
Tree-sequence recording in SLiM opens new horizons for
forward-time simulation of whole genomes

Benjamin C. Haller‡,
Dept. of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853,
USA

Jared Galloway,
Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA

Jerome Kelleher,
Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford,
Oxford, OX3 7FZ, UK

Philipp W. Messer*, and
Dept. of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853,
USA

Peter L. Ralph‡,*

Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA

Keywords

pedigree recording; coalescent; background selection; genealogical history; selective sweeps; tree
sequences

There is an increasing demand for evolutionary models to incorporate relatively realistic

dynamics, ranging from selection at many genomic sites to complex demography,

population structure, and ecological interactions. Such models can generally be implemented

as individual-based forward simulations, but the large computational overhead of these

‡Corresponding Authors: Benjamin C. Haller, bhaller@benhaller.com, Peter Ralph, plr@uoregon.edu.
*Joint senior authors
Author Contributions
We have used the CRediT taxonomy for contributions (https://casrai.org/credit/).
BCH: Conceptualization, Investigation, Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation,
Writing – Review & Editing.
JG: Conceptualization, Methodology, Software, Writing – Review & Editing.
JK: Conceptualization, Methodology, Software, Validation, Visualization, Writing – Review & Editing.
PWM: Conceptualization, Funding Acquisition, Supervision, Writing – Review & Editing.
PLR: Conceptualization, Funding Acquisition, Methodology, Software, Supervision, Validation, Writing – Review & Editing.

Data Accessibility
SLiM 3 is available online at https://messerlab.org/slim/. It is open source, under the GPL 3.0 license, and its source code is on GitHub
at https://github.com/MesserLab/SLiM.
msprime is available online at https://pypi.org/project/msprime/. It is open source, under the GPL 3.0 license, and its source code is on
GitHub at https://github.com/tskit-dev/msprime.
pyslim is open source, under the MIT license, and is available on GitHub at https://github.com/tskit-dev/pyslim.
The examples and performance assessments presented in this paper are available on GitHub at https://github.com/bhaller/
SLiMTreeSeqPub.

HHS Public Access
Author manuscript
Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Mol Ecol Resour. 2019 March ; 19(2): 552–566. doi:10.1111/1755-0998.12968.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://casrai.org/credit/
https://messerlab.org/slim/
https://github.com/MesserLab/SLiM
https://pypi.org/project/msprime/
https://github.com/tskit-dev/msprime
https://github.com/tskit-dev/pyslim
https://github.com/bhaller/SLiMTreeSeqPub
https://github.com/bhaller/SLiMTreeSeqPub

models often makes simulation of whole chromosome sequences in large populations

infeasible. This situation presents an important obstacle to the field that requires conceptual

advances to overcome. The recently developed tree-sequence recording method (Kelleher et

al., 2018), which stores the genealogical history of all genomes in the simulated population,

could provide such an advance. This method has several benefits: (1) it allows neutral

mutations to be omitted entirely from forward-time simulations and added later, thereby

dramatically improving computational efficiency; (2) it allows neutral burn-in to be

constructed extremely efficiently after the fact, using “recapitation”; (3) it allows direct

examination and analysis of the genealogical trees along the genome; and (4) it provides a

compact representation of a population’s genealogy that can be analyzed in Python using the

msprime package. We have implemented the tree-sequence recording method in SLiM 3 (a

free, open-source evolutionary simulation software package) and extended it to allow the

recording of non-neutral mutations, greatly broadening the utility of this method. To

demonstrate the versatility and performance of this approach, we showcase several practical

applications that would have been beyond the reach of previously existing methods, opening

up new horizons for the modeling and exploration of evolutionary processes.

Introduction

Forward simulations are increasingly important in population genetics and evolutionary

biology. For example, they can be useful for modeling the expected evolutionary dynamics

of real-world systems (Fournier-Level et al., 2016; Cotto et al., 2017; Matz et al., 2018;

Ryan et al., 2018), for discovering the ecological and evolutionary mechanisms that led to

present-day genomic patterns in a species (Enard et al., 2014; Nowak et al., 2014;

Arunkumar et al., 2015; Patel et al., 2018), for testing or validating empirical and statistical

methods (Haller and Hendry, 2013; Caballero et al, 2015; Ewing et al., 2016; Haller and

Messer, 2017a), and for exploring theoretical ideas about evolution (Haller et al., 2013;

Assaf et al., 2015; Mafessoni and Lachmann, 2015; Champer et. al, 2018), among other

purposes. Because of this broad utility, there is a growing desire to run simulations with

increased realism in a variety of areas: longer genomic regions up to the scale of full genome

sequences, large populations, selection at multiple loci with linkage effects, complex

demography, ecological interactions with other organisms and the environment, explicit

space with continuous landscapes, spatial variation in environmental variables, spatial

interactions such as competition and mate choice between organisms, and so forth.

However, this type of realism comes at a price, in both processing time and memory usage.

Since computational resources are finite, this can often make it difficult or, in practical

terms, impossible to run some models. Advances in computing power have gradually

extended the boundaries of what is possible, as have performance improvements due to

improved forward simulation software (Messer, 2013; Thornton, 2014; Haller and Messer,

2017b), but computational overhead continues to hold back progress in the field by limiting

the level of realism that can be attained in models.

From this perspective, the recently developed pedigree recording or “tree-sequence

recording” method (Kelleher et al., 2018) is potentially transformative. Kelleher et al. (2018)

have shown that, perhaps counterintuitively, the recording of all ancestry information for the

Haller et al. Page 2

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

entire population can actually improve the runtime by orders of magnitude. These gains in

efficiency are made possible by the succinct tree sequence data structure (or “tree sequence”,

for brevity) that lies at the heart of the msprime coalescent simulator (Kelleher et al., 2016),

subsequently refined in Kelleher et al. (2018). The tree sequence data structure is a concise

encoding of the correlated genealogies along a chromosome resulting from evolution in

sexually reproducing populations (Figure 1). The sequence of trees along a genome has been

studied for some time (Hudson, 1983), and is closely linked to the concept of an “Ancestral

Recombination Graph” or ARG (Griffiths, 1991; Griffiths & Marjoram, 1997). The use of

the term “ARG” has historically been ambiguous, however, sometimes referring to the

stochastic process generating these trees, rather than the resulting tree sequence itself, so we

use the term “tree sequence” here to refer to this sequence of trees in the particular

representation described by Kelleher et al. (2016, 2018). Precisely the same tree sequence

data structure can be used to record each generation’s parent–child relationships. This data

structure will then record who each individual inherited each section of chromosome from,

for every individual that ever lived. However, there is a massive amount of redundancy in

this information, since many of the individuals simulated in the past will leave no

descendants in the extant population. The key insight of Kelleher et al. (2018) was to

provide an efficient algorithm to remove this redundancy by periodically “simplifying” the

tree sequence. This combination – the tree sequence data structure and an efficient algorithm

for simplifying it – allows complete genealogies for all extant individuals to be recorded

efficiently in forward simulations for the first time.

The most immediate advantage of recording a tree sequence during forward simulation is

that it allows neutral mutations to be omitted entirely; neutral mutations can simply be

overlaid onto the tree sequence after forward simulation has completed, because by

definition they do not affect the genealogies. This provides an immense efficiency benefit,

since neutral mutations then only need to be added along those branches of the tree from

which the individuals of interest at the end of the simulation have inherited; all other

ancestral branches, which typically comprise the vast majority of the full tree, can be

ignored since they do not contribute to those individuals. Given that many forward

simulations spend the large majority of their time managing neutral mutations, with

considerable bookkeeping overhead in each generation, neutral mutation overlay following

forward simulation has been shown to improve performance by an order of magnitude or

more while producing provably statistically identical results (Kelleher et al., 2018).

A second advantage of recording genealogies is that the recorded tree sequence from a

forward simulation can be used as the basis for the construction of a neutral “burn-in”

history for the simulated population after forward simulation is complete, using (usually

much faster) coalescent simulation. The burn-in period of a simulation can be immensely

time-consuming, often taking much longer than the simulation of the evolutionary dynamics

that are actually of interest; the overhead of burn-in can therefore present a large obstacle for

many models. With a method that we call “recapitation”, we can leverage the information in

the tree sequence to prepend a coalescent simulation of the burn-in period, speeding up the

burn-in process by many orders of magnitude.

Haller et al. Page 3

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A third important advantage is that the pattern of ancestry and inheritance is in itself very

useful. For many statistics of interest, and in particular for inferring specific events that

occurred in the past, sequence-based data from mutations is essentially an extra layer of

noise over the signal of interest contained in the genealogies. Direct access to the precise

genealogical history of the simulated population allows the signal to be analyzed without the

noise, gaining significant statistical power. An expanding set of open-source tools makes it

possible to load, analyze, and even manipulate a recorded tree sequence using simple Python

code, allowing open-ended flexibility in analysis.

A fourth compelling advantage is that the recorded tree sequence files are very small and

enable very efficient calculation of population-genetic statistics (Kelleher et al. 2016, 2018).

The files output from even the largest simulations are rarely bigger than a few hundred

megabytes, and may be tens of thousands of times smaller than alternatives such as VCF and

Newick. Despite this high level of compression, tree sequences can be processed very

efficiently; statistics of interest such as allele frequencies within cohorts can often be

computed incrementally, leading to very efficient algorithms (Kelleher et al. 2016).

Calculation of statistics of this sort from simulated data can be very time-consuming,

especially when long genomes are involved and many replicate simulation runs have been

performed, so the ability to speed up such calculations is quite important.

Given these advantages, we have worked to integrate tree-sequence recording into SLiM 3, a

new major release of the free, open-source SLiM simulation software package (http://

messerlab.org/slim/). It is now possible to enable tree-sequence recording in any SLiM

model with a simple flag set in the model’s script, and then to output the recorded tree

sequence at any point in the simulation. In addition, we have extended the original tree-

sequence recording method (Kelleher et al. 2018) to allow for the recording of mutations

during forward simulation. This allows the tree-sequence output format, a .trees file, to be

used in SLiM as a way of saving and then restoring the state of a simulation while

preserving information about ancestry, and allows the mutations that occurred during

forward simulation to be accessed later in Python-based analyses.

To illustrate the large advantages provided by tree-sequence recording, and to show how to

take advantage of those benefits when using SLiM for forward simulation, we will present

four practical examples of the method. In the first example, we will show the impressive

performance benefits that can be achieved with tree-sequence recording compared to a

classical forward simulation. The second example will use tree-sequence recording to

efficiently simulate background selection near genes undergoing deleterious mutations,

quantifying the expected effect of background selection on levels of neutral diversity by

measuring the heights of trees in the recorded tree sequence. Our third example will be a

model of admixture between two subpopulations, showing how to use the recorded tree

sequence in calculating the mean true local ancestry at every position along a chromosome.

Finally, the fourth example will illustrate how the “recapitation” method allows msprime to

be used to extremely efficiently add a “neutral burn-in” history to a completed SLiM

simulation of a selective sweep, by coalescing the simulation’s initial population backward

in time.

Haller et al. Page 4

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://messerlab.org/slim/
http://messerlab.org/slim/

Examples

Examples were executed on a MacBook Pro (2.9 GHz Intel Core i7, 16 GB RAM) running

macOS 10.13.5, using Python 3.4.8, R 3.5.0, SLiM 3.1, msprime 0.6.1, and pyslim 0.1.

Reported times were measured with the Python timeit package. Peak memory usage for

SLiM runs was assessed with SLiM’s -m command-line option. The timing comparison

(Figure 2) was executed on the same hardware, with macOS 10.13.4, R 3.4.3, SLiM 3.0, and

msprime 0.6.0, using the Un*x tool/usr/bin/time for timing (summing the reported user time

and system time); we believe the times measured would not change significantly with the

newer software versions. The full source code for the examples and timing tests, including

timing and plotting code that is omitted here, may be found at https://github.com/bhaller/

SLiMTreeSeqPub. These examples use the matplotlib (Hunter, 2007) and numpy (Oliphant,

2006) packages for Python.

Example I: A simple neutral model

Our first example is a model of a neutrally evolving chromosome of length L = 108 base

positions, with uniform mutation rate μ = 10−7 and recombination rate r = 10−8 (both

expressed as the event probability per base per generation), in a panmictic diploid population

of size N = 500, running for a duration of 10N = 5000 non-overlapping generations. The

SLiM configuration script for this basic model is very simple:

initialize() {

 initializeMutationRate(1e-7);

 initializeMutationType("m1", 0.5, "f", 0.0);

 initializeGenomicElementType("g1", m1, 1.0);

 initializeGenomicElement(g1, 0, 1e8–1);

 initializeRecombinationRate(1e-8);

}

1 {

 sim.addSubpop("p1", 500);

}

5000 late() {

 sim.outputFull("ex1_noTS.slimbinary", binary=T);

}

This sets up a single “genomic element” spanning the full length of the chromosome, with

neutral mutations of type m1 generated at the desired rate, and with the desired

recombination rate. In generation 1 a new subpopulation of the desired size is created, and

the model runs to generation 5000, after which it outputs the full simulation state. The SLiM

manual provides additional explanation of these concepts (Haller and Messer, 2016). This

model took 211.9 seconds to run, and reached a peak memory usage of 443.8 MB.

Tree-sequence recording can easily be enabled for this model with a call to

initializeTreeSeq():

Haller et al. Page 5

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bhaller/SLiMTreeSeqPub
https://github.com/bhaller/SLiMTreeSeqPub

initialize() {

 initializeTreeSeq();

 initializeMutationRate(0);

 initializeMutationType("m1", 0.5, "f", 0.0);

 initializeGenomicElementType("g1", m1, 1.0);

 initializeGenomicElement(g1, 0, 1e8–1);

 initializeRecombinationRate(1e-8);

}

1 {

 sim.addSubpop("p1", 500);

}

5000 late() {

 sim.treeSeqOutput("ex1_TS.trees");

}

Note that we have now also set the mutation rate to zero; SLiM no longer needs to model

neutral mutations because they can be overlaid in a later step more efficiently. A .trees file is

output at the end of the run, instead of calling SLiM’s outputFull() method, so that the

recorded tree sequence is preserved. In all other respects these models are identical. This is

typical of adapting a SLiM model to use tree-sequence recording: in general, the aim is to

remove the modeling of neutral mutations while preserving other aspects of the model

verbatim.

After simulation has completed, neutral mutations are overlaid upon the saved tree sequence.

The full model – running the SLiM model and then doing the final mutation overlay step –

can be executed with a simple Python script:

import subprocess, msprime, pyslim

Run the SLiM model

subprocess.check_output(["slim", "-m", "-s", "0", "ex1_TS.slim"])

Overlay neutral mutations

ts = pyslim.load("ex1_TS.trees")

mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True)

mutated.dump("ex1_TS_overlaid.trees")

This script uses the msprime Python package to overlay neutral mutations upon the recorded

tree sequence. The result is precisely the same, statistically, as if the neutral mutations were

included in the forward simulation, except that the vast majority of the bookkeeping work in

each generation is avoided because mutations only need to be overlaid upon the ancestral

genomic regions that persisted to the end of the simulation.

Haller et al. Page 6

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that pyslim is used to load the .trees file; this package provides a bridge between SLiM

and msprime, and should generally be used to load and save .trees files in Python if the files

are coming from or going to SLiM. The pyslim package extends the msprime tree sequence

class by adding support for SLiM’s metadata annotations to the tree sequence, providing an

interface for reading or modifying that metadata as well as for generating SLiM-

compliant .trees files that contain the required metadata. The .trees files output by SliM can

be read directly by msprime, but the returned object will have reduced functionality

compared to those returned by pyslim.

The total time to execute this Python code is 4.37 seconds, almost 50 times faster than the

model without tree-sequence recording. Most of the runtime (4.09 seconds) is spent running

the SLiM model; the final mutation overlay by msprime is extremely fast. The peak memory

usage during the SLiM run is 145.8 MB, less than one-third of the memory usage of the

model without tree-sequence recording. Tree-sequence recording can often reduce memory

usage, since the tree sequence data structure is quite compact compared to SLiM’s in-

memory representation of the neutral mutations that would be segregating in such a model.

Tree sequences are also very compact on disk; the final .trees file here, with mutations

overlaid, takes about 8.9 MB, as compared to 84.2 MB for the ex1_noTS.slimbinary file

from the SLiM model without tree-sequence recording, 559 MB for a Newick file, and 366

MB for a VCF file – even though the .trees file contains ancestry information not included

by the SLiM and VCF formats. A VCF file containing the sequences of the final generation

can be produced from a .trees file with msprime’s write_vcf() method, but the ancestry

information is lost.

The speedup produced by this tree-sequence recording method can vary dramatically

depending upon the details of the simulation; all of the work to track neutral mutations is

eliminated, but new work is added involving the recording of all the recombination events

that go into producing the tree sequence. In general, the largest speedup will be observed

with very long chromosomes with many neutral mutations when the recombination rate is

not too high; indeed, when modeling a very short chromosome the overhead of tree-

sequence recording can outweigh the savings from omitting neutral mutations (see

Discussion).

To further illustrate the performance benefits of tree-sequence recording, we conducted a set

of timing comparisons between SLiM without tree-sequence recording, SLiM with tree-

sequence recording, and msprime’s coalescent simulation method. These comparisons

involved essentially the same model as shown above: a neutral panmictic model of diploids

with non-overlapping generations, with a population size N = 500, recombination rate r =

10−8 per base position per generation, and mutation rate μ = 10−7 per base position per

generation. The chromosome length L was varied over {105, 106, 107, 108, 109, 1010}, with

ten runs of each model at each value of L using different random seeds. The number of

generations varied with L (details below). The msprime coalescent was run both with a final

haploid sample size n equal to the full population size (n = 2N), and with a much smaller

sample size (n = 2N/100); in both cases, Ne = N was used. To verify that tree-sequence

recording produced results equivalent to the coalescent, we checked that the mean TMRCAs

for the L = 1010 runs for the two methods did not differ significantly (p = 0.7791).

Haller et al. Page 7

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The average runtimes obtained are shown in Figure 2. As L increased, the benefit of tree-

sequence recording compared to SLiM without tree-sequence recording became increasingly

large, topping out at a performance improvement of more than two orders of magnitude for

L = 109 and L = 1010. Coalescent simulations with msprime were much faster than the tree-

sequence recording method, as expected, except at L = 1010, where msprime’s speed was

comparable to that of SLiM with tree-sequence recording. It appears that SLiM with tree-

sequence recording would be faster for L larger than 1010. The number of events the

coalescent must simulate is quadratic in L, empirically, but with a small leading coefficient

such that msprime is quite fast even for reasonably large chromosome sizes (Kelleher et al.

2016). With very large values of L, however, this O(L2) term begins to dominate and SLiM

with tree-sequence recording becomes faster. This may be chiefly of theoretical interest,

since L = 1010 is already a very long chromosome (approximately three times the length of

the full human genome). It is also noteworthy that the msprime coalescent is only marginally

faster for a sample of n = 2N/100 than for a full population sample of n = 2N; as more

samples are added to a gene tree, the new samples tend to attach to already existing branches

quite quickly (Kingman, 1982).

Although the coalescent remains an order of magnitude faster for most practical purposes, it

can only be used in a few simple scenarios such as this; for models that require forward

simulation, tree-sequence recording offers large performance benefits over more traditional

forward simulation techniques. It is also worth noting that the coalescent is only an

approximation of the Wright–Fisher model, and will diverge from it under certain conditions

(Wakeley et al., 2012; Bhaskar et al., 2014) – one such condition being a sample size that is

no longer small compared to the population size, as is the case for our n = 2N msprime runs

here. Forward simulation may therefore be preferable in order to obtain exact results under

such conditions.

How long do we run it?—In general, it is desirable to run forward-time simulations

“until convergence” – until the effects of the starting configuration are forgotten. This occurs

(in most situations) when all genealogical trees have coalesced, meaning that at every

position in the genome a common ancestor to the entire final generation has appeared. In

practice, models are often run for 10N generations, a rule of thumb that is thought to suffice

in most cases. However, this is a thorny problem: longer chromosomes tend to require longer

for coalescence, simply because with more sites it is more likely that coalescence takes

exceptionally long at some site. In the simulations of Figure 2, we ran each simulation for

the expected number of generations required for coalescence at that value of L, which

increased linearly with log(L), from about 3N for L = 1e5 to 15N for L = 1e10. This sufficed

to make the comparison between SLiM and msprime “fair”, but a better practical solution,

recapitation, will be shown in Example 4. We determined the expected number of

generations empirically by running the same model 500 times at each value of L with

“coalescence detection” enabled (by passing checkCoalescence=T to initializeTreeSeq()).

The mean and other summary statistics for each value of L (Table S1) agree with

expectations from extreme value theory (Berman, 1964), with the expected time until

coalescence growing roughly as 1000 log(L) − 10000.

Haller et al. Page 8

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example II: Background selection

Our second example is a model of background selection, a term which describes the effect

that purifying selection against deleterious mutations imposes on genetic variation at linked

sites. Such purifying selection should be particularly common in genic regions, where many

genomic positions should be subject to selective constraints. This background selection, like

many types of linked selection more generally, is expected to produce a “dip in diversity” in

the surrounding non-coding regions, with a signature of decreasing genetic diversity with

decreasing distance to the nearest gene (Charlesworth et al. 1993; Hudson 1994; Sattath et

al., 2011; Elyashiv et al., 2016). Here is a SLiM model that uses tree-sequence recording to

model this scenario:

initialize() {

 defineConstant("N", 10000); // pop size

 defineConstant("L", 1e8); // total chromosome length

 defineConstant("L0", 200e3); // between genes

 defineConstant("L1", 1e3); // gene length

 initializeTreeSeq();

 initializeMutationRate(1e-7);

 initializeRecombinationRate(1e-8, L-1);

 initializeMutationType("m2", 0.5, "g", -(5/N), 1.0);

 initializeGenomicElementType("g2", m2, 1.0);

 for (start in seq(from=L0, to=L-(L0+L1), by=(L0+L1)))

 initializeGenomicElement(g2, start, (start+L1)-1);

}

1 {

 sim.addSubpop("p1", N);

 sim.rescheduleScriptBlock(s1, 10*N, 10*N);

}

s1 10 late() {

 sim.treeSeqOutput("ex2_TS.trees");

}

This model sets up a chromosome that consists of genes of length L1 = 1 kb, separated by

non-coding regions of length L0 = 200 kb. The total chromosome length is L = 108 bases,

and 496 genes fit within it. The model uses a mutation rate of μ = 10−7 for deleterious

mutations that can arise within the genes; no other mutations are modeled. The deleterious

mutations are given selection coefficients drawn from a Gamma distribution with mean −5/N
and shape parameter α = 1 (modeling a scenario of moderately deleterious mutations with

2Ns = −10 on average). We assume co-dominance with h = 0.5. A population of size N =

10000 is started in generation 1, and the model runs until generation G = 10N (the output

event, s1, is rescheduled dynamically to that generation).

We can run this model and then conduct post-run analysis with a Python script:

Haller et al. Page 9

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

import os, subprocess, msprime, statistics, pyslim

import matplotlib.pyplot as plt

import numpy as np

Run the SLiM model and load the resulting .trees file

subprocess.check_output(["slim", "-m", "-s", "0", "ex2_TS.slim"])

ts = pyslim.load("ex2_TS.trees").simplify()

Measure the tree height at each base position

height_for_pos = np.zeros(int(ts.sequence_length))

for tree in ts.trees():

 mean_height = statistics.mean([tree.time(root) for root in tree.roots])

 left, right = map(int, tree.interval)

 height_for_pos[left: right] = mean_height

Convert heights along the chromosome into heights at distances from a gene

height_for_pos = height_for_pos - np.min(height_for_pos)

L, L0, L1 = int(1e8), int(200e3), int(1e3)

gene_starts = np.arange(L0, L - (L0 + L1) + 1, L0 + L1)

gene_ends = gene_starts + L1 – 1

max_distance = L0 // 4

height_for_left_distance = np.zeros(max_distance)

height_for_right_distance = np.zeros(max_distance)

for d in range(max_distance):

 height_for_left_distance[d] = np.mean(height_for_pos[gene_starts - d - 1])

 height_for_right_distance[d] = np.mean(height_for_pos[gene_ends + d + 1])

height_for_distance = np.hstack([height_for_left_distance[::-1],

 height_for_right_distance])

distances = np.hstack([np.arange(-max_distance, 0), np.arange(1,

max_distance + 1)])

Make a simple plot

plt.plot(distances, height_for_distance)

plt.show()

The first line after the import statement runs the SLiM model; this took 15643 seconds (4.35

hours) to execute. This is not short – it is still a fairly complex model! – but it is far shorter

than the alternative, a SLiM model without tree-sequence recording and including neutral

mutations in the non-coding regions. That alternative model would take ~83 hours, by

extrapolation – probably a conservative estimate, since the model had not yet reached

mutation–selection balance and was still slowing down when its timing was measured. The

use of tree-sequence recording here results, then, in a relatively modest speedup of 19 times.

This makes sense, since the model with tree-sequence recording still must keep track of a

very large number of segregating deleterious mutations. However, it is worth noting that the

final result from this alternative model would provide far less statistical power, since

Haller et al. Page 10

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

inference from it would be based only upon the observed pattern of neutral mutations in one

run, rather than the actual pattern of ancestry at each chromosome position; to provide the

same power, this alternative model would likely have to be run many times or use a much

higher mutation rate. If more performance gains were needed, the model could perhaps be

rescaled as well (see Discussion).

The rest of the code conducts post-run analyses. First, the .trees file from the SLiM run is

read in with pyslim.load() as in the previous example; here, however, we call simplify()

(Kelleher et al. 2018) upon the loaded tree sequence, which requires some explanation.

SLiM automatically retains, in the tree sequence, nodes corresponding to the original

ancestors of each subpopulation that was created with addSubpop(). This is done for various

reasons, including allowing ancestry to be more easily traced and enabling recapitation (see

Example 4). When SLiM saves a .trees file, these ancestors are present in the tree sequence

but are not marked as “samples”, and will therefore disappear after a simplify() operation. In

many cases these ancestors are harmless, as in Example 1; in fact, in Example 1, calling

simplify() to remove them would mean that mutations would be overlaid only back to the

point of coalescence, rather than to the beginning of forward simulation. Here, however,

since we want to measure the heights of trees in the tree sequence, these ancestors would

complicate things for us; all trees would be rooted in those ancestors, at the beginning of

forward simulation. We therefore call simplify() to remove them (when the model has

coalesced below them; they are retained when still in use by the tree sequence). Example 4

will delve into this matter further.

Next, a vector containing the mean tree height at each base position (height_for_pos) is

constructed by walking through the tree sequence to find the set of trees representing the

ancestry of every individual in the final generation at a given position. The mean tree height

is a metric of the time to the most recent common ancestor at a given base position, and thus

of diversity at that base position; background selection will tend to reduce the mean tree

height, thereby lowering the expected levels of diversity at a locus.

An aside: there can be a set of trees for a given position, rather than just a single tree, if the

forward simulation was not run sufficiently long for coalescence to have occurred at every

position in the genome. In msprime this is modelled by allowing trees to have multiple roots.

Each root represents the most recent common ancestor of some subset of the extant

population at that location in the genome; if coalescence has not occurred, then the final

population should still contain genetic variation that was segregating in the initial

population, since different individuals inherit from different roots of the ancestry tree. Since

the model here ran for 10N generations, we can hope that it has coalesced at most or all

positions; but unless a model is explicitly run out to coalescence (or recapitated), it is always

possible that multiple roots will exist, and so robust code ought to handle that case by

looping over the roots for each tree as we do here.

These mean tree heights along the chromosome are then converted to mean tree heights at

distances from the nearest gene (height_for_distance), taking into account the somewhat

complex genetic structure of the model. Finally, the relationship between distance to the

nearest gene and tree height is plotted. These analyses took 12.39 seconds to complete. Note

Haller et al. Page 11

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

that neutral mutations were never simulated at all; the analysis is based upon the tree

sequence itself, not upon the distribution of neutral mutations.

A plot of the results can be seen in Figure 3, showing the well-known “dip in diversity”

realized here through simulation. As the distance to the nearest gene decreases, diversity

dips due to the background selection exerted by selection against deleterious mutations

within the gene.

Example III: True local ancestry mapping

Our third example involves mapping the true local ancestry at every position along a

chromosome in a two-subpopulation admixture model with adaptive introgression at two

partially linked loci. This is an important dynamic in all sorts of biological systems, from

human–Neanderthal admixture to hybrid zones between divergent bird populations; one

often wishes to be able to find which ancestral population each chromosomal region traces

back to. The SLiM model looks like this:

initialize() {

 defineConstant("L", 1e8);

 initializeTreeSeq();

 initializeMutationRate(0);

 initializeMutationType("m1", 0.5, "f", 0.1);

 initializeGenomicElementType("g1", m1, 1.0);

 initializeGenomicElement(g1, 0, L-1);

 initializeRecombinationRate(1e-8);

}

1 late() {

 sim.addSubpop("p1", 500);

 sim.addSubpop("p2", 500);

 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals);

 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2));

 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8));

 sim.addSubpop("p3", 1000);

 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5));

}

2 late() {

 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0));

 p1.setSubpopulationSize(0);

 p2.setSubpopulationSize(0);

}

2: late() {

 if (sim.mutationsOfType(m1).size() == 0)

 {

Haller et al. Page 12

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 sim.treeSeqOutput("ex3_TS.trees");

 sim.simulationFinished();

 }

}

10000 late() {

 stop("Did not reach fixation of beneficial alleles.");

}

The initialize() callback sets up tree-sequence recording with a mutation rate of μ = 0 and a

recombination rate of r = 10−8 along a chromosome of length L = 108. Although the

mutation rate is zero, a mutation type m1 is defined representing beneficial mutations with a

selection coefficient of s = 0.1; mutations of this type will be added in generation 1.

In generation 1 we create two subpopulations, p1 and p2, of 500 individuals each; these are

the original subpopulations that will admix. We tell SLiM to remember these individuals

forever as ancestors in the tree sequence, with treeSeqRememberIndividuals(), because we

want them to act as the roots of all recorded trees so that we can establish local ancestry

using them. Note that this is not strictly necessary, since (as discussed in Example 2) SLiM

automatically retains the root ancestors for each population; we could rely upon that, and we

would be fine as long as we did not simplify() after loading the tree sequence in Python. The

use of treeSeqRememberIndividuals() has been shown here for purposes of illustration,

however, since some models may wish to remember non-root individuals for analysis. Next,

we add a beneficial mutation at 0.2L in p1, and another at 0.8L in p2; the expectation is that

by the end of the run all individuals will be recombinants that carry both of these mutations.

Finally, we create subpopulation p3 and tell SLiM that it will be composed entirely of

migrants from p1 and p2 in equal measure.

By the end of generation 2, subpopulation p3 has received its offspring generation from p1

and p2 as intended, so we can now remove p1 and p2 from the model and allow p3 to

evolve. At this stage, all individuals in p3 are still unmixed, having been generated from

parents in either p1 or p2, but beginning in generation 3 they will start to mix.

Finally, we have some output and termination code. If both m1 mutations fix, they are

converted to Substitution objects by SLiM, and when that is detected the model writes out a

final .trees file and terminates. If we reach generation 10000 without that happening, the

admixture failed, and we stop with an error. This model is conceptually similar to recipe

13.9 in the SLiM manual (Haller and Messer, 2016), but has been converted to use tree-

sequence recording, so you can refer to the manual’s recipe for additional commentary.

We can run this model from a Python script and do post-run analysis, as we did in Example

2:

import os, subprocess, msprime, pyslim

import matplotlib.pyplot as plt

import numpy as np

Haller et al. Page 13

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Run the SLiM model and load the resulting .trees file

subprocess.check_output(["slim", "-m", "-s", "0", "ex3_TS.slim"])

ts = pyslim.load("ex3_TS.trees").simplify()

Assess the true local ancestry at each base position

breaks = np.zeros(ts.num_trees + 1)

ancestry = np.zeros(ts.num_trees + 1)

for tree in ts.trees(sample_counts=True):

 subpop_sum, subpop_weights = 0, 0

 for root in tree.roots:

 leaves_count = tree.num_samples(root) - 1 # subtract one for the root

 subpop_sum += tree.population(root) * leaves_count

 subpop_weights += leaves_count

 breaks[tree.index] = tree.interval[0]

 ancestry[tree.index] = subpop_sum / subpop_weights

breaks[-1] = ts.sequence_length

ancestry[-1] = ancestry[-2]

Make a simple plot

plt.plot(breaks, ancestry)

plt.show()

The first line after the import statements runs the SLiM model, which completes in just

0.416 seconds, with peak memory usage of 55.6 MB; since it tracks only two mutations, and

typically terminates by generation 150 or so, it is very quick.

The equivalent SLiM model to achieve true local ancestry mapping without tree-sequence

recording has to model a mutation at each base position, as can be seen in recipe 13.9 in the

SLiM manual (Haller and Messer, 2016). A direct comparison is not possible, because

recipe 13.9 scaled up to a chromosome length of L = 108 would take an estimated 7.2 days

to run, and worse, would require 8.1 TB (terabytes) of memory. Those estimates are derived

from the pattern of performance observed for recipe 13.9 with L = 5×105, L = 106, and L =

2×106 (the upper limit on our test machine due to memory usage), extrapolated out to L =

108. Implementing this model with tree-sequence recording therefore reduces the runtime by

a factor of more than 1.35 million, and reduces the memory usage by a factor of more than

160,000.

Similar to Example 2, the post-run analysis walks through the tree sequence, but in this case,

computes the mean true local ancestry (the fractional ancestry from subpopulation p1 versus

p2) for each tree. This is done by finding the roots for the tree, assessing the subpopulations

of origin of those root individuals, and averaging those together weighted by the number of

descendants from each root. A simple plot is then produced. In this example, the analysis

took 62.2 seconds; the analysis runtime is relatively long because the trees here typically

have many roots, so the inner loop is executed a great many times.

Haller et al. Page 14

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The final plot of true local ancestry by chromosome position is shown in Figure 4. The mean

true local ancestry at the points where the beneficial mutations were introduced into p1 and

p2 has to be 100% p1 and 100% p2, respectively, since both beneficial mutations fixed by

the end of the run. At other points along the genome there is more variation, but with a

general pattern of being more completely admixed at the chromosome ends and middle, with

gradations toward the absolute p1 and p2 points. Since this is a single run of the model, the

pattern is quite stochastic; an average across many runs of this model could produce a

smooth plot if desired, and since it takes only a couple of minutes to execute the pipeline

here, that would be very quick to do. This method of calculating true local ancestry could be

used by any SLiM model with tree-sequence recording, so models with more complex

demography, under any scenario of selection and mating, with any recombination map, etc.,

could just as easily be explored.

Example IV: Neutral burn-in for a non-neutral model

Our final example illustrates a solution to the problem of neutral burn-in. In many

applications one wishes to execute a non-neutral forward simulation beginning with an

equilibrium amount of extant neutral genetic diversity, and the simulation needed to generate

that pre-existing diversity, typically called the model “burn-in”, can take quite a long time –

often much longer than it takes to execute the non-neutral portion of the simulation. For a

model with a long chromosome or large population size, this burn-in can be so long as to

limit the practical scale of the simulations that can be conducted. One solution to this is a

“hybrid” approach, in which a forward simulation is initialized with the result of a (much

faster) coalescent simulation (similar to Bhaskar 2014). This is now possible using tree

sequences in SLiM, but we go a step further: even a great deal of the work done in a

coalescent simulation of this burn-in period is unnecessary. All of the genealogical branches

that go extinct are irrelevant; all that matters are those segments of ancestral genomes from

which the final generation inherits. With tree-sequence recording, one can simulate only the

histories of those segments, saving an immense amount of computation relative to a forward-

time burn-in simulation.

Here we will look at a fairly large model (N = 105; L = 106) that evolves under neutral

dynamics until coalescence (the neutral burn-in), after which follows some relatively brief

non-neutral dynamics (a selective sweep). Running the burn-in period for this model in

SLiM would take an exceedingly long time, given the scale of the model, as we will see

below. A better idea is to use what we call “recapitation”: we can run the SLiM model

forward from an initial state that conceptually follows burn-in, and then use msprime to

generate after the fact the coalescent history for the initial individuals of the forward

simulation. This can be done without simulating neutral mutations, but if neutral mutations

are desired as an end product of the simulation, they can be overlaid at the end as in

Example 1.

We begin with the SLiM model, which simulates the introduction and sweep to fixation of a

beneficial mutation. For simplicity, we will select a run of the model that happens to result in

fixation, rather than using a recipe that is conditional upon fixation; the random number seed

specified in the Python script below should produce that outcome. The SLiM model:

Haller et al. Page 15

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

initialize() {

 initializeTreeSeq(simplificationRatio=INF);

 initializeMutationRate(0);

 initializeMutationType("m2", 0.5, "f", 1.0);

 m2.convertToSubstitution = F;

 initializeGenomicElementType("g1", m2, 1);

 initializeGenomicElement(g1, 0, 1e6 – 1);

 initializeRecombinationRate(3e-10);

}

1 late() {

 sim.addSubpop("p1", 100000);

}

100 late() {

 sample(p1.genomes, 1).addNewDrawnMutation(m2, 5e5);

}

100:10000 late() {

 mut = sim.mutationsOfType(m2);

 if (mut.size() != 1)

 stop(sim.generation + ": LOST");

 else if (sum(sim.mutationFrequencies(NULL, mut)) == 1.0)

 {

 sim.treeSeqOutput("ex4_TS_decap.trees");

 sim.simulationFinished();

 }

}

This specifies a simple model with population size N = 105 diploid individuals, chromosome

length L = 106 base positions, and a recombination rate of r = 3×10−10 per base position per

generation, without mutation. It runs to generation 100 and then introduces the sweep

mutation (the delay before introduction is just to provide separation between the simulation

start and the start of the sweep in the plot produced below). When the sweep mutation is

found to have fixed, it then outputs a .trees file and stops. It specifies an infinite

“simplification ratio” in the call to initializeTreeSeq() so that simplification happens only

once, at the point when the .trees file is written out at the end; with this large of a model

simplification takes a significant amount of time, so this optional setting speeds the model

up somewhat at the price of a higher peak memory footprint.

As in previous examples, we will run this from a Python script that does post-run analysis:

import os, subprocess, msprime, pyslim

import numpy as np

import matplotlib.pyplot as plt

Haller et al. Page 16

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Run the SLiM model and load the resulting .trees file

subprocess.check_output(["slim", "-m", "-s", "2", "ex4_TS.slim"])

ts = pyslim.load("ex4_TS_decap.trees") # no simplify!

Calculate tree heights

def tree_heights(ts):

 heights = np.zeros(ts.num_trees + 1)

 for tree in ts.trees():

 if tree.num_roots > 1: # not fully coalesced

 heights[tree.index] = ts.slim_generation

 else:

 root_children = tree.children(tree.root)

 real_root = tree.root if len(root_children) > 1 else root_children[0]

 heights[tree.index] = tree.time(real_root)

 heights[-1] = heights[-2] # repeat the last entry for plotting with step

 return heights

Plot tree heights before recapitation

breakpoints = list(ts.breakpoints())

heights = tree_heights(ts)

plt.step(breakpoints, heights, where='post')

plt.show()

Recapitate

recap = ts.recapitate(recombination_rate=3e-10, Ne=1e5, random_seed=1)

recap.dump("ex4_TS_recap.trees")

Plot tree heights after recapitation

breakpoints = list(recap.breakpoints())

heights = tree_heights(recap)

plt.step(breakpoints, heights, where='post')

plt.show()

After the import, we run the SLiM model (which takes 46.05 seconds) and load the .trees

file it saves out. We then immediately make a plot of mean tree heights along the

chromosome. This is similar to what we did in Example 2, but here it requires some extra

finesse because we did not simplify the tree sequence after loading it as we did then. To

perform recapitation, we cannot first simplify – we need the ancestral individuals that started

the SLiM simulation to remain in the tree sequence, so that recapitation can build upon them

correctly. For this reason, every root in the loaded tree sequence has the same time,

corresponding to the beginning of the forward simulation. The code in the tree_heights()

function corrects for that, getting the height of the child of the root if the forward simulation

has coalesced below the original ancestor. This provides the red line in Figure 5, showing

that the area immediately around the introduced mutation has coalesced at the time of the

introduction (due to hitchhiking), but that the remainder of the chromosome has not yet

Haller et al. Page 17

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

coalesced and thus has a tree height corresponding to the start of forward simulation. These

uncoalesced plateaus are what we will fix with recapitation.

The next step, then, is to perform the recapitation. This process works backwards from the

tree sequence information recorded by SLiM, constructing a full coalescent history for all of

the individuals alive at the end of the run. Since the non-neutral dynamics eliminated much

of the genetic diversity from the population as it existed at the beginning of forward

simulation, this coalescence requires very little work – much less than even a normal

coalescent simulation for this population size would require. In the example run discussed

here, the process took 0.41 seconds. If neutral mutations are desired, they can then be

overlaid on the recapitated tree sequence following the method of Example 1; that code is

not shown again here, but that operation took another 0.58 seconds (with μ = 10−7).

Finally, we plot the mean tree heights for the recapitated tree sequence; this produces the

black line in Figure 5. The uncoalesced plateaus have now coalesced to times as far as a

million generations in the past. This plot nicely illustrates the classical sweep pattern in

which regions closer to the position of the sweep tend to coalesce more recently, due to

hitchhiking, than regions farther away (Maynard-Smith and Haigh, 1974).

Simulating the neutral burn-in period in SLiM instead, with neutral mutations occurring at a

rate of μ = 10−7, would take an estimated 114.7 hours (from extrapolation; this is a very

conservative estimate since the model was nowhere near mutation–drift balance when times

were measured). Recapitation and neutral mutation overlay, with a total time of 0.99

seconds, therefore sped up the burn-in process in this example by more than 400,000 times.

Recapitation is clearly much faster than conducting burn-in with forward simulation, then; it

should be faster than a rescaled forward simulation model too (since rescaling can generally

not be taken that far without introducing problematic artifacts; see Discussion), and faster

even than constructing the burn-in state with the coalescent (since recapitation is based upon

the coalescent but handles far fewer events). Recapitation provides other benefits as well,

since it means that neutral burn-in can be deferred until after forward simulation is complete,

and can even be conducted as an afterthought on existing model output. It also allows the

non-neutral forward simulation to run without a burn-in history needing to be loaded (likely

making it faster and leaner), and allows one to avoid the question of how many generations

must be simulated for complete burn-in. It is worth noting that the coalescent (and thus

recapitation) does not produce identical results to forward simulation of a Wright–Fisher

model, but the differences are small and are mostly in the pattern of the most recent branches

(Wakeley et al., 2012; Bhaskar et al., 2014); using recapitation as an approximation for

neutral forward simulation should therefore produce practically identical results as long as

the forward portion of the simulation runs for at least a few generations. Similarly, although

spatial models differ substantially from the standard coalescent, this difference is mostly

seen in the more recent portion of the trees; lineages that have “mixed” across the species

range without coalescing behave statistically like lineages in a randomly mating population

(Wilkins, 2004; Matsen and Wakeley, 2006). Recapitation with an unstructured coalescent

should therefore be a good approximation to pre-existing diversity in a spatial simulation as

well.

Haller et al. Page 18

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that constructing a burn-in history with recapitation is only equivalent to a period of

forward simulation if the burn-in period is completely neutral. If a non-neutral burn-in to

equilibrium is needed, the best approach is probably to run the burn-in period in SLiM with

tree-sequence recording turned on and neutral mutations turned off (thus avoiding the cost of

simulating the neutral mutations during burn-in, as in Example 1). If a neutral burn-in is

desired, but the neutral mutations are then needed by the non-neutral portion of the

simulation (perhaps because some of the neutral mutations become non-neutral due to an

environmental change), one might simulate the burn-in period with the coalescent in

msprime (including mutation), and then save the result as a .trees file using pyslim; one

could then read that .trees file into SLiM to provide the initial state for further simulation.

These techniques go beyond what we have space to illustrate here, but the manual for SLiM

3 provides further recipes showing the use of tree-sequence recording. Since it is possible to

move simulation data with full ancestry records back and forth between msprime and SLiM,

one can imagine many ways to combine the two to leverage their strengths while avoiding

their weaknesses.

Discussion

We have integrated support for tree-sequence recording (Kelleher et al., 2018) into the

popular SLiM forward simulation software package. Tree-sequence recording can now be

enabled in any SLiM simulation, and the results output to a .trees file that can be loaded into

Python for further simulation or analysis using the msprime package (a part of the tskit

framework). We have also extended the tree-sequence recording method to allow the

recording and output of mutations that arise during forward simulation.

We provided four examples demonstrating the power of the tree-sequence recording method.

The first example, of a simple neutral model, showed how to enable tree-sequence recording

with a few trivial modifications to a SLiM model’s script. The second example illustrated

the use of recorded tree sequences in post-simulation analysis in Python to estimate the

characteristic reduction in neutral diversity expected around functional regions due to

background selection. The third example mapped the mean true local ancestry along the

chromosome in a model of the admixture of two subpopulations, again using post-simulation

Python analysis. Finally, our fourth example illustrated the use of msprime to “recapitate” a

SLiM run, using the coalescent to construct a neutral burn-in period after the completion of

forward simulation.

All of these examples illustrated the large performance benefits that can be achieved with

tree-sequence recording. Indeed, for very large neutral simulations our timing comparison

indicated that the speedup due to tree-sequence recording can exceed two orders of

magnitude, and can put the performance of forward simulation on par with an efficient

coalescent-based simulation such as msprime (Example 1). For a large simulation with many

non-neutral mutations, we still observed a speedup of more than an order of magnitude

(Example 2); simulations with a lower density of non-neutral mutations should benefit even

more. Similarly, compared to standard forward simulation methods, using recapitation to

construct a neutral burn-in period provided a speedup of more than five orders of magnitude

(Example 4), and using the tree sequence to obtain true local ancestry information provided

Haller et al. Page 19

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a speedup of more than six orders of magnitude (Example 3). Memory savings observed in

these models were also quite substantial.

Although we have not made use of it in these examples, SLiM records substantial metadata

in the tree sequence it outputs about genomes, individuals, and mutations. This includes sex,

age, and spatial location of remembered individuals, and times of origination and selection

coefficients of mutations. This information, along with the tree sequence, could enable

substantially more detailed dissection of evolutionary trajectories. Access to this SLiM

metadata is mediated by the new pyslim package that bridges SLiM and msprime.

Furthermore, the .trees file contains all of the information necessary to reconstruct the

internal state of the simulation in SLiM, so it can be loaded back into SLiM, examined

graphically using SLiMgui, and even used as a starting point for further simulation (with

some caveats; see the manual).

Tree-sequence recording is not a panacea. Models that do not involve neutral mutations will

not realize a speed benefit from tree-sequence recording’s ability to defer neutral mutation

overlay; in fact, they will run more slowly, since the overhead of recording will not be

compensated by eliminating neutral mutation simulation. Models that involve a very high

recombination rate relative to the mutation rate may also not see a speed benefit from tree-

sequence recording, since tracking the recombination breakpoints can become very time-

consuming; informal tests indicate that this becomes important, for neutral simulations,

when the recombination rate is two or more orders of magnitude larger than the mutation

rate, however, so it may not be a practical concern for most models. Even if simulation

performance is not improved by tree-sequence recording, the ancestry information provided

by the tree sequence may still speed up analysis or provide additional statistical power,

which can also be quite important in reducing total runtimes. The benefit of tree-sequence

recording also depends upon factors such as the proportion of neutral to non-neutral

mutations, the distribution of fitness effects from which the non-neutral mutations are drawn,

the genetic architecture, the frequency with which tree-sequence simplification is performed,

and many other factors. In practice, it may be worthwhile to simply compare the

performance of both methods for a particular model; it is difficult to distill any reliable rule

of thumb. These considerations were discussed further in Kelleher et al. (2018).

A commonly used technique for speeding up large forward simulations is model rescaling.

This involves scaling down the population size (N) by some factor Q, while scaling up the

mutation rate (μ), the recombination rate (r), and selection coefficients (s) by the same

factor; this holds many common population-genetic parameters constant, since they involve

products of these variables (e.g., Nμ, Nr, and Ns). Since these factors (as well as genetic

drift) are rates, one generation in the rescaled model corresponds to Q generations in the

original model. Therefore, rescaling by a factor Q can provide a speedup of up to a factor of

Q2 due to the Q-times smaller population size and the Q-times smaller number of

generations that need to be simulated. However, this technique has important limitations,

because it can introduce artifacts due to the discretization of mutation frequencies and of

time. For example, if a model with an original population size of N = 10,000 were rescaled

to a model with N = 100, the smallest possible mutation frequency will also have increased

from 0.00005 to 0.005, which could severely affect studies in which one is concerned about

Haller et al. Page 20

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the behavior of low-frequency polymorphisms. There are more serious issues related to the

process of adaptation; since rescaled values of s are larger, rescaling has the net effect of

substituting many mutations of small effect with a single one of large effect (with Q=100,

replacing 100 mutations with s=0.001 by a single one of s=0.1). Thus, rescaling must not be

taken too far, and careful comparisons are needed between the unscaled and the rescaled

model to ensure that results are not altered by rescaling artifacts. The SLiM manual (Haller

and Messer, 2016) has an extended discussion of model rescaling and provides instructive

examples. Since tree-sequence recording does not introduce such artifacts, it probably ought

to be used to full advantage before any model rescaling is applied. If that does not bring the

desired simulation within practical computational bounds, rescaling may be used in

conjunction with tree-sequence recording, but with the same caveats mentioned above. Note,

however, that the effectiveness of combining both strategies is hard to predict, since the

increased recombination rate in the scaled model means that roughly the same number of

recombination events must be recorded.

Although tree-sequence recording is not appropriate in every model, the examples we have

presented demonstrate that the performance gains it provides can make simulations possible

that would previously have been beyond reach, opening up new horizons for exploration.

The software packages used here – SLiM, msprime, Python, R – are all free and open-

source, and the examples and analyses shown here are all available on GitHub. We hope that

the practical examples we have provided will raise the level of awareness among

evolutionary biologists regarding this exciting new method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Thanks to Kevin Thornton and Dom Nelson for helpful discussions. We thank Kimberly Gilbert and three
anonymous reviewers for their valuable comments on a previous version of this manuscript. This work was
supported by funding from the College of Agriculture and Life Sciences at Cornell University, Predator Free 2050
(grant SS/05/01), and the NIH (grants R21AI130635 and R01GM127418) to PWM; by funding from the Sloan
Foundation and the NSF (under DBI-1262645) to PLR; and by the Wellcome Trust (grant 100956/Z/13/Z) to Gil
McVean for JK.

References

Arunkumar R, Ness RW, Wright SI, and Barrett SC (2015). The evolution of selfing is accompanied by
reduced efficacy of selection and purging of deleterious mutations. Genetics 199(3), 817–829.
[PubMed: 25552275]

Assaf ZJ, Petrov DA, and Blundell JR (2015). Obstruction of adaptation in diploids by recessive,
strongly deleterious alleles. PNAS 112(20), E2658–E2666. [PubMed: 25941393]

Berman SM (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist
35(2), 502–516.

Bhaskar A, Clark AG, and Song YS (2014). Distortion of genealogical properties when the sample is
very large. PNAS 111(6), 2385–2390. [PubMed: 24469801]

Caballero A, Tenesa A, & Keightley PD (2015). The nature of genetic variation for complex traits
revealed by GWAS and regional heritability mapping analyses. Genetics 201(4), 1601–1613.
[PubMed: 26482794]

Haller et al. Page 21

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Charlesworth B, Morgan MT, and Charlesworth D (1993). The effect of deleterious mutations on
neutral molecular variation. Genetics 134(4), 1289–1303. [PubMed: 8375663]

Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes N, Clark AG, and Messer PW (2018). Reducing
resistance allele formation in CRISPR gene drive. PNAS (early access), 1–6. DOI: 10.1073/pnas.
1720354115

Cotto O, Wessely J, Georges D, Klonner G, Schmid M, Dullinger S, Thuiller W, and Guillaume F
(2017). A dynamic eco-evolutionary model predicts slow response of alpine plants to climate
warming. Nature Communications 8, 15399.

Elyashiv E, Sattath S, Hu TT, Strutsovsky A, McVicker G, Andolfatto P, Coop G & Sella G (2016). A
genomic map of the effects of linked selection in Drosophila. PLoS Genetics 12(8), e1006130.
[PubMed: 27536991]

Ewing GB, and Jensen JD (2016). The consequences of not accounting for background selection in
demographic inference. Molecular Ecology 25(1), 135–141. [PubMed: 26394805]

Enard D, Messer PW, and Petrov DA (2014). Genome-wide signals of positive selection in human
evolution. Genome Research 24(6), 885–895. [PubMed: 24619126]

Fournier-Level A, Perry EO, Wang JA, Braun PT, Migneault A, Cooper MD, Metcalf CJE, and Schmitt
J (2016). Predicting the evolutionary dynamics of seasonal adaptation to novel climates in
Arabidopsis thaliana. PNAS 113(20), E2812–E2821. [PubMed: 27140640]

Griffiths RC The two-locus ancestral graph In: Basawa IV, Taylor RL, eds. Selected Proceedings of the
Sheffield Symposium on Applied Probability, 1989. Hayward, California: Institute of
Mathematical Statistics, 1991: 100–117.

Griffiths RC, and Marjoram P (1997). An ancestral recombination graph In: Donnelly P, Tavare S, eds.
Progress in Population Genetics and Human Evolution. Berlin, Germany: Springer-Verlag, 1997:
257–270.

Haller BC, and Hendry AP (2013). Solving the paradox of stasis: Squashed stabilizing selection and
the limits of detection. Evolution 68(2), 483–500. [PubMed: 24102172]

Haller BC, R Mazzucco R, and Dieckmann U (2013). Evolutionary branching in complex landscapes.
American Naturalist 182(4), E127–E141.

Haller BC, and Messer PW (2016). SLiM: An Evolutionary Simulation Framework. URL: http://
benhaller.com/slim/SLiM_Manual.pdf

Haller BC, and Messer PW (2017a). asymptoticMK: A web-based tool for the asymptotic McDonald–
Kreitman test. G3: Genes, Genomes, Genetics 7(5), 1569–1575. [PubMed: 28341700]

Haller BC, and Messer PW (2017b). SLiM 2: Flexible, interactive forward genetic simulations.
Molecular Biology and Evolution 34(1), 230–240. DOI: 10.1093/molbev/msw211 [PubMed:
27702775]

Hudson RR (1983). Properties of a neutral allele model with intragenic recombination. Theoretical
Population Biology 23(2), 183–201. [PubMed: 6612631]

Hudson RR (1994). How can the low levels of DNA sequence variation in regions of the Drosophila
genome with low recombination rates be explained? PNAS 91(15), 6815–6818. [PubMed:
8041702]

Hunter JD (2007). Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9(3),
90–95.

Kelleher J, Etheridge AM, and McVean G (2016). Efficient coalescent simulation and genealogical
analysis for large sample sizes. PLoS Computational Biology 12(5): e1004842 DOI: 10.1371/
journal.pcbi.1004842 [PubMed: 27145223]

Kelleher J, Thornton KR, Ashander J, and Ralph PL (2018). Efficient pedigree recording for fast
population genetics simulation. PLoS Computational Biology 14(11): e1006581 DOI: 10.1371/
journal.pcbi.1006581 [PubMed: 30383757]

Kingman JFC (1982). On the genealogy of large populations. Journal of Applied Probability 19, 27–
43.

Mafessoni F, and Lachmann M (2015). Selective strolls: fixation and extinction in diploids are slower
for weakly selected mutations than for neutral ones. Genetics 201(4), 1581–1589. [PubMed:
26500260]

Haller et al. Page 22

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://benhaller.com/slim/SLiM_Manual.pdf
http://benhaller.com/slim/SLiM_Manual.pdf

Matsen FA, and Wakeley J (2006). Convergence to the island-model coalescent process in populations
with restricted migration. Genetics 172(1), 701–708. [PubMed: 16219775]

Matz MV, Treml EA, Aglyamova GV, and Bay LK (2018). Potential and limits for rapid genetic
adaptation to warming in a Great Barrier Reef coral. PLoS Genetics 14(4), e1007220. [PubMed:
29672529]

Maynard-Smith J, and Haigh J (1974). The hitch-hiking effect of a favourable gene. Genetics Research
23(1), 23–35.

Messer PW (2013). SLiM: Simulating evolution with selection and linkage. Genetics 194(4), 1037–
1039. [PubMed: 23709637]

Nowak MD, Haller BC, and Yoder AD (2014). The founding of Mauritian endemic coffee trees by a
synchronous long-distance dispersal event. Journal of Evolutionary Biology 27(6), 1229–1239.
[PubMed: 24797428]

Oliphant TE (2006). A guide to NumPy. U.S.A.: Trelgol Publishing.

Patel R, Scheinfeldt LB, Sanderford MD, Lanham TR, Tamura K, Platt A, Glicksberg BS, Xu K,
Dudley JT, and Kumar S (2018). Adaptive landscape of protein variation in human exomes.
Molecular Biology and Evolution 35(8): 2015–2025. DOI: 10.1093/molbev/msy107 [PubMed:
29846678]

Ryan SF, Deines JM, Scriber JM, Pfrender ME, Jones SE, Emrich SJ, and Hellmann JJ (2018).
Climate-mediated hybrid zone movement revealed with genomics, museum collection, and
simulation modeling. PNAS 115(10) E2284–E2291. [PubMed: 29463695]

Sattath S, Elyashiv E, Kolodny O, Rinott Y, and Sella G (2011). Pervasive adaptive protein evolution
apparent in diversity patterns around amino acid substitutions in Drosophila simulans. PLoS
Genetics 7(2), e1001302. [PubMed: 21347283]

Thornton KR (2014). A C++ template library for efficient forward-time population genetic simulation
of large populations. Genetics 198(1), 157–166. [PubMed: 24950894]

Wakeley J, King L, Low BS, and Ramachandran S (2012). Gene genealogies within a fixed pedigree,
and the robustness of Kingman’s coalescent. Genetics 190(4), 1433–1445. [PubMed: 22234858]

Wilkins JF (2004). A separation-of-timescales approach to the coalescent in a continuous population.
Genetics 168(4), 2227–2244. [PubMed: 15611188]

Haller et al. Page 23

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
An example tree sequence for a model of five extant genomes, with a chromosome ten base

positions long. Each interval between x axis ticks is a genomic interval with a distinct

ancestry tree. The leaves of each tree [0–4] represent the extant genomes, whereas the

internal nodes [5–12] represent ancestral genomes from which the extant genomes descend.

The pattern of ancestry at adjacent sites is typically highly correlated, as seen here. Full

coalescence has been achieved for the first, second, and fourth intervals, but the third

interval has not yet fully coalesced; the tree for that interval therefore has multiple roots. See

Kelleher et al. (2016, 2018) for further discussion of the tree sequence data structure.

Haller et al. Page 24

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
A speed comparison between SLiM without tree-sequence recording, SLiM with tree-

sequence recording and mutation overlay, and msprime’s coalescent simulation for a simple

neutral model (Example 1; see text for model description). Each point represents the mean

runtime across 10 replicates using different random number seeds; bars showing standard

error of the mean would be smaller than the size of the plotted points in all cases. Runs for

SLiM without tree-sequence recording (filled blue diamonds) were not conducted for L =

1010 because the memory usage was prohibitive, so a linear extrapolation is shown (hollow

blue diamond). Runs for SLiM with tree-sequence recording and mutation overlay (filled

green circles) are subdivided here to show the runtime for SLiM alone, prior to mutation

overlay (hollow green circles), illustrating that the time for mutation overlay is negligible.

The runtimes for the msprime coalescent for a full population sample of n = 2N = 1000

(filled red squares) and for a sample of size n = 2N/100 = 10 (hollow red squares) are both

shown. Note that the x and y axes are both on a log scale.

Haller et al. Page 25

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Mean diversity (as measured by mean tree height) as a function of distance from the nearest

gene (Example 2). The center of the x-axis (red line) represents a distance of zero,

immediately adjacent to a gene; moving away from the x-axis center to the left/right

represents moving away from the nearest gene to the left/right respectively. The pattern of

decreased diversity near a gene is the “dip in diversity” due to background selection.

Haller et al. Page 26

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Mean true local ancestry at each position along the chromosome (Example 3). The red

vertical bars indicate the positions at which beneficial mutations were originally introduced

into p1 and p2. The beneficial mutations, which both fixed, are points where the true local

ancestry is 100% p1 or p2. True local ancestry regresses toward equal admixture with

increasing distance from those fixed points.

Haller et al. Page 27

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Mean tree height (on a cube-root-scaled y-axis) at each position along the chromosome,

before and after recapitation (Example 4). The red line shows mean tree heights prior to

recapitation; the region surrounding the introduced sweep mutation coalesces at the start of

the sweep, whereas the plateaus outside that region are uncoalesced and have a height

corresponding to the start of forward simulation (100 generations earlier). The black line

shows heights after recapitation; the uncoalesced plateaus have now been coalesced

backward in time, producing tree heights as long as a million generations in the past.

Haller et al. Page 28

Mol Ecol Resour. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Introduction
	Examples
	Example I: A simple neutral model
	How long do we run it?

	Example II: Background selection
	Example III: True local ancestry mapping
	Example IV: Neutral burn-in for a non-neutral model

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

