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Abstract

Cellular control of gene expression is a complex process that is subject to multiple levels of
regulation, but ultimately it is the protein produced that determines the biosynthetic state of the
cell. One way that a cell can regulate the protein output from each gene is by expressing alternate
isoforms with distinct amino acid sequences. These isoforms may exhibit differences in
localization and binding interactions that can have profound functional implications. High-
throughput liquid-chromatography tandem mass-spectrometry proteomics (LC-MS/MS) relies on
enzymatic digestion and has lower coverage and sensitivity than transcriptomic profiling methods
such as RNA-seq. Digestion results in predictable fragmentation of a protein, which can limit
generation of peptides capable of distinguishing between isoforms. Here we exploit transcript-
level expression from RNA-seq to set prior likelihoods and enable protein isoform abundances to
be directly estimated from LC-MS/MS, an approach derived from the principal that most genes
appear to be expressed as a single dominant isoform in a given cell-type or tissue. Through this
deep integration of RNA-seq and LC-MS/MS data from the same sample, we show that a principal
isoform can be identified in over 80% of gene products in homogenous HEK293 cell culture and
over 70% of proteins detected in complex human brain tissue. We demonstrate that incorporation
of translatome data from ribosome profiling further refines this process. Defining isoforms in
experiments with matched RNA-seg/translatome and proteomic data increases the functional
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relevance of such datasets and will further broaden our understanding of multi-level control of
gene expression.
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Introduction

A major challenge in gene expression studies of mammalian systems is the splicing
complexity of the transcriptome. Over 90% of human multi-exon protein coding genes can
transcribe alternatively spliced mRNAs!; the average gene has the potential to express 3-4
distinct mRNA transcripts, with complex genes potentially generating more than 102,
However, several recent observations suggest that the majority of human cell-types and
tissues tend to predominantly express a single ‘principal’ RNA transcript®4. Identification of
principal isoforms can yield important biological insights because they dictate the sequence,
structure, regulation, and function of the protein(s) produced by the gene. Confident
discrimination of these principal isoforms is complicated as each modality of omic data
suffers from different biases and confounds with regards to isoform identification. By
integrating multiple modes of such data we can attempt to overcome some of these
limitations to provide confident principal isoform identification.

Distinguishing between isoforms remains a major challenge for mass spectrometry analysis.
Isoforms are most easily distinguished by unique peptide-to-protein identification from
peptide spectral matches obtained from LC-MS/MS. Sequence similarity across isoforms
limits the number of these unique peptides and corresponding enzymatic cleavage sites
within the protein sequence. Current analytical approaches deal with ambiguous or
redundant peptide-to-protein matches using a protein grouping feature, which organizes
spectral counts into groups representing the entire isoform family®=°. Protein grouping is
beneficial because it retains spectral information, but does not provide a solution to isoform
ambiguity. Top-down proteomics is a useful strategy for isoform identification, but analysis
of intact proteins is often challenging?%.11, Targeted mass spectrometry approaches such as
parallel and selected reaction monitoring (PRM/SRM) have also been employed to
distinguish between isoforms12-18, This method relies on targeting specific masses for
peptide identification, and its sensitivity allows identification of low-abundance peptides.
While targeted approaches are a promising advancement toward solving the problem of
isoform ambiguity, they are still limited by the availability of unique peptides within the
protein sequence, and cannot be used on a hypothesis-free basis.

Over the last two decades, genome-wide analysis of nucleic acids has rapidly advanced to
the point where we can routinely survey the entire genome, epigenome, and RNA
transcriptome of any cellular system. Transcriptome analysis remains the de-facto approach
for a genome-wide survey of gene expression while incorporation of proteomic
measurements has lagged despite improvements in mass-spectrometry technologies that
have put analysis of complete cellular proteomes within reach®-21, Methods for quantifying
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MRNA-seq at the isoform level have become extremely advanced, despite the challenges
inherent in using relatively short reads with non-uniform coverage and a high propensity for
multi-mapping. In a 2015 systematic review, 11 of the commonly used tools were found to
have comparable consistency and accuracy in isoform quantification, particularly for higher
abundance transcripts22. Thus, the most recent improvements to these workflows have
focussed on increasing processing speed, decreasing memory usage, and correcting for
sequence- and/or position-based biases inherent in RNA-seq experiments.

Recently, studies of the translatome have started to bridge the gap between transcriptome
and proteome. Ribosome footprinting measures the dynamic profiles of ribosomes as they
are translating mRNA to protein23 and provides additional and often crucial insight into
post-transcriptional regulation24-27. Given that protein abundance and modification most
closely reflects the biosynthetic state of the cell28:29, it may be advantageous to incorporate
translation level data when predicting protein isoforms. Packages for analysis of ribosome
footprint data have proliferated in the last two years, but the majority do not explicitly
address allocation of footprints to isoforms39-33 instead focusing on improving sensitivity
in analysis of translation efficiency. In these approaches, it is common to abstract to the
gene-level by choosing a single ‘representative’ transcript; typically, one with either the
longest coding sequence or the highest density of footprint reads. Given that calculation of
translation efficiency depends on transcript length, mis-identification or naive aggregation of
multi-isoform genes could lead to incorrect quantification. Floor and Doudna used
Cufflinks®*, a popular package for transcript quantification in an attempt to obtain transcript-
level assignments of footprints28, while the Ribomap package uses mMRNA transcript
abundance to fractionally assign footprints to isoforms3®. The Cufflinks approach is
inherently limited by the coverage of the footprints and the Ribomap method does not allow
for footprints to disagree with mRNA-seq data in the case of significant post-transcriptional
regulation.

Here we show that in experiments with carefully matched multi-omic data the vastly greater
transcript-resolving power of mMRNA-seq can be exploited to enable isoform-level
interrogation of the proteome and/or translatome. We adapted a basic expectation
maximization technique, now the de-facto standard for mMRNA-seq isoform
quantification34:36-38  for use with LC-MS/MS and/or ribosome footprint data. By
identifying the principal isoform(s) for each gene using the RNA-seq transcriptome
quantifications, the EMpire tool (Expectation Maximisation Propagation of Isoform
abundance from RNA Expression) set biologically informed priors to guide the assignment
of peptides or footprints towards these same isoforms. Use of continuous prior likelihoods
represents a continuum of expression that more accurately reflects the underlying biology of
a sample than an arbitrary inclusion/exclusion of transcript sequences in a database
reference. Divergence from the RNA-seq prediction was allowed if there was sufficient
evidence against a particular mMRNA isoform due, for example, to substantial post-
transcriptional regulation. In concordance with mRNA-seq data®4, we demonstrated that we
can identify a principal isoform in over 80% of gene products in homogenous HEK?293 cell
culture and over 70% of proteins in complex human brain tissue. Use of these informed
priors was beneficial for principal isoform selection in over half of the genes detected, and

J Proteome Res. Author manuscript; available in PMC 2019 October 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Carlyle et al. Page 4

most, but not all, gene products agreed on the same principal isoform throughout all data
modalities.

Experimental Methods

Experimental Design and Statistical Rationale

Each of the HEK293 cell assays was carried out over three biological replicate samples. In
all of the HEK cell experimental modalities, a biological replicate consisted of one large 15
cm diameter cell culture dish with HEK cells grown to 75-85% confluence (this equated to
approximately 80-100 pL packed cell volume). This sample number was considered
appropriate for the exploratory, proof of principle experiments presented here. For the
human brain experiment, 5 biological replicates were used; this sample number was based
on a previous proteomic study of mouse brain3?. No technical replicates were used, as
previous experiments showed good consistency across technical replicates.

HEK?293 cell culture — Generation of a stable cell line expressing eGFP-L10a

HEK?293 cells were transiently transfected with pCMV-EGFP-L10a using Effectene
transfection reagent (Qiagen) according to the manufacturer’s protocols. Stably expressing
colonies were selected by growth in media containing G418. The pCMV-EGFP-L10a
contains the mouse L10a coding sequence, which diverges from the human coding sequence
at 71 out of 653 bases, despite ultimately producing the same 100% conserved protein
product. This enabled us to assess the ratio of exogenous GFP-L10a to endogenous L10a
from our RNA-seq data, which was approximately 1:5 (data not shown) in the cell line
(HEK?293-L.10a) used to produce all data.

Obtaining ribosome-associated RNA (raRNA) by eGFP-L10a immunoprecipitation

raRNAs were obtained according to a modified version of the original bacTRAP
immunoprecipitation (IP) protocol9. HEK293-L10a cells were lysed by rotor
homogenisation in bacTRAP lysis buffer (20 mM HEPES, 5 mM MgCl,, 150 mM KClI, 0.5
mM dithiothreitol, 200 pg/ml cycloheximide, protease inhibitors, and recombinant RNase
inhibitors) plus 2% n-dodecyl-beta-maltoside (n-dodec, Thermo Fisher Scientific). Addition
of 2% n-dodec ensures capture of ribosome footprints from both cytosolic and endoplasmic
reticulum (ER) associated ribosomes, which in the latter case are otherwise depleted in these
preparations*! (and data not shown).

Lysates were cleared by centrifugation at 13,400 x g for 10 min at 4°C, then subjected to IP.
For EGFP-L10a IP, 450 pL of BSA blocked MyOne Streptavidin T1 Dynabeads (Thermo
Fisher Scientific) were coated with 180 pL biotinylated Protein L, and pre-conjugated to a
combination of 75 pug each of the mouse monoclonal antibodies 19F7 and 19C8 (Sloan
Kettering Memorial Hospital). Dynabead-antibody complexes were added to the cell lysate
and immunoprecipitated overnight. The next day beads were washed 4 times with a high salt
wash buffer (10 mM HEPES [pH 7.4], 350 mM KCI, 5 mM MgCl,, 1% NP-40, 0.5 mM
dithiothreitol, 100 pg/ml cycloheximide). Bound mRNAs were eluted by resuspending the
beads into 700 uL Qiazol and following the manufacturer’s instructions for RNA
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purification using the miRNeasy kit (Qiagen). Full length total RNA was also prepared by
lysing a pellet of HEK293-L10a cells in 700 pL of Qiazol, and using the miRNeasy Kkit.

Ribosome profiling sample preparation

Ribosome footprints were prepared as described?3, with some modifications. Briefly,
HEK?293-L10a cells were lysed as above in bacTRAP lysis buffer plus 2% n-dodec.
Ribosomes were collected by IP with 20 pg of biotin conjugated eGFP monoclonal antibody
(Sloan Kettering, as above) complexed with 160 pL Streptavidin Dynabeads. Bead-
associated ribosomes were resuspended in 300 UL bacTRAP lysis buffer without RNase
inhibitors, and treated with RNasel as for cell lysates. Digestion was stopped by addition of
10 pL of Superasin (Ambion). Ribosomes were collected by reattachment to the magnet and
resuspended in 700 uL Qiazol, and processed as per Qiagen miRNeasy kit instructions.
Ribosome footprints were eluted from RNeasy columns in 30 L RNase free water, then
extracted overnight at —80°C following addition of a further 38.5 UL RNase free water, 1.5
uL GlycoBlue (ThermoFisher), 10 uM sodium acetate, and finally 150 pL isopropanol.
Footprints were collected by centrifuging at maximum speed on a desktop centrifuge for 30
min at 4°C. Pelleted RNA was air-dried, then run on a 15% TBE Urea Gel (ThermoFisher).
A band was cut containing nucleotides of 26-32 nt size. Overnight RNA extraction from the
gel pieces, followed by T4 Polynucleotide Kinase (New England Biolabs Inc) treatment of
fragments was performed as described?3,

RNA-seq library preparation and rRNA depletion

Full length RNA from total cells and raRNA underwent rRNA removal by RiboZero kit
(EpiCentre, lllumina), to remove the ~90% of cellular RNA they represent. rRNA depleted
RNA was prepared for sequencing according to TruSeq library preparation protocols
(Illumina), using random primers to synthesize cDNA. Libraries were run on an Illumina
HiSeq 2500 at the Yale Center for Genome Analysis, and paired end 75 nucleotide reads
obtained.

Following T4 PNK treatment, ribosome footprints were prepared for sequencing using the
NEBNext Small RNA Library Prep kit and the manufacturer’s instructions. This resulted in
the use of a single gel extraction step, unlike previous protocols23. After testing various
rRNA depletion protocols, we made the decision not to remove rRNA, simplifying the
workflow and decreasing the opportunity for investigator introduced variability or end bias.

Mass-spectrometry (MS) proteomics

Frozen pellets of HEK293-L10a cells were lysed by sonication in RIPA buffer plus protease
inhibitors. Protein was precipitated from the lysate to remove detergents by chloroform/
methanol precipitation. Protein pellets were resuspended in 90 pL of 70% formic acid, and
then 360 pL 0.1% TFA was added. Protein was quantified by nanodrop (Thermo Fisher
Scientific) and 200ug was aliquoted, dried and reconstituted in in 8 M urea, 0.4 M
ammonium bicarbonate, reduced for 30 min at 37°C with 4 mM dithiothreitol, alkylated by
incubating for 30 min with 8 mM iodoacetamide, before dilution to 2 M urea and addition of
trypsin at a ratio of 1 pg:20 pg total protein. Samples were digested overnight at 37°C, then
acidified and desalted on a C18 Macro Spin Column (The Nest Group). Peptides were eluted
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in 80% acetonitrile/0.1% trifluoroacetic acid (TFA), then dried by Speedvac. The dried pellet
was resuspended in Buffer A (10 mM potassium phosphate in 25% acetonitrile solution (pH
3.0)) and separated in the first dimension by Strong Cation Exchange on a 2.1 x 200 mm
PolySULFOETHYL A™ column (PolyLC Inc.) via an HP 1090 HPLC Hewlett Packard).
Separation was carried out over a linear 118 min gradient with increasing Buffer B (10 mM
potassium phosphate, 25% acetonitrile pH 3.0, 1 M potassium chloride) at a flow rate of 200
uL/min. Twenty fractions were collected, pooled into 10 tubes, and each tube desalted using
a Ultra-Microspin C18 column (The Nest Group) prior to LC MS/MS. The desalted peptide
mixture was reconstituted in Buffer A (Water with 0.1% formic acid) and quantified by
Nanodrop (Thermo Fisher Scientific). Peptides were diluted to 0.05 pg/ul, and 5 UL were
injection onto the column for each fraction to be analyzed by LCMS/MS. LCMS/MS
analysis was performed using an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher
Scientific) equipped with a Waters NanoACQUITY ultra-performance liquid
chromatography (UPLC) system using a Waters Symmetry C18 180 um by 20 mm trap and
a 1.7 ym (75 pm-inner-diameter by 250 mm) NanoACQUITY UPLC column (at 35°C) for
peptide separation. Trapping was carried out for 3 min at 5 pl/min in 97% Buffer A (0.1%
FA in water) and 3% Buffer B ((0.075% FA in acetonitrile (ACN)) prior to eluting with
linear gradients that reached 6% B at 5 min, 35% B at 170 min, and 50% B at 175 min, and
97% B at 180 min for 5 min; then dropped down to 3% B at 186 min for 14 min. Three
blanks (1st 100% ACN, 2nd and 3rd Buffer A) followed each injection to ensure against
sample carry over.

Mass spectral data were collected over a 300—2000 m/z mass range, with a precursor ion
isolation window of 2.0 Da. Data Dependent Acquisition of MS/MS fragmentation (Top 10
with minimum signal of 500 counts) was carried out via High-energy Collisional
Dissociation (HCD) with normalized collisional energy of 28 (and activation time of 0.1 sec)
and default charge state of 2 for the precursor mass (with charge state rejection of
unassigned charge states and 1). Additionally, dynamic exclusion was enabled with repeat
count and duration of 1 and 30 seconds respectively. The size of the exclusion list was set at
500 ions for an exclusion duration of 60 seconds. MS1 data were collected in profile mode
with 30,000 resolving power setting, while the MS/MS were collected in centroid mode with
15,000 resolving power settings.

RNA-seq read alignment and transcript quantification

Due to our IP of ribosomes, and the decision not to deplete footprint samples of rRNA, we
carried out an explicit alignment of the reads to known human rRNA before alignment to the
genome.

TotalRNA- and raRNA-seq reads were mapped to the annotated 5S and 45S
(chrUn_gl000220) rRNAs using STAR to remove any remaining rRNA contamination.
Based on this alignment we observed that residual rRNA could explain on average ~20% of
the sequence reads across all totalRNA and raRNA samples. We mapped the remaining
~80% of the RNA-seq reads to the human genome (hg38) and annotated transcriptome
(gencode v21) again using the STAR aligner, following roughly the ENCODE alignment
parameters (github.com/ENCODE-DCC/long-rna-seg-pipeline/blob/master/DAC/
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STAR_RSEM.sh). Of the non-default options in STAR, the following are the most important
to ensure compatibility with our method:

‘--outSAMtype BAM SortedByCoordinate’ for visualisation in IGV
‘--quantMode TranscriptomeSAM’ for alignments in transcriptome coordinates for eXpress

‘--outFilterMismatchNoverLmax 0.05’ to ensure # mismatches to <5% of the # of mapped
bases

Transcript aligned reads were quantified using eXpress.

Ribosome footprint reads were clipped of their 3’ adapter and aligned, like the totalRNA-
and raRNA-seq samples above, to the annotated 5S and 45S (chrUn_gl000220) ribosomal
RNAs. Removal of rRNA reads was very important to reduce the effect of spurious
alignments to the genome. Non-rRNA reads were aligned to the human genome (hg38) and
annotated transcriptome (gencode v21) again using the STAR aligner.

Mass-spectrometry spectra alignment

The entire human transcriptome (as defined in gencode21) was in-silico translated, in three
frames, to amino acid sequences using the transseq function within the EMBOSS*2 software
library. Also included in this ‘target’ database were CRAPome“3 sequences of likely
contaminants (such as Bovine Albumin). For the fractionated HEK cell experiment,
MSConvert was used to create a merged.mgf from the proprietary ThermoFisher .raw files
from the Orbitrap Elite. The merged.mgf was input to X!Tandem for spectral assignment
using default parameters including trypsin cleavage, maximum missed cleavages of 3,
minimum ion count of 4, and mapping to the reverse sequence as a decoy.

For the brain experiment, spectra obtained from the Orbitrap Elite, in proprietary
ThermoFisher *.raw’ files, were processed using MaxQuant#4 (v1.5.2.1). Peptides were
searched using “trypsin/P” as the digestion enzyme, with a tolerance for up to 2 missed
cleavages. This search included a fixed modification, cysteine carbamidomethylation, and
two variable modifications, N-terminal acetylation and methionine oxidation. MaxQuant
default options were used for mass tolerance; 20 ppm for precursor ions, and 0.5 Da for
fragment ions. MaxQuant defaults of FDR corrected p of 0.01 was used for both peptide
spectral match and protein identification.

The standard peptides.txt output file from MaxQuant was used as input. Spectra were
searched against these transcriptome-derived protein sequences, common contaminant
sequences, and a library of reverse ‘decoy’ sequences®?.

The distribution of expectation values for spectra with legitimate database hits was
compared to the equivalent distribution for spectra assigned to the reverse ‘decoy’ database
and a [maximum] expectation threshold was selected for each sample that limited the false
discovery rate (FDR) to 1%. l.e. 1% of spectra below this expectation value mapped to the
reverse database while 99% mapped to the real database.
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Peptides that mapped to more than one distinct genomic locus or to contaminant sequences
were discarded from further analysis, however this is not to be confused with peptides
assigned to multiple potential isoforms of the same gene which were retained. It is worth
noting that many of the peptides identified using the SWISS-Prot reference could be
assigned to multiple distinct genes and thus constituted much of the data loss attributed with
the use of this reference (data not shown). The transcriptome-derived reference did not suffer
as much from multi-mapping, due mainly to less ambiguous gene-isoform relationships.

The analysis described below performs a second round of FDR correction based on decoy
mappings and discards multi-locus mapping sequences.

Software implementation and testing

The code for the EMpire expectation-maximization algorithm is freely available and can be
found at the Github repo: https://github.com/rkitchen/EMpire

Required inputs to the software are all in common data formats, examples are available in
the GitHub repo:

footprinting: gencode/ENSEMBL genome annotation (.gtf)
footprint read -> transcript alignments (.bam)

[optional] eXpress RNA-seq transcript quants (.xprs)

mass-spec: gencode/ENSEMBL genome annotation (.gtf)

translated amino-acid sequences for each transcript (.fasta)

spectra -> either transcript X!Tandem output (.xml) or MaxQuant peptides file (peptides.txt)
[optional] spectra MS1 intensities for quantification (mzXML)

[optional] eXpress RNA-seq transcript quants (.xprs) [OR] footprint EM output (.exprs)

Modifications to an expectation maximization (EM) algorithm

Footprint reads or MS peptides are defined in terms of their binary compatibility to the set of
isoforms of a given gene. If a read or peptide has a valid alignment to a transcript it is given
a value of 1, or else it is assigned 0. Using this compatibility matrix, I, of all reads/peptides
against all transcripts as well as the relative transcript abundances from RNA-seq we can
write down the likelihood, ARy p|¥), of observing all 1..N footprint reads, R, given the
distribution of the abundances, y, of 1..K isoforms:

oty al) =TT 3 ol et
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In the simplest case of the naive prior, we have no information about which isoform(s) may
be responsible for generating the footprint reads and/or peptides so we define the initial
distribution of isoform abundances as uniform:

-1
szK

In the case of a non-uniform prior (i.e. from the RNA-seq expression data), y is set as the
ratios of isoform expressions to the total (cumulative) expression of all transcripts in their
parent gene.

Since at the same level of expression isoforms with longer open reading frames will produce
more footprint reads (and below saturation longer proteins will produce more identifiable
peptides) we also define the probability that the i isoform will contribute a footprint or
peptide based on the length of its coding sequence, I, and its abundance:

1
Vi

o= i
/ Ky
k= 1"k

For the peptide EM, the effective isoform length is calculated from an in-silico (Trypsin &
LysC) digestion (allowing 2 missed cleavages) of the protein to the constituent peptides.

For each gene, we can update the isoform abundances (by Maximum Likelihood Estimation)
from the original RNA-seq to new values that best explain the observed footprints. Sampling
from these new isoform abundances allows us to assign footprint reads to specific isoforms
and so on.

For the ribosome footprints, we further modify the compatibility matrix, I, to reflect the
likelihood that a read of this length would be observed with its offset from the coding frame
of the transcript. The calculation of this read-position weight matrix is described in the next
section. Essentially if 90% of the reads of this read’s length have an observed frame offset of
0.5nt and this read has the same offset to the current transcript then the compatibility is set to
0.9. This allows for the down-weighting of reads that have a spurious frame-offset to the
current transcript; in this example if only 2% of all reads of the same length have a frame
offset of 1.5nt, which matches that of the current alignment to the current transcript, then the
compatibility is set to just 0.02 and this read will have very little positive support for this
isoform.

Ribosome footprint frame analysis

Here, we calculated the frame using the offset of the mid-point of the footprint read to the
start of the middle-nucleotide of the closest codon triplet. Using this metric and the resulting
position-weight-matrix (PWM) of the footprint size vs. codon offset we can infer that the
result of incomplete RNase digestion, which will likely differ between footprint
preparations, tends to leave additional nucleotides at the 3’ end of the footprint (Figure S4a).
We can also use the PWM of read-mids to codon-offsets from single isoform genes to allow
the reads to decide for themselves the optimal translation frame for each coding sequence
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and then ask, as a function of the number of reads mapped to a transcript, what fraction of
transcripts are called in the correct frame.

Other bioinformatic & statistical analysis

All RNA-seq statistical analyses, pre-processing, and normalization was performed within
the R/Bioconductor scripting environment*6. Gene clustering for Figure 4 / Figure S8 was
performed using the dynamicTreeCut package, with default parameters except for the
minimum cluster sizes which were adjusted for aesthetics. Cluster profiles were computed
from the median major isoform fractions of the genes within each cluster. Where referred to
explicity in the text, transcript 1Ds are taken from the October 2014 build of Ensembl: http://
oct2014.archive.ensembl.org/index.html.

PCR confirmation of principal isoforms from RNA-seq

Total-RNA was extracted from a HEK293-L10a cell pellet as described previously. cDNA
was synthesized using SuperScriptlll Reverse Transcriptase (ThermoFisher Scientific)
according to Manufacturer’s instructions. PCR primers for selected genes where isoforms
were defined by a skipped exon were designed according to the scheme below.

Primers for individual genes were:

POLDIP3: AAGTGCAGGATGCCAGAGAG Fw
CAATGGGCTGAGAACAGGCT  Rv
ALDH2: CCGAGGTCTTCTGCAACCAG Fw
TTGCATCAGGAGCGGGAAAT  Rv

PDHB: CTGGCTTGGTGCGGAGAC Fw
CCAGCAAAGCCCATCTCTGA  Rv
COPE: AGAGAGACGTGGAGAGGGAC Fw

CCACTATCCTTGTCTAGCGCC  Rv
MOGS: CAGGTGTCGCTAACCGGAC Fw
CGGGTCTTCATGCCGAAGTA Rv

Standard PCR was performed using Tag DNA polymerase (Invitrogen, Thermo Fisher
Scientific). cDNA was diluted 1:10, using 1 uL per 20 uL reaction. 30 PCR cycles were
performed, before running the samples on a 1.5% agarose gel.

Data Availability

The mass spectrometry proteomics data and files required to run the analysis described in
the paper have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD008693.

J Proteome Res. Author manuscript; available in PMC 2019 October 05.


http://oct2014.archive.ensembl.org/index.html
http://oct2014.archive.ensembl.org/index.html

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Carlyle et al.

Results

Page 11

Integrated experiments for profiling the transcriptome, translatome, and proteome

In order to fully explore the possibilities for isoform-level integration of RNA, ribosome
footprint, and proteomic data, we designed a series of assays to be run in parallel on the
same cellular sample (Figure 1a). For this proof of principle we used a modified stable
human cell-line (HEK293-L10a), collecting RNA-sequencing (RNA-seq) data at two levels,
total cellular RNA (‘totalRNA”) as well as immunoprecipitating (IP) only those transcripts
engaged by the ribosome (ribosome associated RNA; ‘raRNA’), with the hypothesis that
such transcripts may more closely reflect the abundance of protein. We obtained ribosome
footprints (‘FP’) through the same (IP)-based approach. Finally, we obtained mass-
spectrometry (LC-MS/MS; ‘M S’) proteomic data in ‘discovery’ mode, which relied on
fractionating samples to be able to identify more peptides (Supporting Table 1).

These assays differed not only in their molecular target but also their sensitivity. The depth
of coverage, in terms of genes detected at all levels of expression, was unsurprisingly by far
the greatest in totalRNA (Figure 1b). In our dataset, we observe the vast majority (19,881) of
protein-coding genes, of which 11,286 were expressed above 5 transcripts per million (TPM;
Figure 1c). raRNA gene expression captured greater than 90% of the protein coding genes
detected by total RNA-seq (Figure 1c), while depleting for lower abundance non-coding
RNA biotypes, including IncRNAs and processed pseudogenes (Figure S1). We detected at
least 5 ribosome footprints from 56.2% of these protein-coding genes, with fractionated
‘discovery’ proteomics identifying 2 or more peptides from 18.7% (Figure 1c).

Intronic reads in totalRNA may act as a confound to transcript quantification by RNA-seq,
due to the presence of pre-spliced transcripts from the nucleus (Figure S2a). RNA-seq reads
derived from raRNA indeed contained far fewer intronic reads than totalRNA (Figure S2b).
We hypothesised that poly-A purification might bring a similar benefit over total RNA, but
inspection of data from an ENCODE K562 cell-line (www.encodeproject.org) showed no
such reduction in intronic reads (Figure S2c). Notably, the “cleaner’ exonic signal from
raRNA data led to more consistent transcript quantification across all three biological
replicates compared to totalRNA] (Figure S3a,b) This agreement was clearly dependent on
both the expression of the gene and on the magnitude of the dominance of the principal
isoform (Figure S3c,d). For genes expressed above 5 TPM and with a principal isoform that
accounted for more than 50% of the mRNA produced by the gene, principal isoform
agreement increased to 93% for totalRNA and to 97% for raRNA (Green lines, Figure
S3e,f). While conservative in terms of excluding many non-coding genes, the 5 TPM
threshold included 96% of protein coding genes for which we observed footprint reads
and/or peptides (Figure 1c).

In the case of ribosome footprints, despite their short fragment size, they contain other
useful information that can be leveraged when assigning them to isoforms. The “perfect”
cycloheximide frozen ribosome footprint, (consisting of only those nucleotides directly
physically protected from the RNase enzyme by the ribosome) is a 28 nucleotide fragment,
with the read midpoint situated between nucleotide 1 and 2 of the nearest codon (zero offset,
Figure S4a). This consistent fragmentation pattern allows identification of codons from
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ribosome footprints, and as a result prediction of the open reading frame*’ (ORF). Due to
variations in the ribosome profiling technique such as incomplete RNase digestion, a range
of fragment lengths are obtained. Rather than discard these “imperfect reads,” reads from
genes with a single ORF can be used to create a position-weight-matrix (PWM) of read-
midpoints to codon-offsets (Figure S4b). The PWM shows the consistency of ORF
prediction within each biological replicate, and could be used as a quality control metric to
highlight samples with inconsistent RNase digestion. In our hands, consistently digested
samples produce a majority of 29 nucleotide length fragments, which correctly predicted the
transcript frame 90% of the time (Figure S4b). Incomplete RNase digestion usually resulted
in a 3’ base overhang (Figure S4a). Given the consistency highlighted in the PWM, 3
footprints per transcript was sufficient to call the correct frame 75% of the time, rising to
greater than 90% accuracy with at least 10 footprint reads (Figure S4c).

Isoform-level integration of RNA-seq, ribosome footprints, and MS peptides

Computational tools for RNA-seq transcript quantification, such as the eXpress algorithm37
used to assess isoform consistency in our data, typically employ an expectation
maximization (EM) approach to determine the optimal abundances of each transcript so as
to best explain the set of observed sequence reads. It is possible to employ a similar
approach to quantifying isoforms based either on LC-MS/MS peptides or on ribosome
footprint reads26. Unfortunately, compared to RNA-seq, peptide and ribosome footprint data
are much more limited in their capacity to identify specific isoforms due to their smaller
size, lower yield, and confinement to the coding sequence (CDS) of the gene. Given that
confident isoform discrimination relies largely on peptides or reads that span one or more
exon-exon boundaries, identifying the correct isoform from footprints or peptides alone can
be problematic. For protein analysis, a random 13 amino-acid peptide (the average observed
peptide size in the HEK293 data set) has an average probability of 30% to cross an exon-
exon boundary (Figure S5). Despite their increased number, ribosome footprints fare even
worse due to their smaller size leading to an average probability of 23% to cross an
exon:exon junction. RNA-seq fragments, however, are much longer (especially with paired-
end data) and, as such, have a much higher probability (on average 85%) of spanning at least
one junction. In principle, it is therefore strongly advantageous to inform an EM model by
using totalRNA or raRNA transcript quantifications to set biologically informative priors.

To exploit the increased ability of RNA-seq to quantify the set of expressed transcripts in a
sample, we sought to modify a standard EM algorithm to take RNA-seq transcript
expression levels (as transcripts per million; TPM) as input to form biologically informative
continuous prior likelihoods (priors). These priors represent a continuum of expression that
accurately reflects mRNA expression in a sample. These priors were then used to assign
short length peptides and/or footprints to isoforms (Figure S6). Unlike a naive prior (which
initially assumes an equal likelihood of any isoform) the RNA-seq derived priors can
overcome a large amount of the ambiguity in the set of transcripts/isoforms likely
responsible for the observed peptides and/or footprints. In our experiments we applied
different combinations of priors depending on the data available. In the HEK293 cell study
we assessed both allocation of ribosome footprints using RNA-seq priors (Figure S7), and
LC-MS/MS peptides using RNA-seq and footprint isoform likelihood as priors (Figure 2,
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see methods for more detail on input file formats). This approach also incorporated
modifications to the standard EM algorithm to assign more confidence to in-frame ribosome
footprint reads, according to the values in the sample-specific PWM (Figure S4).

Using a naive prior in the HEK293 cell dataset, in 58% of genes neither peptides (blue bars)
nor footprints alone (grey bars) could distinguish the principal isoform, instead settling on
two or more equally likely isoforms (Figure 3a). In multi-isoform genes for which the naive
EM converged on a single principal isoform, this isoform was typically extremely dominant
and at least 10-fold more likely than the ‘next-best” isoform (Figure 3b,c). In the footprint
dataset, use of a biologically informative RNA-seq prior established a minimum 2-fold
dominant isoform for over 80% of genes. The choice of RNA-seq prior was not critical, as
total-RNA and raRNA performed equivalently (Figure 3b). In the LC-MS/MS dataset, use of
a biologically relevant raRNA-seq prior resolved a principal isoform for 70% of genes.
Inclusion of footprint data in the RNA-seq prior resolved principal isoform ambiguity for a
further 8% of proteins compared to raRNA alone (Figure 3c).

The EM algorithm has two components: the naive or biologically informed prior, and the
expectation maximization on the given data. Using an unsupervised hierarchical clustering
and dynamic tree-cut we defined clusters of genes in each of the footprint EM and the
proteomic EM that behaved similarly in terms of the ability to resolve a principal isoform on
the basis of different priors and/or given data (Figure S8 and Figure 4a—b). These clusters
could be generalized into genes for which the biological prior was necessary or beneficial
for identification of a two-fold dominant (>66.6 % of gene expression) principal isoform
(footprint EM: 57.1% of genes in clusters ¢3,4,5,7; proteomic EM: 54.7% in clusters
c1,3,5,6,7), genes where identification of a dominant principal isoform was driven entirely
by the given data (footprint EM: 41.3% of genes in clusters c2,6,8; proteomic EM: 33.7% in
clusters c2 and c8), or was conflicting, picking a different principal isoform with different
biological priors (footprint EM: 1.6% of genes in cluster c1; proteomic EM: 11.6% in cluster
cd).

For further validation of the approach, we selected a variety of genes with isoforms
containing a single skipped exon, for which the naive prior was unable to help identify a
principal isoform but the biological priors appeared to resolve this ambiguity (Figure 5a).
We designed PCR primers to amplify the region containing the prospective skipped exon,
resulting in products of defined sizes dependent on the presence or absence of the exon. In
the example gene highlighted in Figure S9 POLDIP3, use of the RNA-seq prior
overwhelmingly suggested the presence of a 2-fold dominant transcript, POLDIP3-001,
with a minor transcript of POLDIP3-002, an outcome which was fully consistent with both
footprint read locations (Figure S9a), and peptide data (Figure S9a,b). Thus, PCR analysis
showed a principal transcript at 563 bp, the product size for transcript POLDIP3-001, with a
minor product at 476 bp (transcript POLDIP3-002). For the remaining four cases (ALDH2,
PDHB, COPE, MOGS), there was only evidence for the proposed dominant transcript, as
predicted by the RNA-seq (Figure 5b).

Finally, we showed that this approach was also highly effective when applied to a much
more complex dataset with matched mMRNA-seq and LC-MS/MS from our recent study of
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adult human brain regions?!. We analyzed 5,197 proteins detected by single-shot LC/MS-
MS from the dorsolateral prefrontal cortex (dIPFC) of 5 adult humans, using publicly
available mRNA-seq data from the same samples to serve as a biologically informative
prior®8. In these complex samples, use of the MRNA-seq prior both increased the number of
genes where a principal isoform could be consistently defined across all 5 samples (Figure
6a, teal bars), and allowed for selection of a 2-fold dominant principal isoform in an extra
40.6% of proteins (Figure 6b). In 29.8% of proteins the peptide data alone were sufficient
for selecting a principal isoform. By using the mRNA prior it was possible to call a 2-fold
dominant principal isoform in 70.4% of proteins. Unsurprisingly, as we saw with the
HEK?293 data, the more dominant a principal isoform was, the more consistently it was
called in all five samples (Figure 6b, teal bars).

Conclusions

The eukaryotic genome can produce an enormous repertoire of mMRNA products. Isoforms
are MRNA transcripts that arise from the same gene that may differ in their transcription
start site, exon usage, and untranslated regions®. Each of these transcripts may be subject to
different regulatory mechanisms, and result in variable structure and function of the final
protein product. It is therefore critical to our understanding of gene expression to consider
abundance of isoforms, and not simply genes, in high throughput data. The presence of
UTRs in mRNA, and the relatively long reads used in paired end mRNA-seq allows for
increasingly reliable definition of isoforms in these data. While ribosome footprints may be
found in UTRs, peptides are not produced from these regions, and the shorter sequences
output from LC-MS/MS or ribosome footprinting are much less likely to cross isoform
defining exon boundaries. Here we have demonstrated that use of continuous biologically
relevant priors, obtained from matched isoform-level mMRNA-seq?2 quantification can lead to
a marked improvement of the isoform-assignment of ribosome footprints and LC-MS/MS
peptides in over 50% of genes.

The EMpire tool takes experiment-level peptide to spectrum matches from widely adopted,
freely available proteomics software (we recommend the peptides.txt file from MaxQuant)
and uses transcript quantification data from RNA-seq to set biologically informed priors on a
sample-by-sample basis, allowing peptides to be assigned to the most likely protein isoforms
in each individual sample. This tool may also be used to assign ribosome footprints to
isoforms, and ribosome footprints can be input as priors for proteomic experiments. EMpire
has workflow advantages over simply using an individualized reference database with which
to match proteins and peptides. With an individualized reference, spectra from each sample
would have to be matched to their own personalized reference, an approach incompatible
with that used in most spectral alignment software, where data from every sample is grouped
together, allowing for improved normalization and comparison between samples.
Furthermore, thanks to data generated via large projects such as ENCODE#?, it has become
clear that the deeper a sample transcriptome is sequenced, the more transcripts are detected.
It is not clear exactly what the signal:noise threshold is that allows confident definition of
the meaningful expression of a transcript, and as such defining on/off characteristics for
MRNA expression is challenging and potentially error-prone. The approach presented here
defines and exploits continuous prior likelihoods that reflect the underlying biology, which is
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superior to the arbitrary inclusion/exclusion of transcript sequences in an individualised
protein or peptide reference database.

In our proof of concept study using HEK293 cells, almost 60% of genes have no clear
principal isoform using a naive prior. By using a prior derived from mRNA-seq, we can
confidently assign a 2-fold dominant isoform to ~80% of genes detected by peptides or
ribosome footprints. The addition of footprint data to the mMRNA-seq prior further increases
the fraction of proteins with a principal isoform at all levels of dominance (2-, 10- and 100-
fold). This suggests that in situations where isoform quantification by RNA-seq is noisy,
adding more data modalities to isoform level analysis may improve the confidence of
isoform selection. For ~55% of these genes, the biological prior is necessary for definition of
the principal isoform. For the vast majority of genes detected by ribosome footprints, the
different modalities consistently select the same isoform. This is evidence that the
assumptions made at the mRNA level that most cell types or even tissues express a principal,
dominant isoform of each gene, are valid for studies at the translational and proteomic level.
There are some caveats to this latter point which are highlighted by our study, particularly in
the proteomic data, where approximately 10% of genes detected by proteomics harbored a
disagreement between the RNA-seq and peptide data. This disagreement may be a technical
issue related to the coverage of the proteomic data, and the observability of individual
peptides. Where only a small number of peptides are detected from a single protein-coding
gene, a peptide that disagrees with the RNA prior has significant power to change the
outcome. In such cases it is likely that a substantial amount of the disagreement from
proteomic data arises from low protein sequence coverage, and will decrease towards the
percent disagreement observed with the footprint data (~1.6%) as the sensitivity of LC-
MS/MS continues to increase.

We also explored the performance of this approach using proteomic data from a more
complex system. Human dIPFC is an extremely complex tissue, with a layered
cytoarchitecture and the presence of a large number of individual cell types®9->1, We
hypothesized that it may be more difficult to define isoforms in this data, as different cell
types may contribute different isoforms for the same proteins. However, the use of mMRNA-
seq as a prior increased the number of genes with a 2-fold dominant isoform from 30%
(naive prior) to 70%. It is likely that a substantial portion of the 30% of genes remaining
uncertain can be accounted for by the contributions of isoforms from varying cell types. It is
worth noting that the mRNA-seq data used for this study*8 were relatively old 50 nucleotide
single-end reads. Despite the limitations of these shorter single end reads in defining
isoforms, use of this mMRNA-seq data still provided a clear benefit for isoform selection from
the proteomic data. As we saw in the HEK293 cell experiment, the principal isoform
selection was consistent, with the same principal isoform selected in all five biological
replicates in 65% of genes.

While the experimental workflow for assignment of peptides to isoforms is therefore
extremely flexible with regards to sample type and file input (see Methods), some of the
measurements may be unsuitable or more error prone in certain biosample types. Ribosome
profiling data for example can only be reliably obtained from fresh, unfixed tissue. Fixing of
samples (such as fixed formalin paraffin embedded samples, FFPE) can make tissue more
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difficult to homogenize and protease digest, and can introduce novel peptides from sites of
formalin-induced protein-protein crosslinks®2. Such peptides would not be assessed for
isoform allocation as they would not be present in standard references used in peptide
matching. It is possible that the loss of such peptides may change the outcome of the
algorithm, and thus caution should be used when comparing ‘omics data where preservation
or preparation may bias one of the profiling modalities. There is also a possibility that
proteins that are processed post translationally, such as secreted peptides cleaved by
proteases, may disagree strongly with the most likely mMRNA transcript, appearing as
“conflicting” with regards to agreement between the prior and outcome. As it is currently
unclear whether specific transcript isoform abundance is directly related to proteoform
abundance on a global scale, it is important to compare RNA read location and peptide level
data assigned by this EM approach with the available literature about downstream protein
modifications for key experimental targets.

In addition to an improvement in isoform identification, our approach involves mapping all
features back to genomic co-ordinates. Currently, it is surprisingly difficult to combine
mRNA-seq data with protein data post-hoc. This is partly a result of using non-comparable
reference databases in the mMRNA-seq versus proteomic data. Mapping back to genomic co-
ordinates therefore provides stability for comparisons through multiple versions of reference
databases, and makes comparison between different modalities easier. With small
adaptations, it will be possible to use this approach for other high throughput data formats
such as HITS-CLIP, methylation, and ChlIP-seq experiments. This may also prove useful in
model systems with less complete reference annotation than human and mouse, using RNA-
seq based technologies to define isoforms identified by proteomics. In these systems, using
ribosome footprinting may be particularly helpful as the weightings derived from their frame
prediction capabilities can be used to define open reading frames. Integration of these data
modalities from early in the analysis will increase the functional salience of these data,
minimize artifacts arising from poor comparability of reference databases, and enable us to
more fully understand the relationship between mRNA, translation and protein.
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Refer to Web version on PubMed Central for supplementary material.
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LC-MSMS Liquid chromatography Tandem mass spectrometry
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PRM Parallel Reaction Monitoring
IP Immunoprecipitation
raRNA Ribosome-associated mRNA
FP Ribosome Footprint
MS Mass spectrometry
EM Expectation Maximisation
CDS Coding Sequence
TPM Transcriptions per million
dIPFC dorsolateral pre-frontal cortex
UTR Untranslated region
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Figure1|. Experimental approach to integrated analysis of the transcriptome, translatome, and
proteome

a) Schematic diagram of the experimental approach to multi-modal profiling of the
translatome in HEK293-L.10a cells. Total-RNA and protein were obtained from lysing whole
cells, while ribosome-associated (raRNA) and ribosome footprint RNA were obtained
following immunoprecipitation of intact ribosomes from detergent extracted post nuclear
supernatant (capturing cytosolic and ER associated ribosomes).

b) RNA-seq of totalRNA (dark blue) captures 60,155 genes (#genes, y-axis) that vary
widely in abundance (log10(TPM), x-axis) and biotype. Gene location on the x-axis is
defined by the TPM of the total-RNA for that gene, and as such all data shown is a subset of
the genes observed by totalRNA. Plotted are genes (note that histograms are overlaid) also
observed when profiling raRNA (light blue, 27,977 genes), ribosome footprints (green,
lower threshold of 5 ribosome footprints/gene, 11,286 genes), and protein (red, genes with at
least 2 peptides, 3833). The bimodal distribution of totalRNA gene expression broadly
reflected a distinction between the cohort of mostly low-abundance non-coding RNAs and
the higher-expressed protein-coding transcriptome. Genes with TPM > 1 show identical
distributions of totalRNA-seq and raRNA-seq gene expression. Genes with at least five
ribosome footprints are generally expressed above ~1 transcript per million (TPM).
Fractionated LC-MS/MS, where peptides are first separated into pools offline, then analyzed
serially, was used to identify proteins.

c¢) Of the 60,155 total genes captured by total RNA, 19,881 are annotated as protein coding.
Ribosome footprints are identified from 56.2% of these protein coding genes, and
proteomics samples 18.7%.
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Figure 2 |. Analytical workflow for isoform assignment
Isoform prediction and assignment for an experiment integrating RNA-seq and proteomics

data. Peptide to spectrum matches produced by MaxQuant4* are aligned as transcript
coordinates (see Methods if X! Tandem output is a preferred input). The top row is a simple
peptide input with no biological prior and the middle is the RNA-seq informed biological
prior (transcripts quantified by eXpress3”). The bottom row shows integration of RNA-seq,
footprint, and MS/MS proteomics, which occurs on a sample-by-sample basis. In this

situation the output from the footprint EM (Figure S7) is input to the MS/MS EM.
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Figure 3|. Using an RNA-seq prior robustly decreases the ambiguity of footprint and peptide
assignment to the principal isoform in multi-isoform genes

a) Histogram showing the number of equally likely isoforms selected by performing EM
with a naive prior. Genes with only one isoform (“Mono isoform™) are shown as “MIG” on
the x-axis. For those multi-isoform genes shown at 1 on the x axis, EM with a naive prior
was able to settle on a single dominant isoform. For MS/MS peptide data (blue bars), naive
EM was ambiguous as to the likely principal isoform in 58.1% of multi isoform genes. For
footprint data (grey bars), 58.2% of multi-isoform genes were ambiguous.

b) Cumulative frequency plot for each of the 9583 genes identified in ribosome footprint
data as a result of different biological prior use. The plot shows the fraction of genes with a
principal isoform dominance (principal isoform/second isoform) less than X-fold (where x is
given on the x axis) For the purpose of clean plotting, principal isoform dominance values
greater than 120-fold were capped at 120. A value of 1 reflects a gene in which a single
principal isoform cannot be determined. This applies to 45% of genes when a naive prior is
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used, versus less than 5% of genes if an RNA prior is used. Vertical dashed lines indicate 2-
fold, 10-fold and 100-fold dominant thresholds; for example, 48% of genes have a <2-fold
dominant principal isoform using a naive prior, but this applies to only 16% of genes with an
biologically informative prior. As shown by the overlapping lines, use of a total RNA or
raRNA prior has an equivalent effect on improving resolution of principal isoform
ambiguity, compared to a naive prior. ¢) Cumulative frequency plot as per 3b) for each of the
1541 proteins detected by MS/MS. Addition of footprint data to an raRNA prior further
improved the resolution of principal isoform ambiguity.
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Figure4|. A biologically realistic prior improvesisoform level interpretation of ribosome
footprintsand MS/M S peptides

a) Genes with at least three ribosome footprint (FP) reads clustered into 8 main groups (Fig
S8a) based on the result of the EM. The EM algorithm has two components: the naive or
biologically informed prior, and the expectation maximization on the given data. Each plot
shows the fraction of total reads assigned to the most dominant isoform (principal isoform
fraction) before (prior) and after the EM for each of the 8 groups. The results based on the
three available priors are illustrated by the three columns of plots (naive, left; totalRNA,
center; raRNA, right). Genes fell into three main groups, those where using a biologically
informed RNA-seq prior allowed for selection of a two-fold dominant (y > 0.66) principal
isoform (green arrows; clusters 3, 4, 5), those for which the principal isoform was driven
entirely by the given footprint data (blue arrows; clusters 2, 6, 8), and those in which the use
of a different prior led to different outcomes in terms of the reported principal isoform
(“conflicting,” red arrows; cluster 1). An intermediate group also existed (turquoise arrows;
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cluster 7) for which the informative prior aided in assigning isoforms but was still unable to
distinguish between two equally likely principle isoforms. The bracketed number on the
right hand side of the plots indicates the number of genes belonging to each cluster.

b) As a) following EM using peptides obtained from mass spectrometry (MS/MS). Peptides
clustered into 8 main groups based on the result of the EM (Figure S8b) Here the priors were
naive (left), totalRNA (centre), and raRNA+footprints (right); where the latter was the
isoform abundance output generated by the ribosome footprint EM using the raRNA prior -
the right column in a). Genes fell into three main groups, where using a biologically
informed prior allowed for selection of a two-fold dominant principal isoform (green arrows;
clusters 1, 3, 5, 7), those for which the principal isoform was driven entirely by the given
peptide data (blue arrows; clusters 2, 8), and those in which the principal isoform was
conflicted (red arrows; cluster 4). As for a, an intermediate group also exists (turquoise;
cluster 6) where the informative prior aided in assigning isoforms but was still unable to
distinguish between two equally likely principle isoforms. The bracketed number on the
right hand side of the plots indicates the number of genes belonging to each cluster.
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Figure5|. An RNA-seq prior improvesisoform assignment in specific genes where a naive prior

ties

a) Detailed illustration of the EM result for 5 selected genes showing differences in the
relative isoform abundances of each. In all cases, the biological prior was necessary to
resolve the principal isoform (red) and the second isoform (blue) where applicable. To the
right, the isoform names are shown along with the expected product size for the PCR
validation in b)
b) PCR analysis of the 5 genes selected in panel a) show that, at least at the mRNA level, all
agree with the principal isoform inferred by RNA-seq. POLDIP3 (left) also showed evidence
for the expression of the second isoform predicted by RNA-seq.
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Figure6 |. Consistent principal isoform identification in complex human brain samplesusing a
RNA-seq prior

a) Using an mRNA-seq prior (right) increases consistency of identification of a single
minimum 2-fold dominant isoform compared to a naive prior (left). Red bars (disagree)
indicate number of genes where the EM was unable to break a tie between equally likely
isoforms, or where different principal isoforms are called in the 5 biological replicates. Teal
bars (agree) indicate selection of the same principal isoform in all 5 biological replicates b)
Following a naive prior (left), up to 70% of genes were ambiguous in terms of their principal
isoform; red peaks in this dodged histogram are evidence of the algorithm’s failure to break
a tie between 2 (x=0.50), 3 (x=0.33) or 4 (x=0.25) equally likely isoforms per gene. Use of
the mRNA prior (right) substantially reduced the number of genes with an ambiguous
principal isoform, with ~70% of genes reporting a 2-fold or greater dominant isoform
(x>0.66). Teal bars indicate genes for which the same principal isoform was called in all five
biological samples.
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