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Summary:

A common scientific problem is to determine a surrogate outcome for a long-term outcome so that 

future randomized studies can restrict themselves to only collecting the surrogate outcome. We 

consider the setting that we observe n independent and identically distributed observations of a 

random variable consisting of baseline covariates, a treatment, a vector of candidate surrogate 

outcomes at an intermediate time point, and the final outcome of interest at a final time point. We 

assume the treatment is randomized, conditional on the baseline covariates. The goal is to use 

these data to learn a most-promising surrogate for use in future trials for inference about a mean 

contrast treatment effect on the final outcome. We define an optimal surrogate for the current study 

as the function of the data generating distribution collected by the intermediate time point that 

satisfies the Prentice definition of a valid surrogate endpoint and that optimally predicts the final 

outcome: this optimal surrogate is an unknown parameter. We show that this optimal surrogate is a 

conditional mean and present super-learner and targeted super-learner based estimators, whose 

predicted outcomes are used as the surrogate in applications. We demonstrate a number of 

desirable properties of this optimal surrogate and its estimators, and study the methodology in 

simulations and an application to dengue vaccine efficacy trials.
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1. Introduction

A common scientific problem is to determine a surrogate outcome for a long-term outcome 

so that future randomized studies can restrict themselves to only collecting the surrogate 

outcome. We consider a study where we observe n independent and identically distributed 

observations of a random variable consisting of baseline covariates, a treatment, a vector of 

candidate surrogate outcomes measured at or before an intermediate time point, and the 

outcome of interest at a final time point. We assume that the treatment is randomized, 

conditional on the baseline covariates. The goal is to use these data to produce a candidate 

surrogate that is maximally promising for use in future trials for estimation and testing of a 

mean contrast treatment effect on the final outcome. We define an optimal surrogate for the 

current study as the function of the true data generating distribution collected by the 

intermediate time point that satisfies the Prentice definition of a valid surrogate endpoint and 

that optimally predicts the final outcome: this optimal surrogate is an unknown parameter. In 

Section 2 we show the highly desirable property that the optimal predictor automatically 

satisfies the Prentice definition, with one appealing consequence that this optimal surrogate 

guarantees avoidance of the disastrous ‘surrogate paradox’ [defined as (i) the effect of the 

treatment on the surrogate is positive, (ii) the surrogate and outcome are strongly positively 

correlated, but (iii) the effect on the treatment on the outcome is negative] (VanderWeele, 

2013) cannot occur. In addition, the average causal effect on the optimal surrogate has the 

same interpretation as the average causal effect on the clinical endpoint, such that, 

appealingly, the surrogate effect has the same interpretation as the clinical effect.

In Section 3 we give conditions under which the optimality of the surrogate (and thus its 

Prentice-validity) is invariant to changes in the joint distribution of the covariates, treatment, 

and intermediate outcomes. This describes “transportability assumptions” under which the 

average treatment effect on the optimal surrogate in the new trial (optimized in the current 

trial and applied in the new trial) equals the average treatment effect on the final outcome in 

the new trial. Consequently, in a thought experiment where the current trial has infinite 

sample size such that the optimal surrogate itself is measurable and is used as the surrogate 

in the new trial, a (1 − α)% confidence interval for the optimal surrogate treatment effect 

parameter is also a (1 − α)% confidence interval for the clinical treatment effect parameter.

In practice, an estimate of the optimal surrogate must be used as the actual surrogate 

endpoint. In Section 4 we present a super-learner estimator of the optimal surrogate, thereby 

incorporating the state of the art in machine learning and nonparametric estimation in an 

asymptotically optimal way. The cross-validated mean squared error can be used as an 

objective measure of performance of the surrogate in predicting the final outcome, and the 

literature provides a confidence interval for the true mean squared error of the super-learner 

estimator when applied to the training samples in the cross-validation scheme (e.g., van der 

Laan, Hubbard, and Pajouh, 2013), and is implemented in the SuperLearner R package. In 

Section 5 we further propose to update the super-learner fit of the optimal surrogate to solve 

an estimating equation [via targeted minimum loss-based estimation (TMLE)] that ensures 

that the estimator of the effect of treatment on this targeted estimated optimal surrogate is an 

asymptotically linear and efficient estimator of the average causal effect of treatment on the 

outcome of interest in the current trial. Whereas the TMLE update is advantageous 
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compared to the untargeted super-learner estimator of the optimal surrogate given its 

asymptotic efficiency for the clinical parameter of interest θ0, it does not improve the ability 

to generalize inferences to new settings, such that the super-learner alone is a sound strategy 

for generating promising candidate surrogate endpoints.

Our objective is to develop a most-promising surrogate outcome based on a clinical outcome 

study with possibly high-dimensional candidate surrogates; in future work we plan to 

address the related important objective of using the developed surrogate outcome as an 

endpoint in a future study to make inference (i.e., construct confidence intervals) on the 

causal effect of treatment in that setting without measuring the clinical outcome (future work 

is needed because inference based on nonparametric super-learning is a hard problem). 

However, in Web Appendix A we discuss approaches to inference for the future study based 

on the previously developed estimated optimal surrogate, accounting for the estimation error. 

We stress that because the assumptions needed for bridging clinical efficacy based on a 

surrogate endpoint to a new setting (stated in Theorem 2) are generally difficult to verify, it 

is recommended that wherever possible (e.g., not prohibited by ethics) future efficacy trials 

assess efficacy directly based on the true clinical endpoint; moreover this manuscript is 

about searching for a promising surrogate and does not address surrogate validation that is 

also of critical importance. In Section 6 we apply the proposed approach to two dengue 

vaccine efficacy trials. Web Appendix G studies the proposed approach in two simulations 

and Section 7 concludes with remarks.

1.1 Connection of the optimal surrogate framework to other surrogate frameworks

The newly proposed framework does not fit squarely into any of five existing frameworks 

for surrogate endpoints– the Prentice (1989) replacement endpoint framework, the 

controlled direct and indirect causal effects framework (Robins and Greenland, 1992; Joffe 

and Greene, 2009), the principal stratification framework (Frangakis and Rubin, 2002), the 

meta-analysis framework (Daniels and Hughes, 1997; Buyse et al., 2000), and the causal 

selection diagram framework (Pearl and Bareinboim, 2011). It is more similar to the 

Prentice, meta-analysis, and causal selection diagram frameworks, in being based purely on 

statistical parameters that are estimable under the basic assumptions typically made in 

randomized clinical trials. In particular, it aligns most closely with the Prentice framework 

by taking as its starting point the excellent Prentice definition of a valid surrogate endpoint. 

In fact, the optimal surrogate is constructed to guarantee satisfaction of the Prentice 

definition, a unique advantage compared to previous approaches. Under standard 

assumptions of randomized trials, if the estimated optimal surrogate is consistent for the 

optimal surrogate as attained via nonparametric learning, then for large sample size trials it 

must approximately satisfy the Prentice definition. Web Appendix B elaborates the 

connections of the optimal surrogate framework with the other surrogate frameworks.

The optimal surrogate approach also breaks new ground by searching for promising 

surrogates based on supervised nonparametric statistical learning. While historically pre-

selected univariable or low-dimensional vector candidate surrogates are considered, the 

proposed approach allows all collected baseline and intermediate response data to 
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potentially contribute to the optimal surrogate, selected and combined through unbiased 

machine learning, and not requiring parametric modeling assumptions.

2. Statistical Formulation of Estimation of an Optimal Surrogate

Let Oi = (Wi, Ai, Si, Yi) ~ P0 for i = 1,…, n be the i.i.d. data, where W is a vector of baseline 

covariates, A is a binary treatment assigned at baseline, and S is a vector of intermediate 

outcomes measured at (or before) some time point τ, and Y is the final univariate outcome 

of interest measured at a final time point after τ. We assume A is randomized conditional on 

W.

With Sa and Ya potential outcomes under each treatment a, let X = (W, S0, S1, Y0, Y1) 

denote the full-data structure, with probability distribution PX,0. The observed data 

distribution P0 of O is determined by the full-data distribution PX,0 and the conditional 

distribution g0 of A, given X, where g0(a | X) = g0(a | W). The statistical model for P0 makes 

at most some assumptions about the conditional distribution g0 of A given W. For example, 

if it is a randomized trial, then g0 is known. Thus the statistical model M for P0 only 

(possibly) constrains g0, but puts no assumptions on the marginal distribution of W nor on 

the conditional distribution of (S, Y), given A, W.

In future studies one hopes to replace the final outcome Y by a so-called surrogate outcome 

measured by the intermediate time point τ. At first we consider candidate surrogates as true 

unknown parameters, where we refer to any real-valued function (W , A, S) ψ(W , A, S) ∈ ℝ
as a candidate surrogate, representing a function of the true observed data generating 

distribution P0 and of the random variables (W, A, S) collected by time τ. If one wants to 

consider surrogates that depend on S only through a subset/summary of the S, then the 

setting is simply applied to S defined by this subset. The key question is now how are we 

going to define a good surrogate, defined in terms of P0? To start with we want the surrogate 

Sψ ≡ ψ(W, A, S) to be a valid surrogate in the actual study, according to the Prentice 

definition: that is, E0(Y1 − Y0) = 0 if and only if E0 S1
ψ − S0

ψ = 0, where the counterfactual 

Sa
ψ = ψ W , a, Sa , a ∈ 0, 1 . This guarantees that in this particular study involving sampling 

from P0, a test for H0
ψ :E0 S1

ψ − S0
ψ = 0, which controls the type-I error at level α, yields a test 

for H0 : E0(Y1 − Y0) = 0 with type-I error control at level α, where the latter test is simply 

defined by rejecting H0 if and only if H0
ψ is rejected. Importantly, by estimating E0(Y1) and 

E0(Y0) separately, our approach applies for a general treatment effect contrast.

We also need a criterion depending on P0 that can be used to rank valid surrogates based on 

the data O1,…, On, and to define a P0- optimal surrogate with respect to that criterion. In this 

manner, we not only select a P0-valid surrogate but a P0-optimal one in the class of P0-valid 

surrogates. We would like to select the criterion such that the P0-optimal surrogate is not 

only optimal under P0 with respect to this criterion, but that being P0-optimal implies that 

the validity of the optimal surrogate is invariant to a variety of possible changes in the data 

generating experiment. Or, even better, we would like that the P0-optimal surrogate is also a 
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P-optimal surrogate (and thus valid) under a variety of P’s different from P0. For these 

purposes, our proposed criterion is the following full-data mean squared error:

ψ MSEPX, 0
(ψ) ≡ ∑

a
EPX, 0

g0(a W) Ya − ψ W , a, Sa
2 . (1)

That is, our goal is to minimize the weighted mean square prediction error for predicting the 

actual counterfactual outcome of interest, across the different treatment values, with 

constraint that the solution must satisfy the Prentice definition as stated above. The idea is 

that if a participant is assigned treatment A = a and one uses as surrogate outcome 

Sa
ψ = ψ W , a, Sa , then one wants that surrogate outcome to be a good approximation of the 

future outcome Ya. Depending on the future use of the surrogate, this particular weighting 

scheme g0(a | W) could be replaced by another weighting scheme. Given a class Ψ of 

possible surrogate functions ψ(), the P0-optimal surrogate in this class is defined as

ψ0
F = arg min

ψ ∈ Ψ
MSEPX, 0

(ψ) .

We focus on the nonparametric class Ψ consisting of all functions of (W, A, S). In this case, 

the choice of weight in MSEPX, 0
i . e . , g0(a |W)  does not affect the optimal solution: i.e., the 

optimal surrogate will be optimal for each choice of weight. The P0-optimal surrogate ψ0
F is 

given by

ψ0
F(w, a, s) = E0 Ya W = w, Sa = s ,

which is a standard solution to a minimization problem that is the same under and not under 

the Prentice definition constraint. The conditional randomization assumption implies that the 

full-data MSE equals the observed data MSE:

MSEPX, 0
(ψ) = MSEP0

(ψ) ≡ EP0
(Y − ψ(W , A, S))2 .

As a consequence, ψ0
F is identifiable from P0 and can also be defined as:

ψ0
F(W , A, S) = ψ0(W , A, S) ≡ E0(Y W , A, S) .

In other words, due to the randomization of A, we have E0(Ya | W = w, Sa = s) = E0(Y | W = 

w, S = s, A = a). It also follows that EP0(ψ0(W, a, Sa) | W) = EP0(Ya | W), which 

demonstrates that the treatment-specific counterfactual mean of the P0-optimal surrogate 

equals the treatment-specific counterfactual mean of the outcome. This shows that an 

average causal effect of treatment on the P0-optimal surrogate equals the desired average 

causal effect of treatment on the outcome. We state this as a theorem.
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THEOREM 1: Assume positivity: P0(A = a|W) > 0 a.e. for a ∈ {0, 1}. Then the minimizer 
of the counterfactual mean squared error ψ MSEPX, 0

(ψ) over all functions (W, A, S) → 

ψ(W, A, S) satisfying the Prentice definition of a valid surrogate endpoint is given by:

S0 = ψ0(W , A, S) ≡ E0(Y W , A, S) .

We call this the P0-optimal surrogate. We also note that the counterfactuals of this P0-

optimal surrogate are given by: S0, a = E0 Ya |W , Sa , a ∈ 0, 1 , and EP0
S0, a |W = EP0

Ya |W .

This shows that the P0-optimal surrogate has the perfect properties of a valid surrogate in the 

actual P0-study. Moreover, if each treatment is considered separately, then the minimizer of 

ψa MSEPX, a, 0
ψa  over all functions (W, a, S) → (ψa(W, a, S)) is E0(Y|W, A = a, S), 

where MSEPX, a, 0
 is the ath term in the sum MSEPX, 0

(ψ) in (1). Therefore the P0-optimal 

surrogate is the same whether one minimizes the overall MSE in (1) or minimizes the 

treatment-specific MSEs separately (as we do in the application and simulations).

In practice, of course, the optimal surrogate cannot be used as a study endpoint, rather it 

must be estimated and the fitted values used. The statistical estimation problem for the 

original trial is now defined: we observe n i.i.d. O ~ P0 ∈ M, the target parameter mapping is 

defined by Ψ : M → Ψ with Ψ(P) = EP(Y | W, A, S), and ψ0 = EP0(Y | W, A, S) is the true 

value we aim to learn from the data.

3. Conditions on the New Study P Under Which the P0-Optimal Surrogate 

is Also the P-Optimal Surrogate

3.1 Invariance of the P0-optimal surrogate to changes in the distribution of (W, A, S)

The following theorem is a trivial consequence of the fact that EP0(Y | W, A, S) does not 

depend on the choice of joint distribution of (W, A, S), and EP(Y | W, A = a, S = s) = EP(Ya 

| W, Sa = s) if A is randomized in the P-world. Nonetheless, it demonstrates that the P0-

optimal surrogate is also the P-optimal surrogate in any study P that only differs in the joint 

distribution of (W, A, S), and preserves the conditional randomization of treatment. We 

assume both the current and future studies are randomized studies for data structures (W, A, 

S, Y) and (W*, A*, S*, Y*) with probability distribution P0 and P, respectively.

THEOREM 2: Assume the current and future randomized studies defined above satisfy (1) 
Equal Conditional Means: EP Y* |W* = w, A* = a, S* = s = EP0

(Y |W = w, A = a, S = s) for all 

(w, a, s) in a support of (W*, A*, S*), (2) a support of (W*, A*, S*) is contained in a 
support of (W, A, S), and (3) positivity: P0(A = a|W) > 0 a.e. and P(A* = a|W*) > 0 a.e. for a 
∈ {0, 1}. Then, the P0-optimal surrogate equals the P-optimal surrogate.

Price et al. Page 6

Biometrics. Author manuscript; available in PMC 2019 February 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Theorem 2 gives sufficient conditions to make the P0-optimal surrogate still a valid surrogate 

in a new randomized study that differs in the marginal distribution of W, in the conditional 

distribution of A given W, and in the conditional distribution of S given A, W.

3.2 Generalizability when the surrogate completely blocks the effects of both treatments

If the new study considers a whole different treatment than in the current study, then its 

effect on the outcome will be different and one would thus expect that the conditional mean 

of Y, given W, A, S, will be modified as well. Therefore, the conditions on the new study P 
in the previous theorem essentially exclude studies that evaluate a new treatment. However, 

there is an important exception where Equal Conditional Means may more easily hold. The 

following theorem is merely a special case of the previous theorem, but its implication is 

that if the outcome Y only depends on the treatment through its effect on the surrogate 

vector S (i.e., Prentice’s ‘full mediation’ criterion), then the new study can even consider a 

different treatment as long as it also only affects Y through S again. That is, if S is rich 

enough that it blocks the effect of the future treatment on the outcome, then the P0-optimal 

surrogate can also be used in future studies evaluating different treatments, under a simpler 

Equal Conditional Means assumption that conditions on (W, S) but not on A.

THEOREM 3: In addition to the conditions of Theorem 2, assume E0(Y|W, A, S) = E0(Y|W, 

S) [and thus also assume EP(Y*|W*, A*, S*) = EP(Y*|W*, S*)]. Then, the P-optimal 
surrogate equals the P0-optimal surrogate and 
EP Y* |W* = w, A* = a, S* = s = EP Ya* |W* = w, Sa* = s . In addition, 

a EP0
Ya W = w, Sa = s anda EP Ya* W* = w, Sa* = s  are constant in a.

3.3 How to define the surrogate in a future study when the transportability assumptions 
fail?

Typically it is not reasonable to assume that the intermediate variable S completely blocks 

the effect of treatment (current and new) on the outcome, and even if it did, Equal 

Conditional Means may not hold. Web Appendix A discusses how EP0(Y | W, A, S) may 

still often be a good candidate surrogate for such a future study, and discusses implications 

about differences between EP(Y* | W* = w, A* = a, S*= s) and EP0
(Y |W = w, A = a, S = s).

4. Super-learning of the P0-Optimal Surrogate

Estimation of the P0-optimal surrogate is a standard prediction problem. That is, we estimate 

E0(Y | W, A, S) with a minimizer of the risk of a loss: ψ0 = argminψ P0L(ψ), with Pf ≡ ʃ 
f(o)dP(o). For example, one could use squared error loss L(ψ)(O) = (Y − ψ(W, A, S))2. To 

construct an optimal estimator among any given class of candidate estimators, we use loss-

based super-learning. The oracle inequality for the cross-validation selector guarantees that 

the estimator is asymptotically at least as good as any candidate in the set of candidate 

estimators (van der Laan, Polley, and Hubbard, 2007; van der Laan and Rose, 2011). We 

summarize how super-learner is used, with details provided in Web Appendix D. Super-

learner operates by specifying a library of candidate estimators, and for each one computing 

the cross-validated risk (CV-RISK) [formula (1) in Web Appendix D] using squared error 
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loss L(·) to be consistent with our proposed criterion (1) for the optimal surrogate. The 

discrete super-learner estimator is the candidate estimator with smallest CV-RISK and the 

super-learner is the convex combination of candidate estimators with smallest CV-RISK. 

Estimation of CV-RISK involves re-running the whole super-learner on learning samples 

and averaging estimates of the conditional risk on test samples.

One can also define a cross-validated R2 (CV-R2) taking values between 0 and 1 based on 

CV-RISK [formula (2) in Web Appendix D] that provides a universal measure of the 

strength of a given estimated surrogate Ψ, allowing us to compare different candidate 

surrogate estimators within and across studies. For example, one might construct a super-

learner Ψδ based on δ-specific subsets (Wδ, A, Sδ) of the complete (W, A, S), where δ is a 

measure of the complexity of the resulting surrogate as a function of (W, A, S). One could 

now plot CV-R2 of Ψδ against δ for a sequence of δ-values, and the user can decide on a 

choice of δ taking into account both complexity and strength of the surrogate. This analysis 

is practically important given that all of the variables (Wδ, Sδ) used in the estimated optimal 

surrogate need to be collected in a future trial to use this surrogate in that trial; in practice 

some variable sets may be selected based on their high likelihood of being collected.

5. The Targeted Estimated Optimal Surrogate Captures All Information 

About Outcome for the Sake of Estimation of the Average Treatment Effect

One could estimate the optimal surrogate E0(Y | W, A, S) based on any model for the 

conditional mean. If (W, S) is moderate-to-high dimensional, then it is typically infeasible to 

attain a consistent estimator of E0(Y | W, A, S) based on a particular parametric model, 

because of insufficient knowledge. Accordingly the super-learner estimator is advantageous 

for maximizing the chance of achieving consistent estimation and providing the most 

accurate finite-sample estimation. In this section, we provide a result that updating the initial 

super-learner estimator through TMLE yields a targeted estimate of the P0-optimal surrogate 

that captures all information about the clinical outcome in the following sense. If one would 

use this targeted estimate as the actual outcome of interest in the current study, and one 

estimates the average treatment effect on this surrogate with an efficient TMLE based on the 

reduced data in the current study that ignores the clinical outcome, then this TMLE estimate 

is an efficient estimator of the average treatment effect on the actual clinical outcome.

5.1 The targeted estimate of the P0-optimal surrogate using TMLE

Suppose Y is binary or continuous in (0, 1). Let ψn be the super-learner estimator of ψ0(W, 

A, S) = E0(Y | W, A, S). Consider the submodel Logit ψn
#(ϵ) = Logit ψn

# + ϵHgn
, where 

Hgn
W , A, S = 2A − 1 /gn A W , and gn is an estimator of g0(A | W). In a randomized 

clinical trial (RCT), we might set gn = g0. Let ϵn = arg minϵPnL ψn
#(ϵ)  be the MLE, where Pn 

is the empirical distribution of the n observations and

L(ψ)(O) = − Ylogψ(W , A, S) + (1 − Y)log(1 − ψ(W , A, S)) (2)
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is the log-likelihood loss function. This ∊n is easily calculated with a standard univariate 

logistic regression of Y on Hgn
, incorporating an o set. Let ψn

# = ψn
# ϵn  be the corresponding 

estimator of ψ0, which is a TMLE (indicated by the superscript #) for reasons that we 

summarize below. This estimator ψn
# does not have a closed-form solution unless the super-

learner library is very simple, but this does not matter for the purpose of achieving a most 

predictive surrogate given its values are easily calculated.

TMLE is a general approach that allows one to target an initial estimator of a data 

distribution or parameter thereof in such a way that this targeted version will solve a user-

supplied estimating equation (van der Laan and Rose, 2011). In a typical application of 

TMLE one targets the initial estimator to solve the efficient influence curve equation for the 

target parameter of interest so that the resulting substitution estimator is an asymptotically 

efficient estimator. In the above case, we depart from this objective, instead using the TMLE 

solely as a technical procedure to make the estimator solve the equation

0 = 1
n ∑

i = 1

n
Hgn

W i, Ai Y i − ψn
# W i, Ai, Si , (3)

which is the crucial equation that we will need later for a main result (Theorem 4) that a 

TMLE of the average treatment effect (ATE) on the estimated optimal surrogate ψn
# is also a 

TMLE of the ATE on Y and is thus asymptotically linear and efficient for the ATE on Y.

5.2 The targeted estimate of the P0-optimal surrogate is optimal in the current study.

Suppose we use this ψn
#(W , A, S) in place of the final outcome Y, and, based on the reduced 

data W i, Ai, ψn
# W i, Ai, Si , i = 1, …, n, in our current study, compute the TMLE θ

ψn
#

TMLE of the 

ATE θ
ψn

# = θ
ψn

#
1 − θ

ψn
#

0 = E0 ψn
# W , 1, S1 − E0 ψn

# W , 0, S0 . Under conditions, this TMLE is an 

efficient estimator of this data adaptive target parameter θ
ψn

#, but we are really interested in 

estimating the ATE θ0 = E0(Y1 − Y0) on the clinical outcome Y. Therefore, we wonder if 

this TMLE θ
ψn

#
TMLE is also efficient for θ0 based on observing O = (W, A, S, Y)? In other 

words, how much information did we lose by replacing the outcome Y by this estimated 

surrogate outcome ψn
#(W , A, S) for the sake of estimation of the desired parameter θ0?

To answer this question, we first define both the reduced data TMLE θ
ψn

#
TMLE of θ

ψn
# and the 

TMLE θn
TMLE of θ0 based on the full data (W, A, S, Y) including Y. From this it will be 

clear that θ
ψn

#
TMLE is an actual TMLE of θ0 based on O = (W, A, S, Y) so that its asymptotic 

properties follow from the well-known theory for TMLE.
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TMLE θn
TMLE of E0(Y1−Y0) based on O = (W, A, S, Y): First, we note that an efficient 

estimator of EY1 − EY0 can ignore S so that it suffices to work with (W, A, Y) (in our setup 

with complete data on Y the efficient influence curve is the same with or without S). Let Qn
0

be an initial estimator of Q0 = E0(Y |W , A) based on (W, A, Y). Let L(Q) be the log-likelihood 

loss (2), Logit Qn
0(ϵ) = Logit Qn

0 + ϵHgn
 be the least favorable submodel, and 

ϵn = arg minϵPnL Qn
0(ϵ)  be the MLE of the fluctuation parameter ∊. The TMLE of Q0 is 

defined as Qn
1 = Qn

0 ϵn  and the TMLE of the average treatment effect E0(Y1 − Y0) is given 

by θn
TMLE = 1

n ∑i = 1
n Qn

1 W i, 1 − Qn
1 W i, 0 . Due to the TMLE-update step we have that Qn

1

solves the score equation

0 = 1
n ∑

i = 1

n
Hgn

W i, Ai Y i − Qn
1 W i, Ai , (4)

and, as a result, the TMLE Qn
1 = QW , n, Qn

1  (with QW,n the empirical distribution of W) 

solves the efficient influence curve equation for E0(Y1 − Y0):

0 = 1
n ∑

i = 1

n
De f f Qn

1, gn W i, Ai, Y i = 0 (5)

with De f f Qn
1, gn W i, Ai, Y i = De f f , 1 Qn

1, gn W i, Ai, Y i − De f f , 0 Qn
1, gn W i, Ai, Y i , where 

De f f , a Qn
1, gn W i, Ai, Y i = I Ai = a /gn(a |W i) Y i − Qn

1 W i, a + Qn
1 W i, a − θn

TMLE, a, and 

θn
TMLE, a = 1

n ∑i = 1
n Qn

1 W i, a  depends on both Qn
1 and QW,n. If we replace Hgn by a two 

dimensional Qn
1 with Hgn

a = I(A = a)/gn(a |W), then the updated Qn
1 = Qn

0 ϵn  (where ϵn is now 

a two dimensional parameter) also yields a TMLE for the bivariate parameter (EY0, EY1) 

(the above TMLE targets the difference), which solves 0 = PnDe f f , a Qn
1, gn  for each a = 0, 1. 

We use such treatment-specific TMLEs because in the application we estimate non-additive 

difference treatment effects (i.e., relative risk EY1/EY0). These equations are standard 

TMLE equations (e.g., defined in van der Laan and Rose, 2011, p. 527–529), and are the 

basis for the double robustness and asymptotic efficiency of the TMLEs.

TMLE θ
ψn

#
TMLE of the ATE θ

ψn
# on the estimated optimal surrogate ψn

# based on 

Or = W , A, ψn
#(W , A, S) : This TMLE is the same as the TMLE above but with Y replaced by 

ψn
#(W , A, S). Thus, one first regresses ψn

# W i, Ai, Si  on (Wi, Ai) to obtain an initial estimator of 

Q0(W , A) = E0 ψ0(W , A, S) |W , A = E0(Y |W , A), where one might again use super-learning. Let 
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us denote this estimator with Qn
#0. This is nothing else than an estimator of 

Q0(W , A) = E0 E0(Y |W , A, S) |W , A , which estimates the inner expectation E0(Y | W, A, S) 

with ψn
# and then estimates the outer expectation with a regression of ψn

# on (W, A). One now 

defines the submodel Logit Qn
#0(ϵ) = Logit Qn

#0 + ϵHgn
, and defines 

ϵn1 = arg minϵ∑i = 1
n L1 Qn

#0(ϵ) Oi
r  solves the following score equation (analog to (4)):

0 = 1
n ∑

i = 1

n
Hgn

W i, Ai ψn
# W i, Ai, Si − Qn

#1 W i, Ai . (6)

The TMLE θ
ψn

#
TMLE of θ

ψn
# is now the substitution estimator

θ
ψn

#
TMLE = 1

n ∑
i = 1

n
Qn

#1 Wi, 1 − Qn
#1 Wi, 0 .

Now we utilize the fact that ψn
# was targeted so that it solves the equation (3). Equation (3) 

combined with the score equation (6) implies that Qn
#1 solves

0 = 1
n ∑

i = 1

n
Hgn

W i, Ai Y i − Qn
#1 W i, Ai . (7)

Thus, this TMLE Qn
1 = QW , n, Qn

#1  also solves the efficient influence curve equation for θ0:

0 = 1
n ∑

i = 1

n
De f f Qn

1, gn W i, Ai, ψn
# W i, Ai, Si = 0. (8)

(And parallel to the above, the TMLE θ
ψn

#
TMLE, a of θ

ψn
#

a  solves 0 = PnDe f f , a Qn
1, gn  with 

De f f , a Qn
1, gn W i, Ai, ψn

# W i, Ai, Si = I Ai = a /gn(a |W i) Y i − Qn
#1 W i, a + Qn

#1 W i, a

− θ
ψn

#
TMLE, a . )

 Thus, 

θ
ψn

#
TMLE is an actual TMLE of E0(Y1 − Y0) based on the original data (W, A, S, Y), with the 

only twist that it uses a special initial estimator Qn
#0 of Q0 (as discussed above, involving first 

regressing Y on W, A, S and then regressing that fit on W, A). This proves that θ
ψn

#
TMLE– 

which we defined as a TMLE of the treatment effect on the estimated optimal surrogate – is 
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also a double robust efficient substitution estimator of the clinical treatment effect of interest 

E0(Y1 −Y0) based on the full data O = (W, A, S, Y) in model M.

THEOREM 4: Consider the estimator ψn
# of the optimal surrogate ψ0 = E0(Y | W, A, S) and 

the TMLE θ
ψn

#
TMLE = 1

n ∑i = 1
n Qn

#1 W i, 1 − Qn
#1 W i, 0 of θ

ψn
# = E0 ψn

# W , 1, S1 −ψn
# W , 0, S0 )

based on W i, Ai, ψn
# W i, Ai, Si , i = 1, …, n. Let θ0 = E0(Y1 − Y0). Let 

Q0 = Q0 = E0(Y |W , A), QW , 0 , where QW,0 is the probability distribution of W under P0. Let 

De f f Q0, g0 (O) = Hg0
(W , A) Y − Q0(W , A) + Q0(W , 1) − Q0(W , 0) − θ Q0  be the efficient 

influence curve of E0(Y1 − Y0) based on O = (W, A, S, Y) ~ P0 ∈ M. Let Qn
1 = QW , n, Qn

#1

and let f
P0

= ∫ f (o)2dP0(o). Assume 1) De f f Qn
1, gn  falls in a P0-Donsker class with 

probability tending to 1; 2) Qn
#1 − Q0 P0

gn − g0 P0
= oP(1/ n) (so in an RCT, this only 

requires Qn
#1 − Q0 P0

0 in probability); 3) for some δ > 0 mina∊{0,1}g0(a | W) > δ > 0 

with probability 1. Then θ
ψn

#
TMLE − θ0 = Pn − P0 De f f Q0, g0 + oP(1/ n). Thus, θ

ψn
#

TMLE an 

efficient estimator of θ0 based on O = (W, A, S, Y) in model M.

Thus, even though θ
ψn

#
TMLE is based on a reduced data structure, it is asymptotically linear 

with influence curve equal to that of the TMLE θn
TMLE of θ0 = E0(Y1 − Y0) based on the 

observed data (W, A, S, Y). This is an important result since it establishes that in our 

original study the estimated optimal surrogate carries as much information as the outcome 

itself for the sake of estimation of the average clinical treatment effect (and for other 

contrasts of EY0 and EY1). This means that a Wald (1 − α)% confidence interval for θ
ψn

#

based on θ
ψn

#
TMLE is also a (1 − α)% confidence interval for θ0 = E0(Y1 − Y0) and is as 

narrow as a (1 − α)% confidence interval based on an efficient estimator of θ0 using (W, A, 

S, Y).

This result may be surprising given that the estimated optimal surrogate is based on the 

reduced data. In fact, if a super-learner estimator were used as the estimated optimal 

surrogate, without targeting the estimator, then the TMLE θ
ψn

#
TMLE would not be efficient for 

E0(Y1−Y0). Specifically, the bias of a super-learner fit is larger than the inverse of root-n and 

this bias translates into the same order of bias for the ATE on Y. The key to achieve 

efficiency is therefore to use a targeted super-learner fit of the optimal surrogate designed so 

that the TMLE of the ATE on this targeted estimate is in fact an asymptotically linear 

estimator of the ATE on Y. However, this targeting is only possible if we use the actual 

observed outcomes Y, and the targeting is specific for the current data generating 
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experiment and thus the TMLE of the ATE on our targeted surrogate based in a new study 

would not result in an asymptotically efficient estimator of the ATE on Y*. Nevertheless, it 

is an appealing property of the estimated optimal surrogate that in the current study it yields 

an asymptotically efficient estimator of the average clinical treatment effect.

6. Application to Two Dengue Vaccine Efficacy Trials

Two randomized, double-blinded, placebo-controlled, multicenter, Phase 3 trials of the 

identical recombinant, live, attenuated, tetravalent dengue vaccine (CYD-TDV) versus 

placebo were conducted in Asia (Capeding et al., 2014) and Latin America (Villar et al., 

2015), respectively. These trials– referred to as CYD14 and CYD15– randomized 10,275 2–

14 year-old children and 20,869 9–16 year-old children, respectively, in 2:1 allocation to 

vaccine:placebo, with immunizations administered at months 0, 6, and 12. The primary 

analyses assessed vaccine efficacy (V E) against symptomatic, virologically confirmed 

dengue (VCD) occurring at least 28 days after the third immunization through to the Month 

25 visit. Based on a proportional hazards model, estimated V E was 56.5% (95% CI 43.8–

66.4) for CYD14 and 64.7% (95% CI 58.7–69.8) for CYD15.

The trials measured, from Month 13 blood samples, neutralizing antibody titers to each of 

the four dengue serotypes contained in the CYD-TDV vaccine using two different assays 

[PRNT50 and Microneutralization Version 2 (MNv2)]. Our analysis restricts to participants 

with Month 13 titer data, which were measured in a random sample of study participants and 

in all participants with the study endpoint. We use simple inverse probability weighted 

complete-case analysis to account for this sampling design. Each trial data set consists of 

baseline covariates W (age, sex, estimated frequencies of the 4 serotypes causing dengue 

disease in placebo recipients in the participant’s country of residence), treatment A 
(1=vaccine, 0=placebo), S (several variables based on the eight Month 13 titer 

measurements), and Y, the indicator of occurrence of the VCD endpoint between Month 13 

and Month 25. The analyzed cohorts are participants observed to be free of the VCD 

endpoint through to the Month 13 visit with (W, A, S) measured. We treat CYD14 as the 

current trial and CYD15 as the future trial, where in CYD15 we only include data from 9–14 

year-olds to increase the credibility of the contained support assumption of Theorem 2.

We first calculate the targeted estimated optimal surrogate ψn
#(W , A, S) for the CYD14 trial, 

thus obtaining TMLEs θ
ψn

#
TMLE, a of each mean θ

ψn
#

a = E0 ψn
# W , a, Sa  and of a vaccine 

efficacy contrast version of θ
ψn

#
TMLE, VE

ψn
#

TMLE = 1 − θ
ψn

#
TMLE, 1/θ

ψn
#

TMLE, 0 of, VE
ψn

# = 1 − θ
ψn

#
1 /θ

ψn
#

0 . 

Wald 95% confidence intervals for each θ
ψn

#
a  are calculated by estimating the variance of 

each θ
ψn

#
TMLE, a by the sample variance of the efficient influence curve values 

De f f , a Qn
1, gn W i, Ai, ψn

# W i, Ai, Si  defined above. The delta method is then applied to obtain 

the variance of log θ
ψn

#
TMLE, 1/θ

ψn
#

TMLE, 0  and the resulting symmetric Wald 95% confidence 
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limits are transformed to obtain the CI for VE
ψn

#. The same approach to obtain Wald CIs is 

used for E0(Y0), E0(Y1), and θ0 = 1 − E0(Y1)/E0(Y0) based on (Wi, Ai, Yi), with values 

De f f , a Qn
1, gn W i, Ai, ψn

# W i*, Ai*, Si*  replaced with De f f , a Qn
1, gn W i, Ai, Y i .

Second, we calculate the ψn
# W i*, Ai*, Si*  surrogate outcome values for the n* CYD15 

participants (with ψn
# ⋅  calculated from CYD14), and, based on the CYD15 data 

W i*, Ai*, Si*ψn
# W i*, Ai*, Si* ), estimate the treatment-specific surrogate means in CYD15: 

θψn
a (P) = EP EP ψn

# W*, a, S* |W*, A* = a  for a = 0,1 and VE
ψn

#(P) = 1 − θ
ψn

#
1 (P)/θ

ψn
#

0 (P). Here 

the TMLE θψn
TMLE, a(P) of θ

ψn
#

a (P) is the solution to 0 = Pn *De f f , a Qn
1, gn . Lastly, to check 

how well the estimated optimal surrogate performs in its use to estimate the clinical 

parameters in the new trial, we compare the TMLEs of the surrogate parameters to the 

TMLEs of EP Y0* , EP Y1* , and θP* = VEP* = 1 − EP Y1* /EP Y0* , calculated based on the 

CYD15 data W i*, Ai*, Y i* , where θn *
TMLE, a(P) is the TMLE of EP Ya* . Wald 95% confidence 

intervals for the EP Ya*  and V E*(P) parameters based on W i*, Ai*, Y i*  are computed in the 

identical way as done for CYD14. The CIs for the surrogate parameters in CYD15 are 

computed similarly, where the variance of each θ
ψn

#
TMLE, a(P) for a ∈ {0, 1} is estimated by the 

sample variance of the n* values De f f , a Qn
1, gn W i*, Ai*, ψn

# W i*, Ai*, Si* .

6.1 Targeted super-learner estimate of ψ0 = E0(Y|W, A, S) in the CYD14 trial

We applied super-learner with 7-fold cross-validation, separately for the vaccine and placebo 

groups. Table 1 displays the input variables, learner types, and pre-screening approaches 

applied to each learner type for estimating ψ0 = E0(Y |W, A = a, S). Figure 1 shows point 

and 95% CI estimates of the cross-validated MSEs (van der Laan, Hubbard, and Pajouh, 

2013) for each individual statistical algorithm as well as for discrete super-learner and super-

learner. A logistic regression model (glm) after variable screening that disallows PRNT50 

titers performs best (with the lowest CV-MSE) for each treatment group (Table 2). For both 

treatment groups the super-learner performs with similar, but slightly higher, CV-MSE. 

Classification accuracy is better for the vaccine than placebo group with CV-MSE of the 

super-learner 0.11 (95% CI 0.09–0.13) and 0.26 (95% CI 0.22–0.30), respectively.

Next, the TMLE ψn
#(W , A, S) was obtained from CYD14 data as described in Section 5. 

Figure 2(a) shows empirical reverse cdf plots of ψn
# W i, Ai = a, Si  by treatment group a ∈ {0, 

1} and VCD case-control outcome y ∈ {0, 1} for CYD14 data, again showing better 

classification in the vaccine group. Based on ψn
#(W , A, S), 

E0 Y1 = θ
ψn

#
TMLE, 1 = 0.017 (95% CI 0.016 ‐ 0.019), 
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E0 Y0 = θ
ψn

#
TMLE, 0 = 0.039 (95% CI 0.036 − 0.042), and VE0 = θ

ψn
#

TMLE = 55% (95% CI 49 − 61). 

These estimates are close to those obtained based on (Wi, Ai, Yi), with 

θn
TMLE, 1 = 0.017 (95% CI 0.014 − 0.021), θn

TMLE, 0 = 0.039 (95% CI 0.031 − 0.047), and 

VE0 = θn
TMLE = 55% (95% CI 40 − 66) as they should be based on the results in Section 5.

6.2 Applying the estimated optimal surrogate from the original trial to the new trial

Figure 2(b) shows empirical reverse cdf plots of ψn
# W i*, Ai* = a, Si*  for each treatment a ∈ {0, 

1} by case-control status y ∈ {0, 1} in CYD15, showing diminution of classification 

accuracy of the estimated optimal surrogate built on CYD14 for the new study CYD15 (as 

expected). Table 3 compares estimates of θ
ψn

#
a (P) and of θ

ψn
#(P) = VE

ψn
#(P) to the estimates of 

EP Y0* , EP Y1* , and θP* = VEP* = 1 − EP Y1* /EP Y0* . The results show similar vaccine efficacy 

estimates, with VE
ψn

#
TMLE(P) = 66% (95% CI 58 − 72) and 

VEP* = θn *
TMLE(P) = 61% (95% CI 51 − 69). However, the estimates of the treatment-specific 

surrogate means overestimate the VCD disease rates in CYD15, especially for the placebo 

group. The discrepancy stems from imperfect adherence to the Theorem 2 assumptions. The 

diagnostic analysis in Web Appendices E–F supports that the assumptions were 

approximately satisfied, with only minor violations, which was made possible by the fact 

that CYD14 and CYD15 were essentially the same protocol implemented in two geographic 

regions.

7. Discussion

VanderWeele (2013) and discussants Joffe (2013) and Pearl (2013) suggest that a minimal 

requirement for an intermediate endpoint to be a useful surrogate endpoint is that it avoids 

the surrogate paradox, which can have disastrous consequences. Yet, VanderWeele (2013) 

shows that commonly used methods for surrogate endpoint evaluation generally do not 

guarantee avoiding this paradox. The first useful feature of the newly proposed approach is 

that it starts at this minimal requirement, defining the optimal surrogate in a way guaranteed 

to satisfy the Prentice definition of a valid surrogate within the original trial and thus avoid 

the paradox (and then the estimated optimal surrogate (EOS), which can be used as a 

surrogate endpoint in practice, satisfies the Prentice definition in large samples). As such the 

proposed approach responds to Pearl’s (2013) question: “If we take the negation of the 

“surrogate paradox” as a criterion for “good” surrogate, why cannot we create a new, formal 

definition of “surrogacy” that (1) will automatically avoid the paradox?…” A second useful 

feature of the approach is that the treatment effect on the EOS has the same interpretation as 

the treatment effect on the clinical endpoint of interest.

A third useful feature of the proposed approach is that the EOS– in being built by super-

learner followed by a TMLE update– contains all information about the average clinical 

treatment effect in the original trial. A fourth useful feature is the approach’s use of super-
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learner with its principled cross-validation approach to build and compare best models for 

estimating the optimal surrogate. Super-learner is useful for applications where multiple 

baseline covariates and/or intermediate response endpoints are measured, yet there is 

considerable uncertainty about how to best predict the study outcome from these collected 

data. Moreover, while we have focused on randomized studies, this framework also applies 

for generating promising candidate surrogates based on observational studies, with all of the 

results holding under the additional (challenging) assumption that all confounders W of 

treatment assignment are measured and included in the super-learner.

A challenge posed to the framework is that through super-learner the EOS may be based on 

a complicated combination of models that is hard to interpret. This underscores the 

importance of building multiple EOSs from different input variable sets ranging from single-

variable to all-variable models, where cross-validation criteria allow principled selection of a 

most parsimonious EOS with near-optimal predictive performance. A related challenge is 

that researchers in future trials may not have access to the code used by the previous 

researchers to calculate the EOS. This may require use of an open research paradigm where 

web calculators are made available that input (W, A, S) values and output EOS values.

This article considers an ideal setting with no missing data and where the clinical outcome is 

never observed before the intermediate response endpoints are measured. Moreover, we used 

a particular loss function for defining optimal prediction. Future work is of interest to 

accommodate these issues. Theorems 2 and 3 provide conditions for using the EOS from an 

original trial to confer correct estimation of the clinical treatment effect in a new setting/trial 

based on this surrogate endpoint without measuring the clinical endpoint. The inference part 

of these results hold for an infinite original trial, such that additional research is needed to 

provide confidence intervals about the clinical treatment effect in a new setting accounting 

for the error in estimating the optimal surrogate; valid inference is straightforward if the 

EOS is modeled parametrically but not if modeled nonparametrically. Importantly, because 

in many practical applications the critical assumption of our Theorems 2 and 3 for making 

valid inferences for a new setting– Equal Conditional Means– is implausible or dubious, a 

utility of the theorems is in clarifying why direct clinical endpoint studies are generally 

needed. Additional research is of interest to allow deviations from the theorem assumptions. 

Moreover, additional research may consider applications where a set of randomized clinical 

efficacy trials are available that provide direct clinical endpoint data for estimating how the 

conditional means vary over settings, which could allow new transportability results under 

weaker assumptions. Dummy versions of the dengue application data sets and R code 

producing all of the (dummy) data results is provided in Web Appendix H.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Point and 95% confidence interval estimates of cross-validated mean squared error (CV-

MSE) for the vaccine and placebo groups of the CYD14 trial, for the top performing 

individual learners, the discrete super-learner, and the super-learner.
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Figure 2. 
(a) Empirical reverse cumulative distribution functions (cdfs) of the estimated optimal 

surrogate ψn
# W i, Ai = a, Si  for the CYD14 trial by vaccine/placebo assignment A = a ∈ {0, 

1} and dengue outcome case/control status Y = y ∊, {0, 1}. (b) Empirical reverse cdfs of 

ψn
# W i, Ai = a, Si*  for CYD15 participants by vaccine/placebo assignment A* = a ∈ {0, 1} 

and dengue outcome case/control status Y* = y ∈ {0, 1}, where ψn
# ⋅  was estimated from 

the CYD14 trial data. The results show that the surrogate better classifies dengue outcomes 

of participants in the original trial than in the new trial (not surprisingly).
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Table 1

Input variables, screens, and learner types used in the super-learner for the CYD14 dengue vaccine efficacy 

trial (35 total statistical algorithms for estimating ψ0 = E0(Y|W, A, S) defined by screens crossed with learner 

types).

Input Variables

W Baseline demographics age (range 2–14 years), sex, empirical frequencies of the 4 serotypes in placebo 
group failure events by country of the participant

S
Month 13 seropositivity to each of the 4 serotypes in the CYD-TDV vaccine, and average, minimum, and 
maximum of the 4 titers for both PRNT50 and Microneutralization Version 2 (V2) assays

Screens Boldfaced courier-font screens (e.g., screen.glmnet) available in the SuperLearner R package 
available at CRAN

screen.glmnet Include variables with non-zero coefficients in a standard implementation of SL.glmnet (i.e., lasso)

screen.univar.logistic.x Univariate logistic regression p-value < 0.10 using “x” most univariatly significant terms.

screen.corX.x Disallow pairs of quantitative variables with R2 > “0.x”

screen.PRNT Disallow Microneutralization V2 titer variables

screen.MNv2 Disallow PRNT50 titer variables

Learner Types Boldfaced courier-font learning algorithms (e.g., SL.mean) are available in the SuperLearner R package 
available at CRAN

SL.mean E0(Y|W, A = a, S)a = βa for a ∈ {0,1}

SL.glm Logistic regression with all input variables

SL.step Best logistic regression model by AIC from a step-wise search

SL.bayesglm Logistic regression utilizing Cauchy Bayesian priors on model parameters

SL.polymars Multivariate adaptive polynomial spline regression

Discrete SL van der Laan, Polley, and Hubbard (2007)

Super Learner (SL) van der Laan, Polley, and Hubbard (2007)

a
All learners were fit separately for each treatment group A = a for a ∈ {0, 1} as described in Section 6.1. This is explicitly stated here for 

SL.mean.
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Table 2

Best performing models for estimating ψ0 = E0(Y |W, A, S) for the vaccine and placebo groups of the CYD14 

trial. For both the vaccine and placebo groups the model with the lowest CV-MSE was a logistic regression 

(glm) using variables selected from the screen screen.MNv2 in Table 1.

Model Term Coefficient Odds Ratio 2-Sided P-value

Vaccine Model

(Intercept) 1.09 2.96 0.26

AGE.9.11 −0.09 0.91 0.74

AGE.12.14 −2.46 0.09 <0.01

MALE −0.36 0.70 0.09

M13.MNv2.S1
b −3.62 0.03 <0.01

M13.MNv2.S2 0.77 2.16 0.02

M13.MNv2.S3 1.41 4.09 0.04

M13.MNv2.S4 −0.12 0.89 0.81

M13.MNv2.Ave
c 3.45 31.53 <0.01

M13.MNv2.Min −3.53 0.03 <0.01

M13.MNv2.Max −0.59 0.55 0.28

Sero2.frequency
d −0.91 <0.01 <0.01

Sero3.frequency −0.57 <0.01 <0.01

Sero4.frequency −0.38 0.02 <0.01

Placebo Model

(Intercept) 1.97 7.16 0.01

AGE.9.11 0.84 2.32 <0.01

AGE.12.14 −0.17 0.85 0.55

MALE 0.04 1.04 0.82

M13.MNv2.S1
b −1.10 0.33 <0.01

M13.MNv2.S2 0.25 1.29 0.34

M13.MNv2.S3 0.56 1.76 0.10

M13.MNv2.S4 0.06 1.06 0.84

M13.MNv2.Ave
c 1.01 2.75 0.43

M13.MNv2.Min −2.62 0.07 <0.01

M13.MNv2.Max −0.25 0.78 0.51

Sero2.frequency
d −0.72 <0.01 <0.01

Sero3.frequency −0.54 <0.01 <0.01

Sero4.frequency −0.46 <0.01 <0.01

a
The reference age category is 2–8 year olds.

b
M13.MNv2.S1 is the binary indicator of a Month 13 positive response to serotype 1 using the MNv2 assay, with positive response defined by 

MNv2 serotype neutralization titer ⩾ 10. M13.MNv2.S2–M13.MNv2.S4 are defined similarly.

c
M13.MNv2.Ave, M13.MNv2.Min, and M13.MNv2.Max coefficients are per one log10 increase in neutralization titer value.
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d
Serotype frequency variable coefficients are per 0.10 increase in the estimated serotype frequency of a participant’s country.
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Table 3

Comparison of inferences on the surrogate parameters θ
ψn

#
a (P) ≡ EP EP ψn

# W*, a, S* |W*, A* = a  for each a ∈ 

{0,1} and VE
ψn

#(P) = 1 − θ
ψn

#
1 (P)/θ

ψn
#

0 (P) based on W*, A*, ψn
# W*, A*, S*  versus direct inferences on the clinical 

dengue endpoint parameters EP Ya*  and θP* = VEP* = 1 − EP Y1* /EP Y0*  in CYD15. Included is a summary of 

enrollment numbers, incidence of VCD, and number of participants with measured titers for each study.

Surrogate Parameters Estimated by TMLEs
a

Clinical Parameters Estimated by TMLEs
b

θ
ψn

#
1 (P)

0.020 (95% CI 0.017–0.022) EP Y1* 0.014 (95% CI 0.012–0.017)

θ
ψn

#
0 (P)

0.057 (95% CI 0.049–0.065) EP Y0* 0.037 (95% CI 0.031–0.043)

VE
ψn

#(P)
66% (95% CI 58–72) VEP* 61% (95% CI 51–69)

No. Enrolled No. VCD cases (Y = 1 or Y* = 1) No. with (W, A, S) or (W*,A*,S*) measured
c

Study Vaccine, Placebo Vaccine, Placebo Vaccine, Placebo

CYD14 6851, 3424 117, 133 736, 415

CYD15 13920, 6949 184, 232 944, 587

a
TMLEs θ

ψn
#

TMLE, 1(P), θ
ψn

#
TMLE, 0(P), and VE

ψn
#

TMLE(P) = 1 − θ
ψn

#
TMLE, 1(P)/θ

ψn
#

TMLE, 0(P).

b
TMLEs θn *

TMLE, 1(P), θn *
TMLE, 0(P), and VEn *(P) = 1 − θn *

TMLE, 1(P)/θn *
TMLE, 0(P).

c
Measured in 98.3% and 99.8% of endpoint cases with Y = 1 or Y* = 1 for CYD14 and CYD15, respectively.
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