therefore, co-in-
oculation of modified phages with plant growth-promoting bacteria
will serve as a supplementary biotechnology to sequester and detox-
ify targeted contaminants and to speed up revegetation of degraded

lands.

6 | PRIORITY AREAS OF RESEARCH TO
MINIMIZE THE POTENTIAL RISK TO THE
ENVIRONMENT FROM THE APPLICATION
OF FILAMENTOUS PHAGES

So far, filamentous phages have been presented in a positive light.
However, as with invasive species and transgenic organisms, the
potential risks from introducing filamentous phages that are foreign
to degraded soils must not be overlooked. Even if a phage is native
to the soil, phage inoculation may disturb the phage-to-bacteria
ratio, which is crucial to many biological processes in soil (Meaden
& Koskella, 2013; Reyes et al., 2010). Because bacterial inoculation
aims to restore adversely affected soil processes in degraded lands,
the risk from using modified or natural filamentous phages is mini-
mal (Sharma et al., 2015; Sharma, Mishra, Mohmmed, & Babu, 2008;
Sharma, Mishra, Rau, et al., 2011). Based on a cost-benefit analysis,
we maintain that the benefits of filamentous phages outweigh the
risks from deploying them in damaged ecosystems (Figure 6). Also,
the impact of inoculation with filamentous phages is hard to predict
unless we have prior knowledge of their host range and the propor-
tion of filamentous phage-infected bacteria in bacterial populations.
Based on the low density and diversity of bacterial communities in
degraded environments, we believe that the immediate benefits of
phages outweigh the possible risks (Figures 5and 6).

Expansion of the host range of nonnative or modified filamen-
tous phages and the activation of unknown silent phages in bacterial
populations in inoculated soils are other potential risks from phage
application. Filamentous phages are highly host-specific and rarely
extend their host range to include other strains, species, or genera
(Hyman & Abedon, 2010; Piekarowicz et al., 2014). To preclude
the possible risk of filamentous phages serving as helper phages

for the multiplication of satellite phages (Rakonjac et al., 2011), it is
essential to conduct prior experiments with native soils (Figure 6).
Alternatively, to limit the replication of nontargeted phages in soil,
we may load the useful genes from filamentous phages into a sui-
cide vector (Addy, Askora, Kawasaki, Fujie, & Yamada, 2014; Huber
& Waldor, 2002; Martinez & Campos-Gémez, 2016; Pant et al.,
2015). To ascertain the possible impact of introduced phages on the
functioning of microbial communities, we need to generate relevant
knowledge using ecologically relevant laboratory- and field-based
studies in a multi-species environment (microcosm or mesocosm).

Evolution of phage-resistant but virulent bacterial mutants is
another common concern (Hosseinidoust, Ven, & Tufenkji, 2013).
However, in the environment, selection may work against the mul-
tiplication of such mutants. Bacteria with mutated pili develop re-
sistance to filamentous phages but show reduced fitness. It may be
noted that the pilus helps a bacterium to adhere to suitable objects,
move, colonize, and spread into the environment. At the same time,
the phages-to-bacteria ratio affects the frequency of conjugation
in bacterial populations. Therefore, we propose that the population
dynamics of filamentous phages and their bacterial hosts in a given
environment be examined before deploying filamentous phages
for remediation and the impact of population dynamics on the fre-
quency of conjugation and on the functioning of host bacteria be
estimated to develop strategies for the use of filamentous phages.

Finally, we need to consider the costs and benefits of the envi-
ronmental use of filamentous phages based on in vitro studies, which
are characterized by a stable environment with few limiting factors.
It is possible that the benefits will be lower in the fluctuating natural
environments with many limiting factors. However, even marginal
improvements in the efficacy of bacterial inoculants due to filamen-
tous phages are worthwhile and particularly important in restoring
degraded lands. The costs and benefits are context dependent. The
effect of a phage on the bacterial cell is likely to have bottom-up
consequences on bacterial populations, on microbial communities,
and on other associated organisms (plants and animals). Such effects
of phage inoculation on interactions between organisms will have
ecological costs in terms of its impacts on other functional groups
of microbes such as associative cooperators, competitors, and pred-
ators. Therefore, we suggest that the ecological cost of the applica-
tion of filamentous phages be estimated and used as the foundation
for developing suitable methods for co-inoculation with bacteria and
filamentous phages (Figure 6).

7 | CONCLUSIONS

Theories related to the ecology of soil microbes have guided mi-
crobe-assisted environmental restoration programs. Applying such
theories to phage-bacterium interactions will improve microbial in-
oculation technologies for revegetation of degraded lands. Growing
knowledge of the ecology of filamentous phages of different bac-
terial genera in diverse environmental settings shows the potential

of phages as an emerging bioresource suitable for environmental
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applications. Co-inoculation of bacteria with filamentous phages
will increase the ecological and evolutionary potential of microbial
communities in degraded lands because filamentous phages will
help bacterial inocula to colonize degraded sites subjected to multi-
ple abiotic and biotic sources of stress. Further, the ease with which
the genome of filamentous phages can be manipulated to express a
range of peptides and proteins makes such phages a real-time sens-
ing tool for environmental restoration. Sensors based on filamentous
phages can detect inocula, pathogens, and contaminants in environ-
mental samples at ultralow levels and will not only contribute to
more informed decisions related to restoration but also save time
and resources. We recommend that restoration ecologists exploit
filamentous phages to enhance the ecophysiological capabilities of
host bacteria and to find new filamentous phages and understand
their ecological relevance. Researchers in environmental remedia-
tion will benefit from studying the ecology of filamentous phages
to shape bacterial populations for a given purpose; in turn, the ex-
ercise of shaping bacterial populations will help the researchers to
understand the ecology of phage better. The priority research areas
identified in this review will help to realize the potential of phage-
bacterium co-inoculation in environmental restoration and, at the
same time, minimize the possible risks from deploying phages. Such
use of filamentous phages can usher a tectonic shift in the science
and practice of ecorestoration.
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