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Antimicrobial resistance is a serious threat to global public health, but little is known about
the effects of microbial control on the microbiota and its associated resistome. Here we
compare the microbiota present on surfaces of clinical settings with other built environments.
Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction,
we show that increased confinement and cleaning is associated with a loss of microbial
diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to
Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built
environments has a different resistome when compared to other built environments, as well
as a higher diversity in resistance genes. Our results highlight that the loss of microbial
diversity correlates with an increase in resistance, and the need for implementing strategies
to restore bacterial diversity in certain built environments.
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he increased morbidity and mortality rate associated with

infections by antibiotic-resistant bacteria is one of the main

global threats human kind has to face nowadays. Anti-
microbial resistance (AMR) is recognized as a real health crisis
that has to be forcefully tackled on several fronts!. Most of these
fronts are directly linked to human behavior in the environment?.
In recent years, research has been focused among others on the
environmental dimension of AMR especially in livestock farming,
waste water treatment, and in hospital settings. However, other
built environments in which people commonly spend most of
their lives (e.g., private homes and workplaces) have been often
neglected in these studies, despite their potential relevance for the
emergence and spread of AMR. An exception is the study by Lax
and coworkers, who investigated AMR not only in a hospital
setting?, but also in private homes*.

In line with such demands by the scientific community?>, we
compared associations of AMR between surfaces in clinical set-
tings and other built environments. We focused on three main
aspects of anthropogenic influences on buildings: (1) occupancy
and type of access, (2) room’s usage, and (3) human activities that
may alter the microbiota like microbial control and cleaning, in
general. Since prior studies have already indicated that microbial
community and resistome structures correlate with human
actions in their environment>4%7, we were interested in learning
how microbial control and building confinement affect the
composition and functional capabilities of the residing micro-
biome with an in-depth analysis of the resistome and its mobile
genetic elements. For this purpose, we defined a set of model built
environments, which differ in their grade of anthropogenic
influences, including microbial control, cleaning, and access. On
one hand, we investigated different naturally unrestricted build-
ings (UBs) and houses with a high level of influence from the
surrounding outdoor environment, including plants, in a rural
setting. On the other hand, we sampled controlled built envir-
onments (CBs) with an increasing level of microbial confinement
and cleaning operations from intensive care units (ICUs) to
spacecraft assembly cleanroom facilities in urban areas. All
samples were supported by a rich collection of environmental
metadata to correlate compositions and functions of the micro-
biome with environmental parameters. This unique study design
was further supported by a new sampling methodology to acquire
deeply sequenced shotgun libraries even from low-biomass
environments. In addition, a state-of-the-art genome centric
bioinformatics analysis® was conducted to elucidate resistance
features in their genome context.

These new insights are useful to model human-driven pro-
cesses affecting in-house microbiota and its associated resistome
and to improve our assessments on the possibilities of preserving
or, eventually, designing microbiomes in built environments.

Results

Confinement correlates with reduced microbial diversity.
Opposing structures of UB and CB were accompanied by a sig-
nificant loss (Spearman’s rank correlation rho, correlation coef-
ficient: -0.8783, P =0.02131; one-sided t test: n =9, t = -3.2, df =
2.6, P=0.03) of taxonomic diversity (Shannon-Weaver indices:
CB 72H’, UB 8.8H’) (Fig. 1a and Supplementary Table 1). In
contrast, the functional diversity between UB and CB remained
balanced (10.8-11.1 H’ according to SEED annotations; Fig. 1b).
The analysis of 16S rRNA sequences showed even clearer dif-
ferences between CB (5.6 H’) and UB (7.2H’) due to lower
diversity estimates for ICU samples (3.8 H’) and a higher diversity
for private houses (6.4 H’) (Supplementary Fig. 1). These differ-
ences in diversity estimates were observed in the presence of
constant bacterial abundances (~ 10°-107 16S rRNA gene copies

per m2), with a higher variability for the fraction of intact cells
(~103-107 16S rRNA gene copies per m2). However, diversity
estimates did not correlate with the proportion of intact cells
(Spearman’s rank correlation rho, correlation coefficient: 0.2, P =
0.4).

Environmental differences correlate with the microbiome.
Shotgun metagenome samples from public buildings and public
houses were more similar to each other than samples obtained
from private houses according to Principal Coordinates Analysis
(PCoA) ordinations and Unweighted Pair Group Method with
Arithmetic Mean trees. Even greater dissimilarities were observed
between samples from UB and CB. Moreover, 16S rRNA-based
population structure indicated lower dissimilarities for UB (mean
Bray-Curtis distance 0.71) than for CB environments (mean
Bray-Curtis distance 0.82; Fig. 2 and Supplementary Fig. 2).

Different categories of sampled built environments could be
characterized by distinct compositions of the metagenomic reads
even on the superkingdom level (Supplementary Fig. 3). Hence,
proportions of bacteria vs eukaryota (mainly sequences assigned
to humans) decreased significantly (one-sided t test: n =09, t=
3.4, df =2.0, P =0.04) from UB (~ 99% bacteria, ~ 1% eukaryota)
towards CB (for bacteria: cleanroom ~ 69% and its gowning area
~85%; ICU ~55%). A similar pattern could be observed for
archaea, although not significant (one-sided ¢ test: n =9, t =1.9,
df =2.0, P=0.1), with higher counts (~ fourfold) in CB. Traces
of viruses were less apparent between CB and UB, but showed
highest relative abundances in the ICU and in the environment of
public houses. Clear differences continued into higher taxonomic
levels (Supplementary Fig. 4 and Supplementary Fig. 5): on the
phylum level, public buildings and public houses were dominated
by sequences of Actinobacteria (up to 50%) and Proteobacteria
(~ 21%). In private houses, the proportion of Firmicutes raised up
to 55%. Likewise, the proportion of Firmicutes was also higher
after masking the DNA of compromised cells with propidium
monoazide (PMA). In CB, the prevalence of bacterial phyla was
reduced and proportions of multicellular organisms and not
assignable sequences increased (up to 62% in the cleanroom).
Furthermore, Pseudomonas, Porphyromonas, Propionibacterium,
and Prochlorococcus could be identified as significant discrimi-
native features (Supplementary Fig. 6) in CB by LEfSe (linear
discriminant analysis of the effect size) analysis. Besides these
bacterial taxa, also viral sequences (e.g., human herpes and
papillomavirus) and assignments to arthropods (e.g., mites like
Trombidiformes and Prostigmata) and insects (e.g., lices such as
Liposcelis bostrychophila and cockroaches like Blattella germa-
nica) were defined as discriminative features for CB.

The core 16S rRNA gene microbial profile was visualized in a
core operational taxonomic unit (OTU) network (Supplementary
Fig. 7). This analysis indicated a high proportion of shared OTUs
assigned to Acinetobacter and Staphylococcus as well as a bigger
overlap of samples from the cleanroom facility and unrestricted
buildings compared to the core of samples from the ICU
environment.

To correlate microbial community composition with environ-
mental parameters, a bioenv test with Spearman rank correlations
compared to Euclidean distances was applied on the 16S rRNA
gene profile. This bioenv analysis showed higher correlations of
samples with latitude, longitude, and sea level (best variable
combination pw = 0.9425) than with temperature, humidity, and
room variables, like the surface area, room height, or room
volume (best variable combination pw = 0.7518). These correla-
tions were further visualized as vectors on an Non-metric
multidimensional scaling (NMDS) ordination of the sampled
communities together with calculated ellipses per sampling

2 | (2019)10:968 | https://doi.org/10.1038/s41467-019-08864-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08864-0

ARTICLE

a

125 -

10.0 -
3
=
'g 75- Categories
= CB
©
c uB
S
C
C
]
<
o 50-

2.5 -
CB (confined) UB (unrestricted)
Category

b

12.0 -

11.5
3
=
g Categories
% 11.0 [ cB
c I uB
S
c
=
5]
<
n

10.5 -

10.0 -

CB (confined)

UB (unrestricted)

Category

Fig. 1 Microbial diversity estimates. Calculations were executed in MEGAN according to the results of the BLASTx searches against NCBInr. Data of single
reads were filtered (unassigned reads were removed) and normalized (randomly and repeatedly subsampled to the smallest sample size). Violin plots
showing the kernel probability density of the data, including a box with the median and the interquartile range, were created in R. a Significant differences of
Shannon diversity estimates of microbial communities on species level in CB (confined) and UB (unrestricted built environments). b Similar Shannon
diversity estimates of microbial functions on highest SEED levels (individual functional gene levels, level 5) in CB (confined) and UB (unrestricted built

environments)

category (Fig. 3). This ordination showed distinct clusters for
samples obtained from the surface of tiles in private houses, the
sanitary environments in public houses and public buildings, or
that ICU floors and ICU workplaces overlapped with samples
from medical devices. However, associations of the microbiome
with environmental variables like biogeography or microclimate
could not be further supported or differentiated due to
confounding variables (see Supplementary information).

In general, the composition of the microbiome was so distinct
that the associated metadata categories could be predicted by
supervised learning methods (random forest classification and
regression models). Samples from CB or UB could be predicted
with a high overall accuracy of 92%. Likewise, numerical

environmental parameters such as temperature (R=0.92, P=
4.8 x 107), relative humidity (R = 0.89, P= 3.3 x 10%), longitude
(R=0.95, P=2.8x10"), and sea level (R=10.82, P=3.3x107)
could be easily predicted. Microbial abundances (R =0.63, P=
0.12) and respective room areas (R=0.58, P=0.24) were not
suitable to build predictive models from observed features.

Changed functional capabilities were evident on genome levels.
Assembled contigs and scaffolds could be binned into 125 draft
genomes (8-20 bins per sample). Most binned genomes were
recovered from samples of private houses, while only a few
genomes could be reconstructed from the ICU dataset
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Fig. 3 Environmental variables associated with the microbiome of sampled built environments. NMDS of 16S rRNA gene amplicons based on Bray-Curtis
distances with superimposed vectors representing Spearman correlations of measured environmental variables (bioenv) based on Eucledian distances.
Color code for column environment: blue (cleanroom facility); red (intensive care unit); dark green (public buildings); light green (public houses); yellow

(private houses)

(Supplementary Table 2). A subset of 44 draft genomes (repre-
senting 45% of all assembled contigs) were sufficient in quality for
an in-depth analysis. Annotations, replication activity, and pre-
dicted phenotypes of these binned genomes were significantly
representative for CB or UB environments (Fig. 4). Hence,
according to iRep, replication rates were lower in CB (two-sided
two-sample Kolmogorov-Smirnov test: D = 0.68, P =0.005) and
ranged from 2 to 6 replication events for 10-75% of the sampled
population. According to Phenotype Investigation with Classifi-
cation Algorithms (PICA), several distinct phenotypes could be
predicted (46 individual chi square tests, Bonferroni correction
P=0.02) on genome and marker-gene levels. Therefore, sig-
nificant phenotypic traits for CB covered alkane degradation,
benzoate degradation by hydroxylation, trimethylamine produc-
tion by choline, T4 and T6 secretion systems, and plant patho-
genicity based on thaxtomins, while arsenic detoxification and

facultative anaerobes were specific for UB. Overall, Gram-positive
bacteria (P =0.004) with functions associated with carbohydrate
and amino acid metabolism dominated in UB. On the contrary,
Gram-negative bacteria with many functions associated with
virulence, disease (P =0.008), defense (P=5.2x107), and
resistance (P = 0.08) were representative for CB (P values were
calculated by Kruskal-Wallis tests; Supplementary Figs. 8-11).
Genomes assigned to Exiguobacterium (V= 0, P =22 x 10711
and Macrococcus (V=0, P=1.0) were commonly recovered
from diverse UB environments. Genomes of Arthrobacter (V =
465.5, P=2.9 x 10"15) and Janibacter (V =0, P = 0.3) were more
specific for the category of public buildings and public houses.
Enhydrobacter (V=0, P=1.0), Kocuria (V=0, P=28.3x 10%),
and Pantoea (V =225, P=1.2 x 10-%) were found additionally in
private houses together with Lactococcus (V=9, P=1.0)
and Staphylococcus (V = 3445, P=0.01). Leuconostoc (V =169,
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Fig. 4 An overview of reconstructed genomes. High-quality binned genomes clustered by average nucleotide identity (AND), resolved to highest taxonomic
levels, respective built environment origins, and respective replication rates (activity). Color code for column environment: blue (cleanroom facility); red
(intensive care unit); dark green (public buildings); light green (public houses); yellow (private houses)

P =0.9) marked the transition from private houses to ICU. And
finally, genomes assigned to Propionibacterium (V=2697, P=
0.01), Pseudomonas (V = 133530, P=2.9 x 1015), and Stenotro-
phomonas (V=97.5, P=0.07) were characteristic to all CB
environments (P values from Wilcoxon signed rank tests; Fig. 4).
Representative taxonomic assignments for distinct built environ-
ments were supported by data of the single-read analysis
(Supplementary Figs. 5 and 6) and 16S rRNA gene amplicons
(Supplementary Fig. 12).

Genomes assigned to the genus of Acinetobacter (median
completeness 94%, median contamination 20%) were highly
prevalent and ubiquitous in all sampled built environments. This
has allowed a detailed comparison of closely related bacterial
species from different maintained built environments regarding
changed functional properties on pan-genome levels. Genomes of
Acinetobacter from private houses, the ICU, the cleanroom and
its gowning area shared a core genome with 24-39% of all CDS
(proportion of core coding DNA sequences to all coding DNA
sequences in a genome). Coding genes in the recovered genome
of Acinetobacter (e.g., Acetyl-CoA acetyltransferase fadA or
alcohol dehydrogenase frmA) from the ICU showed the biggest
overlap with this core (39%) and less strain-specific CDS (784)
than genomes of Acinetobacter from the private houses (2857
strain-specific CDS, 24% of the core genome). Regarding all
binned genomes, the ICU environment showed the greatest
density (highest grade of similarity) for its core genome (0.2%
core CDS) compared to all other sampled built environments
(Supplementary Table 3). Differences in the pan-genome of

Acinetobacter were especially striking for functions associated
with virulence, disease, and defense. In CB, the number of
assigned functions to these categories almost doubled compared
to UB.

In general, functional traits were more evenly distributed over
all sampled indoor spaces compared to microbial profiles
(Supplementary Figs. 13-16). Nevertheless, a detailed LEfSe
analysis based on SEED annotations revealed functions associated
to Gram-positive bacteria (Gram-positive cell wall components,
heme and hemin uptake, and utilization in Gram positives), fatty
acid metabolism (fatty acid lipids, isoprenoids, teichoic and
lipoteichoic acid biosynthesis), DNA repair systems (DNA repair
UvrABC system, DNA repair bacterial Rec FOR pathway, and
transcription repair-coupling factor), and heatshock (heatshock
dnaK gene cluster) as significant discriminative features of UB.
On the contrary, functions associated with Gram-negative
bacteria (Gram-negative cell wall components), iron acquisition
(ferrichrome iron receptor, TonB-dependent siderophore recep-
tor, and siderophore pyoverdine), oxidative stress, membrane
transport and secretion (Ton and Tol transport systems, RND
efflux system inner membrane transporter CmeB, Type III, IV, VI
ESAT secretion systems), virulence (virulence disease and
defense), and resistances (resistance to antibiotics and toxic
compounds, multidrug resistance efflux pumps, cobalt zinc
cadmium resistance protein CzcA) were identified to be
representative for CB. A comparison of all annotated SEED
functions with the RAST server®10 revealed a high proportion of
functions associated with amino acid and carbohydrate

| (2019)10:968 | https://doi.org/10.1038/s41467-019-08864-0 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

metabolism for UB (Supplementary Fig. 17). In contrast, genomes
from CB indicated a shift towards other functions like virulence,
disease, and defense. Especially, genomes from the cleanroom
environment showed much more evenly distributed functional
capabilities for all functional groups and, additionally, many
functions associated with stress response.

Differences were reflected by the resistome. Due to distinct
profiles and our interest in functions related to virulence and
resistance, we captured the virulome (entity of virulence factors)
and resistome (entity of resistances against antibiotics) of CB and
UB in greater detail. Slightly more virulence genes (VFDB) were
detected for genomes of CB (19) than of UB (18). Highest pro-
portions of virulence genes were present inside the ICU, followed
by public and private houses. Lowest counts were visible for the
highly unrestricted environment of public buildings. Hence,
chromosomally encoded bacterial virulence in CB and UB was
likely associated with its distinct microbial profiles. However,
differences in proportions were not significant.

Compared to the virulome, the resistome showed clearer
differences for CB vs UB. Using CARD (Comprehensive
Antibiotic Resistance Database), 377 different resistance features
could be identified for the 42 selected high-quality binned
genomes and 91 extracted plasmids. Detected resistance genes
were manually curated (removal of only mutation and regulation-
mediated resistances according to ref. 11) for a detailed analysis of
intrinsic (124) and mobile (186) resistance features. The
resistome of CB and UB as well as resistances from genomes
and plasmids differed significantly (Permutational Multivariate
Analysis of Variance test: n =37, pseudo-F = 3.8, P =0.004 and
pseudo-F = 4.0, P = 0.002; Fig. 5 and Supplementary Fig. 18). UB

Shannon diversity (H’)

UB (unrestricted)
Category

CB (confined)

Binned genomes

showed more often mobile (10 vs 6%), transposable (36 vs 13%),
replication (29 vs 10%) and slightly more virulence (6 vs 4%)
factors or elements on their extracted plasmids than CB. Overall,
interconnections of the resistome between genomes and extracted
plasmids were very rare. Only a few genes encoding diverse efflux
pumps (pmrA and acrA) could have been transferred between
genomes and extracted plasmids of Exiguobacterium sibiricum,
Streptococcaceae (both from UB), and Stenotrophomonas mal-
tophilia (inside the cleanroom facility), respectively (Fig. 6), since
they were detected in the same environment and/or recovered
from similar genomes. However, the role they might have in
resistance, particularly acrA, which forms the part of an intrinsic
tripartite Enterobacteriaceae efflux pump, remains obscure. CB
showed significantly higher abundance of elements involved in
intrinsic resistance, including efflux pumps and stress-resistance
determinants (e.g., as identified by LEfSe analysis, the multidrug
efflux proteins mexK and mexB, and the catalase peroxidase-
activating isoniazid katG in all CB environments). Besides built
environment-specific profiles, species-specific patterns of the
resistome were also observed; for instance, smeA in S. maltophilia
(multidrug efflux) and salA in genomes of Macrococcus case-
olyticus (possible resistances against lincosamides and strepto-
gramins; Fig. 7a, b).

Further differences between CB and UB were also evident in
terms of potentially conferred resistances against distinct drug
classes. CBs were relatively enriched by resistances against
fluoroquinolones (W = 1705, P=0.4) and triclosan (W = 1666,
P =0.02) compared to UB. In turn, UBs were more representative
of resistances against aminoglycoside (W =1842, P=0.007),
diaminopyrimidine (W =1384.5, P=0.7), and macrolide-based
antibiotics (W = 1598.5, P = 1.0; P values from Wilcoxon signed-
rank tests). Regarding their location, genes encoding beta-lactam,

Categories

[cs

L uB
Binned genomes

. Plasmids

Plasmids

Fig. 5 Diversity estimates of detected resistance features. Significant differences in Shannon diversity estimates of different resistance features (highest
levels, level 3) of the CARD database inside CB (confined) and UB (unrestricted built environments) as well as on binned genomes and plasmids. Data
were normalized (rarefied). CARD, Comprehensive Antibiotic Resistance Database
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phenicol, and streptogramin resistance were more common in
binned genomes, while extracted plasmids could mediate more
resistances against fluoroquinolones, aminoglycosides, and diami-
nopyrimidines. Likewise, genomes of Arthrobacter arilaitensis
showed many resistances against fluoroquinolones, while genomes
assigned to Acinetobacter sp., Pseudomonas sp., and Sphingobium
were rich in resistances against tetracyclines. Stenotrophomonas
maltophilia harbored many resistances to both drug classes. On
the contrary, more unspecific multidrug resistances were fre-
quently common for Staphylococcaceae, Macrococcus caseolyticus,
and Exiguobacterium sibiricum.

The core resistome of individually binned genomes was much
more coherent (100% of core resistance genes in all genomes)
than the core resistome of extracted plasmids or the different built
environment categories (only 20-30% of core resistance genes in
all plasmids). These data agree with the concept of intrinsic
resistomes as a set of resistance genes present in all the (or most)
members of a given species!2. Hence, the core resistome of CB
showed resistances against fluoroquinolones and aminocoumar-
ins, while UB contained resistances to these antibiotics and
additionally against tetracyclines and mupirocins.

As already shown for the composition of the microbiome,
annotated resistance features were also used to build predictive
models by supervised learning methods. Predictions were almost
accurate if they were based on resistance genes (CB vs UB: overall
accuracy = 91%) instead of microbial profiles (CB vs UB: overall
accuracy = 92%). However, numerical environmental parameters
like sea levels (R=0.64, P=3.3 x 10-3), temperature (R = 0.46,
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P=0.09), and microbial abundance (R=0.46, P =0.06) could
not be predicted easily and showed only low model accuracies.

Resistance genes were further investigated in their genomic
context (synteny). In most cases, antibiotic resistance genes were
co-localized with other resistance genes especially on genomes
retrieved from CB environments (mainly multidrug efflux
transporter systems e.g., acrA, acrB, and bepE). In contrast,
genomes from UB environments showed more often transcrip-
tional regulators (e.g., cymR and grpE) and transposases (tnpABC)
in close vicinity to annotated resistance genes. Despite the high
frequency of transposase genes in the vicinity of resistance genes,
no integron clusters could be detected. Resistance genes of
genomes from CB environments were also significantly more
often surrounded by a higher frequency of flanking repeats (W =
12075, P=0.02). Potentially horizontally transferred genes
(HGT) in regions of genome plasticity were identified by synteny
breaks and the compositional bias between genomes of CB and
UB and closely related genomes available in the MaGe database!3.
More potential HGT features (both mobility genes as well as
tRNA hotspots) were detected in genomes from CB environ-
ments. However, higher proportions of HGT in CB were not
significant.

In summary, a significant (W =110, P = 1.3 x 1077) reduction
in microbial diversity on surfaces in CB by 50% was accompanied
by a significant (W =202.5, P =0.01) increase of resistances by
20%, suggesting an enrichment of resistant microorganisms that
displace the susceptible ones in these environments (P values
from Wilcoxon signed-rank tests).
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Discussion

Our comparative analysis of deeply sequenced shotgun meta-
genomes and 16S rRNA gene amplicons revealed a clear micro-
bial pattern on building surfaces characterized by different
maintenance levels. While UBs were dominated by bacterial

signatures commonly associated with the outdoor environment
and processed food, CBs revealed a high abundance of sequences
assigned to mainly human-associated bacteria, opportunistic
pathogens, and only a low proportion of potentially beneficial
bacteria (no potential pathogens; lower proportions of functions
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associated with virulence, defense, and resistance). UBs were
mainly colonized by robust Gram-positive bacteria with many
functional capabilities to adapt to fluctuating conditions of the
microclimate, UV radiation, and nutrient availability. Opposed to
this, the constant moderate microclimate of CB and the strong
anthropogenic influence selected for human-associated Gram-
negative bacteria. Regular and strict cleaning procedures directed
the microbiome to encode for functions associated with oxidative
stress in combination with functions for membrane transport,
secretion, and apoptosis to gather nutrients from a highly com-
petitive nutrient-poor environment, a condition that was descri-
bed as a wasteland for microbes!4. Regular exposure to cleaning
reagents and toxic compounds of these microbial populations
were encountered by increased functional capabilities to degrade
xenobiotics, geraniol, limonene, pinene, naphthalene, bisphenol,
chlorocyclohexane, chlorobenzene, drug metabolism, and an
overall higher level of virulence, disease, defense, and resistances.
Investigated virulomes and resistomes underlined the strong
impact of humans on microbiomes in the built environment.
Virulence factors were more abundant for bacteria that need to
survive in clean, nutrient-poor, and microbially controlled CB
environments. Regarding antibiotic resistance, bacteria from CB
tend to encode for a bigger diversity of genes involved in multi-
drug efflux, while bacteria from UB harbored more specific
resistance features. The regular application of many different
antibiotics and certain detergents might select such broad-
spectrum resistance features in these microbial-controlled envir-
onments and also increase resistances against fluoroquinolones,
triclosan, or elfamycins. Similar to this study, Lax and coworkers
already reported a co-localization of different AMRs in close
genomic context and the high proportion of multidrug efflux
genes (e.g., mexAC) on hospital-associated surfaces>.

Our resistome analysis covered not only the presence and
abundance of detected resistance genes, but also their context in
respective draft genomes as well as their potential to be hor-
izontally transferable with known pathogens®>1°. Besides this
comprehensive analysis, the present study faces some limitations,
such as the low sample size from CB environments, its focus on
one sample type (floor samples), and the lack of metadata on
specific administered antibiotics especially in the ICU at the time
of sampling in contrast to other studies®*. This low sample size
was a consequence of the restricted access to the confined built
environment setting of the ICU and the cleanroom facility as well
as the low amount of biomass in these CB environments. Hence,
the representativeness of the subsequent analysis is limited and
also constrained our attempts to correlate and interpret microbial,
virulence, or resistance compositions with environmental vari-
ables, as was shown in the study of Lax et al. in 20173. Therefore,
the general validity and impact of the presented results require
additional confirmation by further studies.

Nevertheless, our study tried to substantiate the assessment of
observed differences of the resistome between CB and UB by
three aspects. First of all, the increased diversity of resistant fea-
tures in CB was positively correlated with the number of potential
pathogens. Secondly, we targeted potentially horizontally trans-
ferred genes in regions of genome plasticity, transposases,
flanking repeats, and integron clusters as well as the resistome of
plasmids to cover mobile genetic elements. And finally, we dif-
ferentiated our analysis for intact microbial cells and determined
the level of replication to emphasize the resistome inside meta-
bolically active microbiota. Facing this differentiated analysis, the
resistome of CB was more diverse, potentially mobile, and in
increased contact to potential pathogens, but often less active and
therefore harder to manipulate at the time of sampling. These
aspects of CB in the presence of an overall decreased microbial
diversity indicate an adverse anthropogenic influence. Many

studies emphasize the role of microbial diversity to stabilize
microbial communities and to act as a protection shield against
the invasion of pathogens!®-18. Hence, functional and composi-
tional diversity can be considered as an unspecific, but universal,
marker of ecosystem stability!®. The current study, together with
the previously published work’, highlights that the loss of
microbial diversity correlates with an increase of resistances,
indicating that these populations might be burdened by
antibiotic-resistant organisms. It is conceivable that the restora-
tion of biodiversity may allow a decrease of antibiotic resistance.

However, while it is mandatory for cleanrooms to be almost
free of microorganisms, other areas in hospitals or in private or
public buildings do not need (or can) to be absent of micro-
organisms. Furthermore, cleaning for hygiene purposes does not
imply the necessity to apply antimicrobial products that would
propel adverse selection pressure on the resistome. Given that
human interventions for reducing microbial load may cause a
decline in microbial diversity, which is associated with the
increase of antibiotic resistance in the microbiome, human
exposure to almost sterile environments should be limited to
operating rooms or particular industrial processes in cleanrooms.
All other areas of life in the built environment could be enriched
by a higher microbial diversity. One simple solution to increase
microbial diversity is to increase the exchange of air with the
outdoor environment by regular window ventilation. Or, as
we proposed before, to introduce green plants, at least in
close vicinity to confined areas?0-22. Another step would be the
active manipulation or ‘biocontrol’ of indoor and health-care
environments2>24, Biocontrol is established already for other
applications;!® a first study indoors showed promising results
through the application of Bacillus spores in a health-care
setting?>.

Buildings are the main environment in which people spend
their lives, share microbes, and where many diseases associated
with anthropogenic activities may have their origin2°. Moreover,
microbial profiles are affected by microbial maintenance and
building confinement?’. However, an unselective removal and
killing of many microbes in the built environment could have
adverse health effects, since potent immune development may
rely on microbial exposure?328-30. In particular, such broad-
spectrum selection mechanisms detected in CB environments are
prone to damage the microbiome, which would lead to a loss of
biodiversity and possibly to an accumulating effect over genera-
tions!”. Hence, the confinement of a built environment should be
limited to defined areas and special demands as indicated above.
For all other built environments, building materials could be
diverse to allow a higher microbial diversity3!. Surface main-
tenance, such as cleaning, could be diversified, and the applica-
tion of biocidal detergents can be limited to hot-spot locations
and distinct timeframes. Also, in the end, the overall use of
antimicrobials in buildings needs to be carefully considered.

The presence of highly diverse, stable, and beneficially designed
microbiomes inside healthy buildings could result in lower
exposures to resistances in the future. Since the overall heritability
of microbiomes is much lower (up to 10-fold) than human beings
acquire microbiomes by their behavior in, e.g. buildings32, we are
not condemned to lose millions of people due to antimicrobial
resistances—instead it is time to reconsider our behavior in the
built environment.

Methods

Environmental parameters and study design. A variety of indoor environments
different in their levels of microbial control, maintenance, and access were sampled
during the same season of the year (spring). All these indoor environments fea-
tured different environmental parameters summarized in Table 1, which were
suspected to contribute to the composition and function of their microbiome. More
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Table 1 Environmental parameters
Public buildings (L) Public houses Private Intensive care unit Cleanroom gowning 1SO8 cleanroom
P) houses (F) (Icv) area (UR) (CR)
Shotgun 2 2 2 1 1 1
samples
Amplicon 18 6 8 24 2 3
samples
Restriction Non Partly Moderate High
level
Occupancy Uncontrolled Restricted Controlled
type
Surface Polymer, concrete, tiles, Tiles, wood Polymer, Polymer, furnished Polymer (antistatic, dissipative epoxy resin)
material wood tiles, stone wood, metals
Location Floors Floors, workplaces,  Floors
medical devices
Building Rural Suburban Urban
setting
Maintenance Conventional Humidity, Particles, humidity, Particles, humidity,
temperature temperature, temperature,
electromagnetics, electromagnetics,
electrostatics electrostatics
Cleaning Mechanically (broom) Natural soaps All-purpose  All-purpose Isopropanol, Jaminal  Isopropanol, Jaminal
cleaners cleaners, surface Plus, Klercide-CR Plus, Klercide-CR,
disinfectants, vapor phase H,0,
sanitary cleaners
Purpose Education Accommodation  Residence Medical care Changing garment Spacecraft assembly
Characteristics Reduced interaction of Sanitary area and Kitchen Medical care of Gowning area HEPA air filtration,
occupants with the outdoor kitchen included included, patients, microbes, special garment,
environment and its resident and  and viruses microbial control
influences dog (pet)
Sampled 43 46 25 <1 38 169
surface (m2)
Room size 43 46 25 75 38 169
(m?®
Room height 3 3 3 3 3 8
(m)
Room volume 142 139 82 225 n3 1349
(m3)
Humidity (%) 62 65 60 32 55 55
Temperature 19 18 19 24 22 22
O
Latitude 53.950258 53.948030 53.953343 47.081353 45.079675 45.079675
Longitude 10.031095 10.026079 10.034461 15.465090 7.608334 7.608334
Sea level (m) 28 28 31 394 279 279
Selected metadata of sampled confined (CB) and unrestricted built environments (UB)

details about the study design and potential environmental influences and differ-
ences can be found in the Supplementary Methods (Supplementary Figs. 19-21 and
Supplementary Tables 4, 5). Two types of floors of indoor environments with
different cleanliness levels were investigated: UB, unrestricted buildings (public
buildings, public and private houses) and CB, confined buildings (intensive care
unit and cleanroom facility). The structure of the population and the whole
metagenomic composition were investigated through 16S rRNA gene amplicon
and shotgun metagenomic sequencing as described below.

Sampling procedures. Large-scale floor samples (defined by the size of each room)
were collected to obtain high amounts of biomass (even from low-biomass
environments like cleanrooms). In addition, floor samples were shown to have high
diagnostic capacities of its occupants? as well as high proportions of antimicrobial
resistances. For this approach, sterile (autoclaved) and DNA-free (dry heat
treatment) Alpha Wipesm (TX1009; VWR International GmbH, Vienna, Austria)
were mounted in several layers separated by sterile, DNA-free foliage on a big swab
(Swiffer® Sweeper” Floor Mop Starter Kit; Procter & Gamble Austria GmbH,
Vienna, Austria) under a biohood. If necessary, wipes were remoistened by
spraying polymerase chain reaction-grade water directly on the surface with a spray
bottle. All instruments were chemically sterilized in several steps (all-purpose
cleaner, Denkmit, dm-drogerie markt GmbH + Co. KG, Karlsruhe, Germany; 70%
(w/v) ethanol, Carl Roth GmbH & Co. KG, Karlsruhe, Germany and Bacillol” plus,
Bode Chemie GmbH, Hamburg, Germany). The remaining DNA was denatured
with chlorine bleach (DNA away; Molecular Bio Products, Inc., San Diego, CA,
USA) and UV light (254 and 366 nm; Kurt Migge GmbH, Heidelberg, Germany).

Samples were collected in a repetitive way, always starting from cleaner areas in
each indoor environment (especially in cleanrooms according to their ISO classi-
fications) to minimize the transfer of contaminants. Sampling was executed by the
same person to guarantee a consistent sweeping pattern (horizontal, vertical, and
diagonal sweeping motions) as well as a consistent uptake of particles and
microbes. Samples were stored on blue ice and processed at the laboratory within
12 h after each sampling event. Samples from the ICU were already obtained and
processed in a previous study33, but are now included for comparative analysis.

Sample processing, PMA treatment, and DNA extraction. Samples were pro-
cessed, concentrated, and treated with PMA prior to DNA extraction (more details
are provided in Supplementary methods). PMA treatment of samples from high-
biomass environments was performed as an additional control for potential DNA
contaminants in used reagents and on sampling equipment. In addition, PMA
treatment served as a proxy to evaluate the proportions of intact microbial cells and
validate drawn conclusions on viable microbial cells in the dataset. The DNA-
extraction method with the xanthogenate-SDS (XS) buffer was suitable for low-
biomass environments; however for samples with higher biomass, an additional
treatment with the Geneclean® Turbo Kit (MP Biomedicals, Heidelberg, Germany)
according to manufacturer's instructions was necessary.

Quantitative measures. Bacterial abundance was investigated for most samples by
quantitative polymerase chain reaction. Further details are specified in Supple-
mentary methods.
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Shotgun metagenomics. Total extracted DNA of all the samples was pooled into
the categories of public buildings, public houses, private houses, ICU, and cleanroom
and gowning area with a mean DNA amount of ~ 10 ug and a mean DNA con-

centration of 149 ng/ul. After quality control, nine shotgun libraries were prepared
by fragmentation and end repair of DNA with insert sizes of ~ 300 bp. Sequencing
was performed at Eurofins Genomics GmbH (Ebersberg, Germany) using an Illu-
mina HiSeq 2500 instrument with 2 x 150 bp paired ends in the rapid run mode.

16S rRNA gene amplicons and sequencing. Amplicons targeting the 16S rRNA
gene were generated with the barcoded primer pair 515f-806r343> (primer
sequences are listed in Supplementary Table 6). Further details can be found in
Supplementary methods.

Controls. Negative controls were processed at each experimental step besides the
actual samples. PMA treatment served as an additional quality control for free still-
amplifiable background DNA in used reagents, equipment, and overall observa-
tions of low-biomass environments. Extraction controls and field blanks (samples
of the background environment without any contact with the floor surface) were
processed in parallel. Sequences of these control samples were subtracted from the
normalized dataset during the bioinformatics analysis as described below.

Bioinformatics. Shotgun metagenomics: after the quality control of raw reads,
sequencing adapters were removed from sequences and quality filtered according to
phred score (> q35) as well as length filtered (min. 50 bp) by trimming from the 3’
prime site (Supplementary Table 7). The whole analysis was conducted in a genome-
centric approach focusing on assembly-based data (contigs, scaffolds, and bins).
However, gene-centric analysis based on single reads served as a quality control for
assembly-related artifacts throughout the analysis. These single reads were assigned
using BLASTx search algorithm with default settings>® against a custom-marker
database (all COGs/NOGs in eggNOG 4.037, which can be found in 99% of all
archaea, bacteria, and eukaryota) as well as against the NCBI non-redundant database
(release 211.0 of December 2015). Annotations of all single reads were determined
and analyzed with MEGAN (MEtaGenome ANalyzer)®8. For the genome-centric
approach, quality sequences were assembled with Ray Meta and a k-mer length of
319, Assemblies were filtered according to the following parameters: minimum
length 1500, minimum coverage 5, and read length 150. A summary of all filtered
assemblies is provided in Supplementary Table 8. Afterwards, the filtered contigs were
taxonomically classified with AMPHORA240 using the database of markers described
above. For the visualization in Krona charts, the coverage ratios of respective contigs
were considered to show relative abundances. Contigs were further binned through a
genome-centric approach with CONCOCT*! and MaxBin*2. Binning quality of
contigs was validated with CheckM*? (Supplementary Table 2). Draft genomes in the
range of 75-85% completeness and 2-25% contamination were considered to be
suitable for downstream analysis. Contigs of each bin were re-annotated with
AMPHORA? and compared with publicly available genomes using RAST® and
MaGe!3 to reveal ecologically relevant functional subsystems with special focus on
pan-genomes (core genome and variable genome; MicroScope gene/protein families
(MICFAMs) parameters: 80% amino acid identity, 80% alignment coverage), vir-
ulomes (running BLASTp on organism proteins against MicroScope, the virulence
factor database VFDB** accessed in MaGe!? with 60% identity and considering only
best hits), and resistomes (CARD homologs and variants, v.1.1.2, RGI v.3.1.1%%).
Further details about the synteny analysis can be found in Supplementary methods.
Predicted functional classifications of protein-coding genes were analyzed by anno-
tation and comparative genomics in IMG*® with GO terms (Gene Ontology Con-
sortium, 2000), KEGG (Kyoto Encyclopedia of Genes and Genomes)?’, and SEED
classifications®. Plasmids were extracted with Recycler* and annotated with KEGG,
uniref90, and CARD (see Supplementary methods for more details). Binned genomes
were compared with dRep*® and replication rates were calculated with iRep*". Phe-
notype Investigation with Classification Algorithms (PICA) was used to predict the
phenotypes of binned genomes (phendb.org)®!. More details on the settings of used
bioinformatic tools can be found in Supplementary Table 9. Bioinformatic analyses of
the population structure based on 16S rRNA sequences are described in detail in
Supplementary methods.

Statistical information. Statistical analyses were conducted in QIIME 1.9.1 and
QIIME 2 versions 2017.10 and 2018.11°2 (calling respective R scripts) or directly in
R>3 using the vegan package. Statistical tests included a comparison of categories,
distances, distance matrices, core microbiomes and core functions, taxa summaries,
co-occurrence patterns, correlations of metadata, a bioenv test (Supplementary
Tables 10-12), and multivariate linear regression models. For nonparametric tests like
multi-response permutation procedures, adonis, analysis of similarities, permutational
multivariate analysis of variance, Kruskal-Wallis, Kolmogorow-Smirnow, Wilcoxon
signed-rank test (Mann-Whitney U test), Spearman rank correlations, distance-
comparison box plots, Mantel correlograms, and Mantel tests, statistical significance
was determined through 999 permutations. Distance-comparison box plots were
calculated using a two-sided Student’s two-sample ¢ test. All resulting P values were
Bonferroni corrected. PCoA plots were based on weighted unifrac metrics. NMDS
was calculated from a Bray-Curtis distance matrix. Vectors of environmental vari-
ables shown in NMDS were calculated with the bioenv function based on Euclidean

distances in R as were calculated ellipses per sample group. LEfSe>* and microbiome:
picking interesting taxonomic abundance analysis (microPITA) (http://huttenhower.
sph.harvard.edu/micropita) were performed on Galaxy modules provided by the
Medical University of Graz (https://galaxy.medunigraz.at/). Both tools were executed
with default settings using an all-against-all strategy for the multi-class analysis for
16S rRNA gene amplicon datasets as well as CARD annotations and a one-against-all
strategy for the Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States-predicted functions throughout the LEfSe analysis. Differential
abundance of features was calculated with analysis of composition of microbiomes®.
Sample metadata was predicted with random forest classification and regression
models in QIIME 256,

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All raw data from metagenomes, genomes, and 16S rRNA gene amplicons were
deposited in the European Nucleotide Archive (https://www.ebi.ac.uk/ena) under project
PRJEB27640. Processed shotgun reads are accessible from MG-RAST (http://
metagenomics.anl.gov/) under project mgp10962. 16S rRNA gene amplicon reads were
also deposited in Qiita®” (https:/qiita.ucsd.edu/) under study 10071. 16S rRNA gene
amplicons from the ICU were published and deposited before33.
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