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Abstract

MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to 

provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, 

we applied HP [1-13C]pyruvate dynamic MRI in prostate cancer to measure the conversion from 

pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was 

to develop and test analysis methods for improved quantification of this metabolic conversion. In 

this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate 

conversion rate, kPL, as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic 

modeling included an “inputless” method requiring no assumptions regarding the input function, 

as well as a method incorporating bolus characteristics in the fitting. These were first evaluated 

with simulated data designed to match human prostate data, where we examined the expected 

sensitivity of metabolism quantification to variations in kPL, signal-to-noise ratio (SNR), bolus 

characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer 

patient datasets.

The simulations indicated that the inputless method with fixed relaxation rates provided high 

expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired 

strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy 
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over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless 

fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function 

showed high variability in parameter maps.

Overall, we found the inputless kPL fitting method to be a simple, robust approach for 

quantification of metabolic conversion following HP [1-13C]pyruvate injection in human prostate 

cancer studies. This study also provided initial ranges of HP [1-13C]pyruvate parameters (SNR, 

kPL, bolus characteristics) in the human prostate.
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1 | INTRODUCTION

MRI with hyperpolarized (HP) 13C-labeled substrates has emerged as an extremely 

promising metabolic imaging modality, because it can probe key metabolic pathways in 

patient studies.1–6 These studies utilize dissolution dynamic nuclear polarization (DNP) to 

enhance the 13C nuclear polarization, providing > 50 000 fold sensitivity increases in vivo.
7,8 The most promising HP substrate to date is [1-13C]pyruvate, which provides the 

following: monitoring of a key metabolic pathway, conversion to [1-13C]lactate, which is 

highly upregulated in most cancer types (the “Warburg effect”); high levels of polarization 

via dissolution DNP; and biocompatibility at doses of 0.43 ml/kg body weight and 250mM 

as determined in a Phase 1 safety trial.1 Clinical translation of HP [1-13C]pyruvate was 

initially demonstrated in prostate cancer patients, and currently there is clinical research 

underway at several institutions in prostate cancer, breast cancer, brain tumors, liver 

metastases, and heart failure.1–5

Quantification of metabolic conversion in HP 13C MRI is a key component for the clinical 

application of this modality. Accurate, robust, and meaningful measurement methods are 

essential as HP 13C MRI enters widespread clinical trials. The robustness of the acquisition 

and quantification methods will be especially critical when comparing data between 

institutions and in multisite clinical trials. The preclinical studies performed to justify 

clinical studies benefited from highly reproducible experimental and physiological 

conditions, whereas in humans substantially more variability is a concern.

Dynamic imaging acquisition in HP 13C MRI offers the potential to provide robust 

quantification of metabolic conversion, regardless of differences in bolus delivery.9,10 This is 

in contrast to imaging at a single time-point, which can be analyzed via the lactate-to-

pyruvate ratio,11 but is very dependent on experimental timing. Dynamic imaging 

acquisitions can be analyzed using kinetic modeling, typically to calculate a pyruvate-to-

lactate metabolic conversion rate, kPL.12–23 Another popular approach is to use the area-

under-curve (AUC) ratio between lactate and pyruvate that, under assumptions of constant-

in-time flip angles acquired starting prior to bolus arrival or consistent bolus characteristics, 

is directly proportional to kPL.24
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The purpose of this work was to evaluate methods for quantification of metabolism for 

human HP 13C MRI studies. To accomplish this, we evaluated methods in simulations that 

were based on the observed characteristics in human prostate cancer dynamic MR 

spectroscopic imaging (MRSI) studies. We also applied these methods for in vivo analysis of 

prostate cancer patient HP 13C-pyruvate data. The resulting kPL values are presented, along 

with additional experimental characteristics such as signal-to-noise ratio (SNR) and bolus 

parameters.

2 | METHODS

2.1 | Dynamic imaging

Dynamic hyperpolarized 13C MRSI was acquired for all patients analyzed in this article. 

They were imaged using a 3D dynamic MRSI sequence that covered the entire prostate 

using a blipped echo-planar spectroscopic imaging (EPSI) acquisition with a compressed 

sensing reconstruction,25 shown in Figure 1. This sequence used a flyback EPSI waveform 

with 16 encodes, a spectral resolution of 9.83-Hz and a 581-Hz spectral bandwidth. A 

compressed sensing reconstruction based on spectral, spatial and temporal sparsity allowed 

for 18-fold acceleration compared with fully sampled EPSI.

Other 3D MRSI sequence parameters included 12 × 12 × 16 matrix size, TE = 6.3 ms, TR = 

150 ms, 8 mm isotropic resolution, acquisition window = 42 s, and 2 s between time points. 

With the accelerated acquisition, only eight encodes were required per time point. Multiband 

spectral–spatial RF excitation pulses were used, with a lower flip angle applied to the 

pyruvate resonance in order to minimize saturation and maintain substrate magnetization for 

later time points. This results in improved SNR for the metabolic products.10 This was 

combined with a variable flip-angle strategy in time to use all HP magnetization.26–28 

Pyruvate variable flip angles were designed with a “T1-effective” approach, using an 

effective decay rate of T1,eff = 35 s in Equations 6 and 7 of Xing et al28 for the flip-angle 

design. Lactate variable flip angles were designed using the maximum SNR formulation in 

Equation 8 of Nagashima,27 with an effective decay rate of 100 s for the flip-angle design. 

These effective decay rates for the flip-angle designs were empirically chosen to maintain 

the SNR for both metabolites throughout the dynamic acquisition and to provide some 

robustness to B1 inhomogeneity based on simulations. The flip angles used are shown in 

Figure 1.

The pulses were designed using minimal spectral specifications, where flip angles for 

[1-13C]pyruvate and [1-13C]lactate were specified by the methods described above, with all 

other resonances designated as “don’t-care” regions. This allowed for a relatively short 

duration of 4.3 ms, compared with 18–20 ms for previous designs that also had 

specifications for [1-13C]alanine and [1-13C]pyruvate-hydrate.10 The MATLAB software 

used to design these pulses is available at https://github.com/LarsonLab/Spectral-Spatial-RF-

Pulse-Design.29
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2.2 | Data analysis

The primary goal of the kinetic model fitting methods was to evaluate the pyruvate-to-lactate 

conversion rates for our human prostate cancer imaging studies. These used the imaging 

methods described above. The data typically had relatively low SNR and several key 

experimental parameters were unknown: the in vivo metabolite relaxation rates, bolus 

delivery shape, and timing.

We used the tissue model shown in Figure 2, which includes an input function outside the 

imaging voxel and unidirectional pyruvate-to-lactate conversion via kPL within the voxel:

u P
k P L L (1)

which can be described by the differential equations

dPZ(t)
dt = − R1PPZ(t) − kPLPZ(t) + u(t) (2)

dLZ(t)
dt = − R1LLZ(t) + kpLPZ(t) (3)

In this nomenclature, PZ and LZ denote the pyruvate and lactate magnetization, u is the 

incoming magnetization, kPL is the pyruvate-to-lactate conversion rate, and R1P = 1∕T1P, R1L 

= 1∕T1L are the spin-lattice relaxation rates.

To account for arbitrary flip-angle schemes, we used a hybrid discrete–continuous model.
12,30 Flip-angle compensation is achieved by converting the measured signal for metabolite 

X at time point n, XS[n], to the Z magnetization prior to RF excitation, Xz
−[n]. The Z 

magnetization after RF excitation, Xz
+[n], is also computed, and these conversions are based 

on the cumulative effects of the RF pulses required to acquire each image:

XZ
−[n] = XS[n]/SS, X[n] (4)

Xz
+[n] = Xz

−[n]SZ, X[n] (5)
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SS, X[n] = ∑
i = 1

Nrf
sin θX, n[i] ∏

j = 1

i − 1
cos θX, n[ j] (6)

SZ, X[n] = ∏
i = 1

Nrf
cos θX, n[i] (7)

Nrf is the number of RF pulses used to acquire each image and θX,n[i] are the set of flip 

angles for metabolite X used to acquire the time-point n image.

We also assumed that the input function, u(t), was constant over each TR interval, which 

enabled an analytic solution to Equations 2 and 3 during the continuous period between RF 

pulses of our discrete–continuous model.

We compared the following metabolism quantification strategies in the framework of the 

above tissue model.

• Inputless kPL fitting.—This fitting approach, inspired by Khegai et al,17 only fits the 

lactate magnetization and not the pyruvate magnetization, where the measured pyruvate 

magnetization is used as the input for the kinetic model at each time point.

The estimated lactate magnetization measurement Lz
−[n] at each time point, n, is fit based 

only on the measured pyruvate magnetization at the adjacent time points, PZ
+[n − 1],Pz

−[n], 

and the estimated lactate magnetization at the previous time point Lz
+[n − 1] by solving the 

two-site model in differential Equations 2 and 3:

pz
− n

Lz
− n

= x⋆ n − 1 + exp A ⋅ TR
pz

+ n − 1

Lz
+ n − 1

− x⋆ n − 1 (8)

where

A =
−R1P − kPL 0

kPL −R1L

and

x⋆[n − 1] = A−1 u[n − 1]
0
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This solution assumes a constant input, u[n − 1], during each time interval, TR, between 

time points n − 1 and n, which is computed based on the measured pyruvate magnetization:

u n − 1 =
(pz

− n − pz
+ n − 1 exp((−R1p − kPL)TR))(R1p + kPL)

1 − exp((−R1p − kPL)TR) . (9)

The model was solved based on minimization of the least-squares error as computed 

between the measured and estimated lactate magnetization, Σn(LZ
−[n] − LZ

−[n])
2
, using a 

constrained, nonlinear least-squares solver based on a trust-region-reflective algorithm 

(MATLAB).

• Area-under-curve ratio24 (AUCratio).—For this method, the ratio of the area under 

lactate to the area under pyruvate curves is used as a simple surrogate for metabolic 

conversion and is computed simply as

AUC ratio =
∑n LS[n]
∑n pS[n] (10)

Under conditions of sampling prior to arrival of the bolus and constant-in-time flip angles 

(i.e. not variable flip angles), this ratio is24

AUC ratio ≈
kPL

R1L, eff
(11)

where R1L,eff is the effective lactate relaxation rate, including T1 decay, flow, conversion 

from lactate to pyruvate, and losses due to RF pulses.

For the multiband variable flip scheme, we computed a “calibrated AUCratio”, where 

predicted AUC values were computed from simulated data without noise using the nominal 

model parameters, including the nominal input function.

• kPL fitting with input.—In this fitting approach, the input function, u(t), was included in 

the fitting process and then pyruvate and lactate magnetization were fitted.

This was done using the discrete–continuous model described above to include varying flip 

angles. A gamma function was used for the input function, u(t):

u(t) =
0, t < Tarrival;

ku t − Tarrival
αexp − t − Tarrival /β , t ≥ Tarrival

(12)

with α = 4 and β = Tbolus∕4 to provide the shape shown in Figure 2.
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This model had additional parameters of Tarrival, Tbolus, and ku (an input rate), which could 

be either fitted or fixed. The shape of the bolus can also be modified readily in this approach.

The model was solved based on minimization of the least-squares error as computed 

between the measured and estimated pyruvate and lactate magnetization, 

Σn(LZ
−[n] − LZ

−[n])
2

+ (PZ
−[n] − PZ

−[n])
2
, using a constrained, nonlinear least-squares solver 

based on a trust-region-reflective algorithm (MATLAB).

• Lactate time-to-peak (TTP) and mean lactate time.—Recent work by Daniels et 

al14 showed that the lactate timing changes with kPL and the lactate time-to-peak (TTP) 

model-free approach performed indistinguishably from the best kinetic model in both their 

in vitro and in vivo datasets. Simulation results of the metric, as well as a ‘mean lactate 

time’, are described in the Supporting Information.

Constraints were placed on several parameters in the kPL fitting methods. For all results 

shown, these were T1L,min = 15 s, T1L,max = 35 s, Tarrival,min = 0 s, Tarrival,max = 12 s, 

Tbolus,min = 6 s, Tbolus,max = 10 s.

To assess the variability in arrival time between the experiments, we computed a “mean 

pyruvate time” as the center of mass of the pyruvate signal over time31:

Tμ, pyr =
∑nPS[n]t[n]

∑nPS[n] (13)

where t[n] was the time after the nth image acquisition. This metric is reflective of the 

relative arrival and was chosen as it is relatively robust to noise compared with estimates of 

peak times which is essential given the low SNR of our data and requires no assumptions 

regarding the pyruvate dynamics.

Pyruvate and lactate signals were extracted from the spectra using peak area integration. The 

complex-valued spectra were phased separately for pyruvate and lactate, with a zero-order 

correction that maximized the real component across all time points. Only the real 

component of the integrated peak areas was used in the fitting. This phasing and peak 

integration provided metabolite signals with zero-mean Gaussian noise, unlike magnitude-

based methods, which result in Rician noise. For Gaussian noise, least-squares minimization 

is equivalent to maximum-likelihood estimation.

The total SNR, tSNR, was measured for pyruvate and lactate as the summed signal divided 

by the standard deviation in the peak height measurements, σ, which was estimated using 

voxels outside the sensitive region of the RF coil that contained only noise:

tSNRX =
∑n XS[n]

σ (14)
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The fitting code used in this article was implemented in MATLAB and is available in the 

“Hyperpolarized MRI Toolbox” at https://github.com/LarsonLab/hyperpolarized-mri-

toolbox.32

2.3 | Simulations

Simulations provide a key tool for evaluation of the proposed analysis methods, as there are 

no available gold-standard in vivo kPL measurements. Simulated data were generated based 

on a two-site model as shown above, with a gamma-distribution input function and using the 

same flip-angle schemes as the in vivo studies. These data were fitted as described above. 

Monte Carlo simulations were performed by adding Gaussian random noise to evaluate the 

precision and accuracy of the fitting methods. These were also performed across ranges of 

values for kPL, SNR, T1L, T1P, arrival time, and input function width, where the ranges were 

chosen based on what we observed for the human prostate cancer studies.

The nominal simulation values were kPL = .02/s, T1P = 30 s, T1L = 25 s. The simulations 

were normalized to have a total input magnetization of 1, and the nominal experiment had a 

noise standard deviation σ = 0.004. This noise level can be interpreted by noting that the 

theoretical maximum SNR would be 250 if all HP magnetization were captured in a single 

image. The gamma-distribution function was nominally set to have an arrival time 4 s after 

the beginning of the experiment (Tarrival = 4 s) and a full width at half-maximum of 12 s 

(Tbolus = 12 s), illustrated in Figure 2. The gamma-distribution function used a shape 

parameter α = 4 and a scaling parameter β = Tbolus∕4, which was found empirically to 

provide realistic bolus shapes. For AUCratio measurements, predicted AUC values were 

computed from simulated data without noise using the nominal model parameters, including 

the nominal input function.

Code for generating the simulations is available at https://github.com/agentmess/Prostate-

Cancer-Analysis-Methods-Paper-2018.

2.4 | Experiments

Imaging was performed on a GE 3T MR system on software version DV25 equipped with 

broad-band capabilities. For 13C, the “clamshell” transmitter consisted of a Helmholtz pair 

built into the patient table was used for volume excitation and was large enough to fit the 

entire pelvis and other coils. An endo-rectal probe containing both 13C and 1H loop coils33 

was used for reception. For anatomical imaging, an additional four-channel 1H torso coil 

was used for reception, and the 1H body coil was used for transmit. The endo-rectal probe 

contained a 13C-urea (8 M, 0.6 mL) syringe in the middle of the 13C loop that was used for 

calibration. It was doped with gadolinium (Gd) to reduce the relaxation times to T1 = 1.0 s, 

T2 = 195 ms. The T1 shortening allowed for more rapid coil testing and B1 calibration prior 

to the pyruvate injection.

All 17 patients (63 ± 8 years old) used in this study had biopsy proven prostate cancer and 

received a multiparametric 1H MRI/hyperpolarized 13C MR exam prior to definitive 

treatment for their cancer. 12 patients, five with low grade (Gleason ≤ 3+4, serum PSA 5.2 

± 2.2 ng/ml) and seven with high grade (Gleason ≥ 4+3, serum PSA 7.1 ± 1.8 ng/ml), were 

enrolled in a clinical trial of hyperpolarized [1–13C]pyruvate MR prior to surgery with 
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whole-mount step section pathology (NCT02526360). The other cohort, six patients with 

advanced prostate cancer (Gleason Score ≥ 4+3, serum PSA 16 ± 0.8 ng/ml), was enrolled in 

a clinical trial of hyperpolarized [1–13C]pyruvate MR prior to and after therapy with 

androgen deprivation therapy (NCT02911467).

Dissolution DNP was performed using a 5T SPINLab (GE Healthcare).7 The injected 

solution contained 241 ± 10mM hyperpolarized [1-13C]pyruvate polarized to 39.6 ± 4.5% 

and was administered at doses of 0.43 mL/kg. In the dissolution process, the 15mM electron 

paramagnetic agent (EPA), AH111501 (GE Healthcare), required for DNP was filtered out 

with mechanical filtration. An automated quality-control system evaluated pH, temperature, 

polarization, EPA and pyruvate concentration, and sample volume prior to injection. The 

resulting pH was 7.3 ± 0.4 and had an EPA concentration of 1.0 ± 0.4 μM.

In all experiments, the dynamic imaging acquisition was started 5 s after completion of the 

saline flush that followed the HP pyruvate injection. To improve the B0 homogeneity, we 

used the same shimming procedure as for our 1H MRSI clinical prostate studies.34 This 

begins with automatic shimming over the prostate (as selected by a PRESS selection region), 

followed by manual adjustments of the shim gradients to produce the peak water signal in 

the selection region.

For analysis, fitting was only performed in voxels with a minimum pyruvate tSNR > 80 

(Equation 14). When using fixed relaxation rates in the fitting, we set T1P = 30, T1L = 25 s 

based on fits from the Phase I prostate cancer patient trial (T1P = 29.2 ± 5, T1L = 25.2 ± 5 s).
1 Other studies in animals have measured T1P = 43 s in whole blood extracted during the 

experiment and T1L = 28 to 35 s in an implanted fibrosarcoma at 7T,16 and T1L ≈ 25 s with 

multiple fitting approaches in subcutaneous mammary adenocarcinomas at 3T.14

3 | RESULTS

3.1 | Simulations

3.1.1 | Matching in vivo data—We first examined our in vivo data, and attempted to 

match our simulated data in order to perform relevant simulation analyses. Figure 3 shows 

typical data from prostate voxels, chosen to cover a representative range of kPL, SNR, and 

bolus characteristics, and visually matched simulated data. Examination of our in vivo data 

was used to choose our nominal simulation parameter values of kPL = .02/s, σ = 0.004, 

Tarrival = 4 s, Tbolus = 12 s, T1P = 30 s, T1L = 25 s, as well as the ranges of kPL, σ, Tarrival, 

and Tbolus shown in subsequent analyses.

3.1.2 | kPL fitting with assumed bolus characteristics and relaxation rates—
The simulations in Figure 4 compare the accuracy and precision of the AUCratio and kPL 

fitting methods using the in vivo experimental parameters and simulated across variability 

ranges chosen based on the in vivo fitting results (described in greater detail later). In this 

initial comparison, the fitting methods assumed several fixed parameters: the calibrated 

AUCratio was generated assuming known bolus characteristics and relaxation rates, and the 

fitting with input method also assumed known bolus characteristics and relaxation rates that 

were fixed in the fitting. The simulations with varying bolus characteristics and relaxation 
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rates demonstrate the response to kinetic modeling with errors in these assumed parameters. 

The results for this are summarized in Table 1.

The simulations show, in the top row in Figure 4, comparable precision and accuracy 

between the three methods in response to variations in kPL and SNR. However, the other 

plots show that the methods differ in their response to variations in the bolus characteristics, 

relaxation rates, and B1.

The simulations show that the calibrated AUCratio is sensitive to errors in the bolus 

characteristics and relaxation rates for our prostate cancer experimental approach. With 

known bolus characteristics and relaxation rates but variation in kPL and noise (top row), the 

precision and accuracy of the calibrated AUCratio are comparable to those of the inputless 

kPL fitting. However, the AUCratio shows substantial bias with changes in all other 

parameters: the bolus characteristics as well as both T1P and T1L. For example, the plots 

show that errors in the assumed Tarrival will result in just over 20% bias in kPL at Tarrival = 0 

and Tarrival = 8. Errors in the assumed bolus duration, Tbolus, lead to up to 10% bias for the 

range shown. Errors of ±10 s in the relaxation rates lead to approximately 10% bias in kPL. 

Errors in B1 of ±20% also lead to a similar 10% bias. Note that the sensitivity of the 

calibrated AUCratio to the bolus characteristics can be eliminated by using flip-angle 

schemes that are constant in time and starting before the bolus arrival, as demonstrated in the 

Supporting Information.

Similarly, the simulations in Figure 4 show that fitting with input that assumed known bolus 

characteristics and relaxation rates is also very sensitive to errors in the bolus characteristics 

and relaxation rates. If the bolus measurement and assumed relaxation rates are accurate, the 

fitting with input is accurate for the ranges of kPL and SNR shown, with a precision slightly 

lower than the calibrated AUCratio. However, this approach shows the largest bias when 

there are errors in the assumed bolus characteristics. With bolus arrival and duration errors 

of approximately 2 s, there is approximately 20% bias in kPL. It showed similar sensitivity to 

T1L errors to the other methods, but was more sensitive to T1P errors than the other methods. 

It was relatively insensitive to errors in B1, with < 5% bias for ±20% errors.

The inputless fitting method was the most favorable compared with the other methods in 

Figure 4 when fixing the bolus characteristics and relaxation rates with the chosen tissue 

model and experimental parameters. Unlike the other approaches, it was robust to changes in 

the bolus characteristics and T1P. It was also as precise as the other methods, with similar 

expected variances in kPL estimates. The remaining weaknesses of this method are bias, with 

variations in T1L and errors in the RF transmit power. Errors of ±10 s in T1L lead to 10–20% 

bias in kPL, while errors in B1 of ±20% also lead to a 20% bias.

3.1.3 | kPL fitting with relaxation rate fitting—To attempt to address the bias of the 

fitting methods in the presence of T1L assumption errors, we also investigated inclusion of 

T1L fitting in Figure 5. While this does eliminate this bias for both inputless fitting and 

fitting with input, adding this additional fitting parameter decreases the expected precision of 

kPL estimates substantially. The expected standard deviation of kPL fitting is more than 
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doubled in most situations shown. In response to ±10 s variations in T1L, the expected 

variance with T1L fitting is similar to the bias introduced by assuming a fixed T1L.

3.1.4 | kPL fitting with bolus fitting—To attempt to address the sensitivity of fitting 

with input to the bolus characteristics, we investigated additionally fitting the bolus 

characteristics instead of assuming and fixing values in Figure 6. We investigated fitting the 

bolus duration (Tbolus), fitting the bolus arrival time (Tarrival), and fitting both duration and 

arrival time.

These results show that all approaches reduced the sensitivity of kPL estimates to errors in 

the bolus characteristics. Fitting the arrival time while fixing the bolus duration, while 

introducing some increased bias with errors in bolus duration, provided an improvement in 

the expected variability. As expected, fitting the bolus duration while fixing the arrival time 

introduced increased bias with errors in arrival time, but provided a further improvement in 

the expected variability. Fitting both Tarrival and Tbolus reduced the sensitivity to Tbolus and 

Tarrival variations. Interestingly, fitting both parameters also had little to no penalty on the 

expected kPL variance across most parameters and performed comparably to fitting only one 

of these parameters. There was some bias when fitting both parameters, which was largest 

with a low SNR (σ = .01) of −5%, although it was relatively small in most cases.

3.1.5 | kPL fitting for other flip-angle strategies—We have also applied the 

simulation framework for evaluating various analysis methods to other flip-angle strategies, 

presented in the Supporting Information. The strategies presented there include a constant 

10° for all time and metabolites, as well as a “multiband” 10° (pyruvate)–20° (lactate) 

strategy that has been used in several prostate1 and brain5 human HP pyruvate exams.

When using fixed T1L and bolus characteristics, the inputless kPL fitting and calibrated 

AUCratio behave very similarly across both of the constant-in-time flip-angle strategies 

shown: neither suffers from bias with variations in bolus characteristics or T1P. The inputless 

method has improved precision slightly. Fitting with input suffers from bias with variations 

in bolus characteristics or T1P. All methods have bias with variations in T1L and errors in the 

RF transmit power.

3.2 | Human studies

Based on the simulation results described above, we chose to apply the calibrated AUCratio, 

inputless kPL fitting using a fixed T1L, inputless kPL fitting including T1L fitting, and fitting 

with input using fixed T1L but fitting Tarrival and Tbolus to the human prostate datasets.

Sample parameter maps across a range of patients are shown in Figure 7. In general, there is 

a strong spatial agreement between the AUCratio and kPL from inputless fitting, both with 

fitting and with fixed T1L, which also showed good correspondence with T2 lesions. Mean 

pyruvate time maps indicate some variability in pyruvate arrival across the prostate. 

However, there are noticeable disagreements between the inputless kPL fitting results 

(labeled kPL,fixed-T1L and kPL,fit-T1L) and the fitting including bolus input characteristics, 

kPL,withinput. The maps for bolus arrival and duration, Tarrival and Tbolus, also showed 
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relatively high heterogeneity, suggesting that the fitting with input was unstable in the 

human data.

The results of the inputless kPL fitting are summarized in Figure 8. Notably, the relationship 

between the calibrated AUCratio and kPL is quite variable across studies. A likely explanation 

for this difference is variability in pyruvate delivery time between subjects, which is 

expected from the simulation results in Figure 4. These showed high sensitivity of the 

calibrated AUCratio to variations in Tarrival and Tbolus. The mean pyruvate time values 

support this explanation, where studies with earlier mean pyruvate times have higher 

AUCratio versus kPL slope and vice versa.

The results of the inputless kPL fitting including T1L fitting are summarized in Figure 9. The 

relationship between the calibrated AUCratio and kPL was also variable across studies with 

this fitting approach, similarly to Figure 8. The T1L fitting in the prostate had average values 

within a subject between 20 and 30 s and a standard deviation of around 10 s in most 

subjects. This highlights the relative instability of this fitting, which is somewhat expected 

based on high variability in the simulation results when fitting T1L (Figure 5). Note that T1L 

was constrained during fitting to be between 15 and 35 s in an attempt to introduce some 

stability to these measurements. In the majority of voxels, the fitting hit these limits, as 

demonstrated by a standard deviation of around 10 s in most subjects.

The results of the kPL fitting with input and fixed T1L are summarized in Figure 10. The 

relationship between the calibrated AUCratio and kPL was also variable across studies with 

this fitting approach, but with more spread of kPL values compared with the inputless fitting 

results in Figures 8 and 9. This suggests more instability in the fitting with input. The input 

fit parameters Tarrival and Tbolus were correlated with each other (R2 = 0.836) and also with 

the mean pyruvate time metric (R2 = 0.841 between mean pyruvate time and Tarrival, R2 = 

0.882 between mean pyruvate time and Tbolus). Both metrics showed notable intersubject 

variability in bolus delivery characteristics. There was substantial variation in Tarrival and 

Tbolus in the majority of subjects, suggesting relatively unstable fitting, because presumably 

the bolus delivery would be relatively similar within the prostate. Note that Tarrival and Tbolus 

were constrained during fitting to 0–12 s and 6–10 s, respectively, in an attempt to introduce 

some stability to these measurements.

Table 2 summarizes the experimental characteristics and fitting values in the prostate across 

all patients studied. Much like prostate cancer itself, there is a heterogeneous range of SNR, 

delivery, and kPL across this group.

4 | DISCUSSION

In this work we evaluated approaches for quantification of metabolism in human HP 

[1-13C]pyruvate studies of prostate cancer patients and presented normative ranges of 

experimental parameters, including metabolic conversion rates. We chose to apply three 

methods—a calibrated AUCratio and kPL fitting with and without an input function—for 

quantification of pyruvate-to-lactate metabolic conversion. Part of the motivation for these 

methods was their simplicity, which we expected to translate into robustness for low SNR 
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data. These were chosen from amongst numerous approaches for kinetic modeling of HP 

MRI data for their anticipated robustness to SNR and potential applicability to various flip-

angle schemes.

The AUCratio method24 is extremely appealing in its simplicity of implementation. Under 

conditions of either constant-in-time flip angles acquired starting prior to bolus arrival or 

consistent bolus characteristics, AUCratio is proportional to kPL divided by an effective 

lactate relaxation rate. This proportionality breaks down when data acquisition starts after 

bolus arrival, and with variability in T1L that changes the effective lactate relaxation rate. To 

accommodate the variable flip-angle scheme, we used a calibrated AUCratio for 

comparisons, which was calculated based on the nominal bolus characteristics and 

relaxation rates. However, our results showed that this calibrated AUCratio experiences 

strong variability when bolus characteristics deviate from the assumed values. This was also 

evident from the analysis of our in vivo data, where the relationship between kPL and 

AUCratio was highly variable across patients. Therefore, AUCratio is not suitable for 

quantifying metabolism in our prostate cancer experiments.

The lactate time-to-peak (TTP) was also recently introduced as a model-free approach for 

estimating metabolism.14 In this prior work, lactate TTP performed indistinguishably from 

the best kinetic model in both in vitro and in vivo datasets. We performed simulations of 

this, as well as a “mean lactate time” (shown in Supporting Information), and found that 

both of these lactate-only model-free approaches performed poorly for the range of SNR and 

kPL values found in our human prostate cancer data with several flip-angle strategies. 

However, when we performed simulations using higher SNRs and and higher kPL values, as 

was the case in Daniels et al,14 the TTP and mean lactate time performed comparably to the 

inputless kPL fitting with fixed T1L and AUCratio, with the mean lactate time performing 

better than TTP with our variable flip-angle scheme. Based on these simulations, we believe 

these metrics are not valuable given the typical SNR and kPL values observed in our prostate 

cancer experiments.

Fitting of metabolic rates is often performed with either known input function or fitting of 

bolus characteristics, i.e. the input function parameters.13,16,20,22 We evaluated this approach 

in simulations, first assuming a known input function. We found that the kPL fitting was 

highly sensitive to errors in the assumed input function. Using this approach is also 

challenging for our data, as we could not consistently identify a region for estimation of an 

input function. It may also be more challenging to capture the bolus in our studies, due to the 

low pyruvate flip angles at the start of the experiments. Adding some fitting of bolus 

characteristics reduced the sensitivity to errors in the input function, but substantially 

increased the expected variance in the kPL estimates. In vivo fitting results also showed large 

variance in fit bolus characteristics and associated kPL maps. Therefore, we conclude that 

fitting including an input function was either too sensitive to errors or not precise enough to 

quantify metabolism in our prostate cancer experiments.

The inputless kPL fitting method, inspired by Khegai et al,17 is appealing in that it requires 

no explicit input function, reducing the number of parameters to fit. This fitting method only 

fits one or two parameters, depending on whether T1L is a free parameter. In our simulations, 
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we found that this approach had a similar precision to both the calibrated AUCratio and kPL 

fitting including an input function, but with the major advantage that it was completely 

insensitive to the bolus characteristics. We included assumptions of fixing the relaxation 

rates, T1P and T1L, in this method. Simulations showed that variations in T1P do not affect 

the fit results. However, the remaining limitation of this approach is sensitivity to variations 

in T1L. While simulations indicated that fitting T1L would be an unfavorable trade-off due to 

the increased expected variance in kPL estimates, the in vivo results did not show any 

obvious increases in kPL variance. Another advantage of the inputless approach is that it can 

be applied readily across any acquisition strategy, i.e. for any flip angle or timing scheme. 

Therefore, we conclude that inputless kPL fitting was the most robust method for quantifying 

metabolism in our prostate cancer experiments.

We found the major limitation of the inputless kPL fitting method to be sensitivity to T1L. In 

the model, kPL and T1L are competing effects of the same order (0.01–0.1/s), which may 

make separating these poorly conditioned.35 For example, increased generation of lactate via 

kPL combined with an increased decay rate T1L would give somewhat similar dynamics to 

both rates being decreased. We chose our fixed T1L = 25 s based on modeling values from 

our prior prostate cancer human studies1; this was also used by Bankson et al.13 Better 

estimates of in vivo metabolite relaxation rates will improve the reliability of kinetic 

modeling. Another consideration for future work are recent studies suggesting that the 

intracellular T1 rates of carboxylic acids, including pyruvate and lactate, may be much 

shorter than those in the extracellular environment, which were reported as being as short as 

10 s.36 This remains an important factor for this approach and likely many HP 13C kinetic 

modeling approaches, due to the poor conditioning of these models.

Another limitation of all approaches for our experimental strategy was sensitivity to flip-

angle errors. The simulation results show the inputless approach is more sensitive to B1 

errors compared with the fitting with input approach. One possible explanation is that the 

inputless fitting suffers from increased error propagation in the pyruvate signal. B1 error will 

introduce consistent errors in the calculation of the pyruvate state magnetization, 

Pz
−[n], Pz

+[n], when it is computed directly from the actual pyruvate signal using the flip-

angle compensations in Equations 4–7. The fitting with input was less sensitive to B1 errors, 

possibly because the pyruvate magnetization is fitted in the model and not calculated directly 

from the actual signal. We also suspect that some fitting methods include fit parameters that 

can end up compensating for B1 effects. For example, adding T1 fitting to the inputless 

method (Figure 5) reduces the B1 sensitivity overall. However, this is not strictly true, as 

when more parameters are added to the fitting with input (Figure 6), the B1 effects are 

worse. The bias introduced by flip-angle errors can be eliminated through B1 mapping. Fast 

Bloch–Siegert B1 mapping has been demonstrated for HP 13C,37–39 and more recently has 

been performed in real-time during the HP experiment40 to minimize bias due to inaccurate 

B1 calibration or unknown B1 field variations.

One potential improvement we did not explore that most certainly warrants future 

investigation is a tissue model that includes a vascular compartment within each imaging 

voxel. This has been recently investigated by Bankson et al,13 and was shown to be a more 
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appropriate tissue model, as evaluated by the Akaike Information Criteria in preclinical 

study data. Similarly to this article, their work also assumed a unidirectional pyruvate-to-

lactate model with fixed relaxation rates. They also used a measured vascular input function 

(VIF) based on pyruvate signal in the heart, as well as assumed known blood volume 

fractions from dynamic contrast-enhanced (DCE) MRI and pyruvate extravasation rates. 

This additional information likely helps to maintain model stability when including a 

vascular compartment within each imaging voxel, which requires assumptions or fitting of 

additional parameters. One reason we have not yet pursued this model is that we have not 

found a reliable way to estimate an input function in our prostate cancer data, but this will be 

the subject of future work. It may be possible to estimate the input function across all voxels 

in order to use a more complex tissue model.

The fitting methods and simulation evaluation framework can readily be extended to other 

applications beyond prostate cancer and other metabolic pathways beyond pyruvate to 

lactate (e.g. pyruvate to bicarbonate and/or alanine), as well as other experimental 

parameters. We provide guidance in the Supporting Information on modifying the 

simulations in the hyperpolarized-mri-toolbox.32 This framework could also be used for 

retrospective design of experimental parameters, such as flip angles and TR, to obtain the 

best estimates of kPL for expected SNR, conversion rates, relaxation rates, and bolus 

characteristics.

5 | CONCLUSION

We have demonstrated the ability of MRI with hyperpolarized carbon-13 pyruvate to provide 

quantitative assessments of prostate cancer metabolism using dynamic imaging and kinetic 

modeling, and presented normative ranges of bolus delivery, SNR, and metabolic conversion 

rates in the prostate. This work is all based on dynamic imaging with kinetic modeling 

methods to provide estimates of metabolism that are independent of the bolus delivery 

characteristics. The AUCratio method for quantification of metabolism is robust under 

conditions of constant-in-time flip angles and when data are acquired starting before the 

bolus delivery, but is affected by variability in T1L. The inputless kPL fitting method was 

shown to be relatively robust for low SNR data for all flip-angle schemes and bolus 

characteristics, but is also sensitive to variability in T1L. There were differences of over 10 s 

in bolus arrival measurements across studies and several fold differences in total SNR within 

the prostate, and this variability must be accommodated by the acquisition and analysis 

methods used in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Dynamic MRSI acquisition scheme. Data were encoded with a blipped EPSI acquisition and 

all time points were reconstructed together using compressed sensing.25 Excitation was 

performed using multiband spectral-spatial RF pulses, which applied different flip angles for 

pyruvate and lactate. The flip angles were also increased over time, to preserve 

magnetization for capturing dynamics while using all HP magnetization by the end of the 

experiment
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FIGURE 2. 
Tissue model and resulting example magnetization curves. The tissue model included an 

input function outside the imaging voxel, with a unidirectional input. Within the voxel, this 

model includes unidirectional pyruvate-to-lactate conversion via kPL and loss of 

magnetization due to RF pulses and relaxation. Example longitudinal and transverse 

magnetization curves using this model are shown, including a gamma input function, using 

the nominal simulation parameters of kPL = .02 /s, T1P = 30 s, T1L = 25 s, Tarrival = 4 s, 

Tbolus = 12 s, TR = 2 s, and the in vivo multiband variable flip-angle strategy
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FIGURE 3. 
Examples of human prostate hyperpolarized pyruvate data from four different patient studies 

and corresponding simulated data with empirically matched parameters. All simulated data 

used T1P = 30 s and T1L = 25 s. Examples were chosen to span a range of parameters
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FIGURE 4. 
Sensitivity of metabolic rate estimates based on Monte Carlo simulations for fitting methods 

with fixed relaxation rates and bolus characteristics. Sensitivity plots show the fractional kPL 

error from the kinetic models, or as predicted by an AUCratio that was calibrated for the 

nominal experimental parameters (pulse sequence, bolus characteristics, and relaxation 

rates). These are plotted over kPL, noise level, bolus arrival time (Tarrival), bolus duration 

(Tbolus), and metabolite relaxation rates. Accuracy/bias is shown by the solid lines, which 

are the average fit across the simulation. Precision/variance is shown by the dashed lines, 

which plot ± 1 standard deviation in the simulation fits
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FIGURE 5. 
Sensitivity of metabolic rate estimates for fitting methods, similar to Figure 4 (fixed bolus 

characteristics, fixed T1P) but with fitting T1L
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FIGURE 6. 
Sensitivity of metabolic rate estimates when using the fitting with input method, evaluating 

the response to fixing versus fitting the bolus parameters
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FIGURE 7. 
Sample in vivo maps of the metabolic AUCs as well as all fit parameters. T2 prostate lesions 

are highlighted by the green arrows in the T2-weighted anatomical reference images. The 

tSNR and kPL maps are windowed independently for each subject. The three kPL maps are 

windowed identically within each subject. All time values (mean time pyr, T1L, Tarrival and 

Tbolus) are in s and are windowed identically between subjects. Fit parameters were only 

computed and shown where tSNRpyruvate > 80 in order to provide reliable fits

Larson et al. Page 25

NMR Biomed. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 8. 
Summary of in vivo quantifications using the inputless kPL fitting with fixed T1L, where 

each color represents a different study. (a) Comparison of the calibrated AUCratio and kPL 

values from inputless fitting with a fixed T1L across all prostate voxels. Eight representative 

studies are shown for clear visualization. Linear fits between these parameters are shown as 

dashed lines. (b) Normalized histograms of the mean pyruvate time (Tμ,pyr in Equation (13)) 

for the same subjects as in (a), to provide a measure of pyruvate delivery time variations. (c) 

Comparison of the linear fitting between the calibrated AUCratio and kPL versus the average 

Tμ,pyr, for all 17 studies
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FIGURE 9. 
Summary of in vivo quantifications using inputless kPL fitting, with fitting T1L. (a) 

Comparison of the calibrated AUCratio and kPL values across all prostate voxels for the same 

eight representative studies as in Figure 8. Linear fits between these parameters are shown as 

dashed lines. (b) Mean and standard deviation of fit T1L values in the prostate from voxels 

with lactate tSNRlac > 20
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FIGURE 10. 
Summary of in vivo quantifications using kPL fitting with input and a fixed T1L. (a) 

Comparison of the calibrated AUCratio and kPL values across all prostate voxels for the same 

eight representative studies as in Figures 8 and 9. Linear fits between these parameters are 

shown as dashed lines. (b) Comparison of the Tbolus and Tarrival fits in the prostate across all 

studies, showing mean and standard deviation of both parameters. (c) Comparison of 

average Tbolus and Tarrival fits with the average Tμ,pyr in the prostate across all studies
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TABLE 1

Summary of the simulation results shown in Figures 4, 5, and 6. The values shown are the mean average error 

± the standard deviation. To highlight the weak points of each approach, values between 5 and 10% are 

highlighted in yellow, between 10 and 15% in orange, and > 15% in red

Fit method T1l Tarrival Tbolus ΔkPL ΔSNR ΔTarrival ΔTbolus ΔT1L ΔTlp ΔB1

calibrated AUCratio Fixed Fixed Fixed 0.4%± 10.4% 0.2%± 4.3% 15.6%± 3.6% 8.3%± 3.6% 9.5%± 3.5% 5.5%± 3.8% 5.6%± 3.6%

input-less fitting
Fixed N/A N/A 1.6%± 9.3% 1.0%± 4.7% 0.7%± 3.7% 0.6%± 3.8% 10.5%± 3.6% 0.6%± 4.0% 10.9%± 3.9%

Fit N/A N/A 1.4%± 15.4% 0.9%± 10.8% 1.2%± 10.6% 1.1%± 10.7% 3.1%± 9.8% 0.9%± 10.9% 3.7%± 7.5%

fitting with input

Fixed Fixed Fixed 0.3%± 7.0% 0.2%± 2.9% 11.8%± 2.5% 8.5%± 2.4% 8.0%± 2.4% 8.1%± 2.5% 1.1%± 2.4%

Fit Fixed Fixed 1.6%± 10.2% 0.5%± 5.7% 21.6%± 3.7% 17.0%± 4.0% 0.8%± 4.6% 18.5%± 4.3% 10.4%± 3.2%

Fixed Fit Fit 0.2%± 8.3% 0.2%± 4.0% 0.2%± 3.2% 0.2%± 3.1% 10.0%± 3.0% 4.4%± 3.2% 5.9%± 3.3%

Fixed Fixed Fit 0.6%± 8.1% 0.3%± 3.9% 2.9%± 2.8% 0.8%± 2.9% 10.1%± 3.0% 3.9%± 3.3% 6.4%± 3.3%

Fixed Fit Fixed 0.3%± 8.1% 0.1%± 3.8% 0.3%± 3.0% 1.2%± 3.0% 9.5%± 2.9% 5.5%± 3.2% 4.1%± 3.1%

Fit Fit Fit 2.1%± 3.6% 1.6%± 8.5% 1.1%± 8.1% 1.1%± 7.8% 1.5%± 7.3% 14.6%± 7.4% 9.4%± 4.6%
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TABLE 2

Summary of analysis results in the prostate across all patient studies. The fit parameter values shown are based 

only on prostate voxel data. kPL values shown used the input-less fitting with fixed T1L

ID Polarization (%) Pyr cone. (mM)

Mean 
pyr 
time 
(s) Max Pyr tSNR Max Lac tSNR Max kPL (1/s) mean kPL (1/s) mean T1L (s) mean Tarrival (s) mean Tbolus (s)

1 36.2 245 29.4 864.3 185.9 0.024 0.009 25.7 5.7 8.4

2 37.3 235 24.8 314.4 85.0 0.014 0.010 18.3 0.0 6.0

3 47.9 250 28.0 303.1 49.5 0.021 0.008 28.1 1.6 7.0

4 45.4 226 29.8 897.1 52.0 0.009 0.003 27.2 4.9 8.5

5 47 251 32.3 297.8 59.3 0.017 0.007 18.8 9.7 9.8

6 36.7 227 27.8 249.1 69.1 0.033 0.011 28.7 1.7 6.9

7 38.2 221 28.7 1415.0 136.4 0.025 0.009 25.0 3.5 8.6

8 40.9 249 27.5 1257.5 161.4 0.018 0.007 29.1 0.8 6.5

9 39.8 246 29.7 786.7 67.7 0.019 0.006 27.0 3.7 8.6

10 36.3 254 27.0 424.9 111.6 0.019 0.011 21.5 0.0 6.5

11 36.9 244 31.1 1008.5 66.3 0.021 0.007 21.8 7.8 9.5

12 39.1 241 30.6 509.5 61.2 0.024 0.008 20.1 4.7 9.2

13 38.1 225 29.7 859.4 120.2 0.014 0.007 24.4 3.8 8.4

14 38.5 246 29.1 189.2 141.4 0.049 0.018 27.4 3.0 8.1

15 29.8 251 29.5 334.0 62.5 0.023 0.007 28.7 5.3 7.7

16 42 235 28.0 703.5 195.5 0.024 0.011 27.6 1.1 6.7

17 43.6 244 30.0 276.3 64.4 0.030 0.008 26.8 4.5 8.5

Mean 39.6 241 29.0 628.8 99.4 0.023 0.009 25.1 3.6 7.9

Std Dev 4.5 10 1.7 378.1 48.7 0.009 0.003 3.6 2.7 1.1
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