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Our knowledge of plant biology has reached the
point where we can begin to rationally engineer plant
form and function to meet our needs. From a bioengi-
neer’s or synthetic biologist’s point of view, the goal of
studying developmental biology is to generate a pre-
dictive model that specifies the molecular circuitry re-
quired to move a cell from one state to another. This
model could then serve as a guide for harvesting the
most useful parts and logic to enable the engineering of
novel states and multicell behaviors. Among the most
critical parts to understand from this perspective are the
signaling molecules that enable intra- and intercellular
communication. Several biosensors have been devel-
oped in recent years to detect plant-specific signals and
secondary messengers. Many other general biosensors
have been successfully implemented in plant systems.
These biosensors, in combination with single cell “omics”
techniques and predictive statistical frameworks, are
providing the type of high resolution, quantitative de-
scriptions of cell state that will ultimately make it possible
to decode and re-engineer traits associated with higher
yields and stress tolerance.

Being a plant developmental biologist today can feel
like a lot like being a cryptographer piecing together
fragmented messages with only a partial knowledge of
the cipher. Biological signaling is rife with redundancy,
feedback, and feedforward motifs acting to dampen or
amplify each signal, and modulate outputs depending
on position and cell identity. To crack the code of these
complex genetic signal processors, it is important to be
able to measure, as well as manipulate, both signals
and responses. Recent advances in synthetic biology
have provided a means to access such tools. Sensitive,
genetically encoded reporters (biosensors), in com-
bination with emerging single-cell transcriptomics
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approaches, are providing increasingly detailed mo-
lecular descriptions of cells undergoing developmental
transitions (Moreno-Risueno et al., 2015; Efroni et al.,
2016; Ristova et al., 2016; Cao et al., 2017). However, in
many cases we are still unable to measure key signaling
molecules directly with fine spatiotemporal resolution.

Several excellent reviews have been published re-
cently that describe the application of biosensors to
plant systems (Goold et al., 2018; Hilleary et al., 2018;
Walia et al., 2018). Here, we review this state of the art
in measuring plant signaling, using principles and tools
borrowed from and inspired by engineering, as well as
efforts to use this knowledge to enable rapid, ra-
tional re-engineering of plant development. We have
arranged this review as an engineering cycle in which
we will cover “designing” biosensors; “building” bio-
sensors, including technologies to facilitate the use of
biosensors in plants; “testing” biosensors; “modeling”
signaling and development, including our perspective
on integrating biosensors, systems approaches, and
optimal experimental design to generate minimal pre-
dictive models of plant development; and finally “learn-
ing” about plant development, including our outlook on

ADVANCES

e Studies of single-cell and high temporal
resolution ‘omics datasets paired with
biosensors have provided models of key
networks in developmental processes.

e Direct biosensors of gibberellins and abscisic
acid, along with improvements in indirect
biosensors for auxin and abscisic acid signaling,
have expanded our understanding of plant
hormone biology and developmental signaling.

e Development and application of FRET-FLIM and
FCS methods to study protein and protein
complex dynamics /in vivo have advanced our
understanding of transcription factor complex
formation in meristem maintenance.
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Synthetic Biology in Plant Development

how biosensors paired with synthetic and systems biol-
ogy approaches will advance knowledge in the future.

DESIGN

The design of any genetically encoded biosensor in-
volves connecting an input modality, which interacts in
some way with the species to be measured, to an output
modality, which provides some quantifiable product
(Fig. 1). These modalities may be DNA, RNA, and/or
proteins. The species to be measured (analyte) may be
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Figure 1. Biosensors link detection of an analyte (such as a signaling
molecule) by an input modality to a quantifiable change in an output
modality. A, Schematic of a direct biosensor exemplified by a signaling
molecule (green) binding protein as the input modality (purple oval)
with a fluorescent protein output modality (blue star). This biosensor
directly measures the “signal,” i.e. concentration of the signaling mol-
ecule. B, Schematic of an indirect biosensor exemplified by a signaling
molecule responsive promoter of unknown mechanism (dotted arrow)
driving expression of a fluorescent protein output modality (yellow star).
This biosensor provides a measure of the response of this signaling
pathway. C, Using biosensors to measure both the signal and response
of a developmental signaling network along with plant phenotype leads
to iterative improvement of the developmental network model and our
understanding of plant development. Improved understanding of auxin
signaling dynamics—realized by multiple biosensors and means of
functional quantification—has facilitated rational tuning of plant ar-
chitecture (Guseman et al., 2015; Je et al., 2016; Wright et al., 2017;
Khakhar et al., 2018; Shibata et al., 2018). Newly developed biosensors
(Liao et al., 2015; Rizza et al., 2017; Wu et al., 2018), paired with
functional and phenotypic quantification of development, will help
crack the code underlying developmental signaling and allow rational
breeding and engineering of next-generation crops.
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any molecule or complex of molecules. Input modalities
may be promoters that respond to the analyte, naturally
occurring proteins domains or engineered novel pro-
teins or nucleic acids, which bind (or otherwise re-
spond) to the analyte. Each input modality offers
different advantages and drawbacks. As opposed to
direct biosensors, which bind to and report the con-
centration of the desired species, indirect biosensors
have input modalities that are natural or engineered
responsive promoters or protein domains, such as
degrons, which require additional cellular machinery to
respond to the analyte (Brunoud et al., 2012; Larrieu
et al.,, 2015). Often referred to as “reporters,” indirect
biosensors report on the status of the signaling network
required to activate the responsive element. Although
this complex output can be misinterpreted, indirect
biosensors have facilitated numerous discoveries, par-
ticularly when paired with systems biology approaches
(such as transcriptomic and other genome-scale analy-
ses) to decipher network status (Moreno-Risueno et al.,
2010; de Luis Balaguer et al., 2017; Wu et al., 2018). Such
advances will be discussed further in the “Test” section.

Natural binding domains are often part of the sig-
naling pathway one is trying to measure and may in-
terfere with the native pathway components. The laws
of thermodynamics dictate that a system cannot be
measured without perturbation (Szilard, 1929), but
ideally this perturbation will be controlled for and/or
minimized. To study normal development, the pres-
ence of a biosensor must not alter normal development.
Further, protein engineering may be used to render
biosensors orthogonal to the native pathway (Rizza
et al, 2017). Novel engineered binding proteins or
DNA/RNA aptamers require significant investment
but are less likely to interfere with the native signaling
pathway, especially if potential off-target interactions
are controlled for in the design and screening. Numer-
ous methods for directing the evolution of binding
modalities have been developed, including phage-
display (Smith, 1985; Tan et al., 2016), microbial cell
surface display (Charbit et al., 1986; Freudl et al., 1986;
Agterberg et al., 1987; Schreuder et al., 1996; Boder and
Wittrup, 1997; Daugherty, 2007; Liu, 2015), ribosome
display (Mattheakis et al., 1994; Pliickthun, 2012), and
many in vitro display techniques (Joyce, 1989; Ellington
and Szostak, 1990; Tuerk and Gold, 1990; Darmostuk
et al., 2015; Tizei et al., 2016). These methods link the
genotype and molecular phenotype of large libraries of
binding proteins, allowing specific binders to a ligand
of choice to be identified and amplified or further
characterized. In all cases, expression in the desired
host is not guaranteed and further optimization may
need to be done, as the expression level of the biosensor
combined with the affinity of the input modality for the
species of interest determines the dynamic range of the
sensor (i.e. the range of input concentrations over which
the output of the sensor is quantifiable). Because of
these challenges, a transient transformation system for
screening expression constructs can expedite biosensor
optimization.
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Output modalities largely determine the spatiotem-
poral domain and resolutions of the biosensor mea-
surements. Fluorescent, luminescent, or chromogenic
proteins are typical output modalities. Pairs of fluo-
rescent and /or luminescent proteins capable of Forster
resonance energy transfer (FRET) or bioluminescence
resonance energy transfer are also frequently used.
FRET-based biosensors have the advantage of inherent
ratiometric output, allowing the expression of the bio-
sensor to be measured by specifically exciting the ac-
ceptor fluorophore, and exciting the donor fluorophore
to measure the species of interest. Beyond the common
issues of photobleaching and phototoxicity, fluores-
cence measurements in plants can be particularly
challenging given autofluorescence and the potential
for stimulation of endogenous photoreceptors (Mylle
et al., 2013). Luminescence measurements avoid these
problems, as they do not require incident light. Biolu-
minescence resonance energy transfer further allows
tuning of the luminescent emission spectra, facilitating
ratiometric measurements or measurement of multiple
species at once. All light-based measurements are lim-
ited by the penetrance of light through tissue, and the
numerous light-absorbing structures in some plant cells
limit the useful spectrum. Fortunately, dramatic ad-
vances are continually being made in microscopy,
photo detection, and protein engineering to allow
high-resolution imaging across most scales in plants
(Rousseau et al., 2015; Clark and Sozzani, 2017; Rios
etal., 2017).

Connecting the input and output modalities is gen-
erally the most challenging and critical aspect of direct
biosensor design, as the connection has a large effect on
biosensor resolution and dynamic range. Direct genet-
ically encoded biosensors are typically fusions of
the sequences of the input and output modalities
(Ostermeier, 2009). The most laborious task in direct
biosensor engineering is creating a library of fusions
and identifying members that undergo structural
changes when exposed to the species of interest, which
in turn alter their output. Fortunately, there is a wealth
of literature containing numerous case studies (recently
reviewed in Bolbat and Schultz, 2017; Sanford and
Palmer, 2017), because of early work on engineering
of direct biosensors and protein switches (Siegel and
Isacoff, 1997; Doi and Yanagawa, 1999; Prehoda et al.,
2000; Tucker and Fields, 2001; Dueber et al., 2003;
Guntas and Ostermeier, 2004). Ideally the design space
of structurally reasonable fusions is thoroughly ex-
plored using protein engineering techniques to vary
insertional position, linker residues between the mo-
dalities, and possibly circular permutation of one or
both modalities (Kanwar et al., 2013; Younger et al.,
2018). Recently, advances in bioinformatics and de-
creasing costs of next-generation sequencing have fa-
cilitated prediction and experimental determination of
sites of potential allosteric regulation (Nadler et al.,
2016; Rivoire et al., 2016; Pincus et al., 2017). Folding
and stability can be tuned and can also be exploited,
either inadvertently or directly, to develop direct fusion
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biosensors (Tucker and Fields, 2001; Wright et al., 2011,
2014; Choi et al., 2015; Feng et al., 2015; Dagliyan et al.,
2016).

Transcription factors are an interesting alternative for
connecting input and output modalities of direct or
indirect biosensors, by allowing recognition of the
species of interest to drive expression of any of the
above output domains or another genetic circuit (Feng
et al., 2015; Khakhar et al., 2016, 2018; Younger et al.,
2016, 2018). The amplification provided by transcrip-
tion and translation may result in a wider dynamic
range. Additionally, this modular connection allows
the biosensor to regulate multiple outputs facilitating
both measurement and reprogramming of cellular be-
havior (Faden et al., 2016; Khakhar et al., 2018; Lowder
et al., 2018). However, this synthetic gene circuit ap-
proach also limits the spatiotemporal resolution of the
sensor to the cellular scale and the turnover rate of the
output modality.

Biosensors are not limited to detection of monomeric
species. Biosensors consisting of short genetic circuits
are reminiscent of the enhancer trap (O’Kane and
Gehring, 1987) or yeast two-hybrid system (Fields and
Song, 1989) and their numerous variants. Advances in
microscopy have made possible the in vivo application
of well-established methods of quantifying proteins,
protein complexes, and protein-protein interactions
(Magde et al., 1972; Lakowicz et al., 1992). These
methods rely on simple translational fusions, similar to
classical FRET-based or protein fragment complemen-
tation interaction assays (Pelletier et al., 1999), but uti-
lize highly sensitive confocal microscopes, pulsed
lasers, and computational methods to quantify inter-
actions in vivo. It may also be possible to express
antibody-like proteins fused to fluorescent proteins, or
pairs of antibodies fused to split fluorescent proteins to
detect native proteins or complexes (Carlin et al., 2016).

Fluorescence correlation spectroscopy (FCS) mea-
sures fluctuations in fluorescence intensity that corre-
late with the motion of the fluorescently labeled
molecule(s) of interest to quantify diffusion (Clark et al.,
2016; Clark and Sozzani, 2017). When two different
molecules are measured simultaneously in different
spectral channels, kinetic parameters of their binding
can be inferred from cross-correlation in their diffusion.
Another technique, fluorescence lifetime imaging mi-
croscopy (FLIM), aims to overcome these issues with
overlap in the spectra of the two fluorophores as well as
autofluorescence and photobleaching, which can result
in poor signal-to-noise ratios in some instances. These
issues associated with traditional wave laser micros-
copy can be abated by using a pulsed laser and by vi-
sualizing the time each fluorophore spends in its
excited state after the pulse (fluorescent lifetime) in-
stead of intensity. FLIM can be paired with FCS as well
as FRET to measure protein-protein interactions (Boer
et al., 2014; Long et al., 2017; Rios et al., 2017). These
technologies will improve the sensitivity of existing
biosensors and facilitate the development of new bio-
sensor approaches.



Synthetic Biology in Plant Development

BUILD

Direct biosensors are generally developed in micro-
bial organisms and then shuttled into organisms less
amenable to transformation. This translation between
kingdoms and even translation of indirect biosensors
between species is not always perfect. This can be due
to a combination of issues with expression, folding,
stability, and interference with or divergence of en-
dogenous signaling pathways. In most plants, where
targeted insertion is not yet possible, there is the addi-
tional complexity of integration site variation and fre-
quent silencing (Jupe et al., 2018). Organisms allowing
targeted insertion provide an ideal platform for bio-
sensor development, as more direct comparisons of
activity can be made between different biosensors.
Targeted genetic insertion also allows reporter-tagging
of native gene loci, reducing variation. Plants that
readily perform homologous recombination, such as
Physcomitrella patens and Marchantia polymorpha, de-
serve consideration for both the design and application
of biosensors, as there is still much to be learned about
their development that may inform work in other spe-
cies (Cove et al., 2009; Ishizaki et al., 2013). To our
knowledge, biosensors have yet to be paired with tar-
geted transgene insertion technology (De Paepe et al.,
2013) or “landing pads” for plants. This technology is
currently low-efficiency and does not allow full
specification of the insertion site but does provide
more accurate comparison of independent transform-
ants. Homology-directed repair has been demonstrated
several times, but usually with low efficiency (Zhao
et al., 2016; Cermaék et al., 2017; Hahn et al., 2018). In-
sertional variation in expression can also be mitigated,
at least in part, by ratiometric sensors. By expressing a
nonfunctional, or constitutively active, version of the
biosensor within the same transgene or cistron, ex-
pression of the transgene insertion site can be controlled
for and higher fidelity achieved (Wend et al., 2013; Liao
et al., 2015).

Another challenge across organisms is efficient as-
sembly of unwieldy multigenic constructs. Fortunately,
many new toolsets are available for the design and as-
sembly of large and difficult constructs. Several soft-
ware packages are available for the design and
modeling of polycistronic cassettes for biosensors and
other applications (Chen et al., 2012a; Hillson, 2014;
Harris et al., 2017; Choi et al., 2018; Misirli et al., 2018;
Shockley et al., 2018; Watanabe et al., 2018). Several
new plant-specific toolkits for assembling the designed
constructs have also been developed recently (Engler
et al., 2014; Beyer et al., 2015; Shih et al., 2016, Zhu
et al., 2017; Pollak et al., 2018).

One of the aspects of these tools that is most critical to
the field of biosensor development is the ability to share
and reproduce the design, parameterization, and mea-
surement of biosensors between groups and study sys-
tems. Common standards for the description of genetic
designs and models have been established (Hucka et al.,
2015; Martinez-Garcia et al.,, 2015; Cox et al., 2018),
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alongside tools for developing and parameterizing
(Harris et al., 2017; Zhang et al., 2017; Choi et al., 2018;
Shockley et al., 2018; Wandy et al., 2018; Watanabe et al.,
2018), as well as visualizing and communicating these
designs and models (Merchant et al., 2016; Cox et al,,
2017; Der et al., 2017; Medley et al.,, 2018). Laboratory
inventory management and electronic laboratory
notebook systems have also been developed to pro-
vide a higher degree of organization and reproduci-
bility in the wet lab (List et al., 2014, 2015; Barillari
et al., 2016; Craig et al., 2017; Klavins, 2017). The
ability of several of these tools to be operated in an
integrative notebook environment, containing inter-
leaved narrative with figures and code (possibly of
several languages), allows science to be communi-
cated seamlessly and reproducibly (Kluyver et al.,
2016; Allaire et al., 2018; Medley et al., 2018). In the
future, open sharing of transparent example note-
books documenting complete design-build-test-learn
workflows integrating these tools will be the norm.
Such examples will provide excellent training and
teaching tools, reducing burden, and establishing re-
producibility expectations for the field.

TEST

Biosensors have allowed plant biologists to visualize
and quantify developmental signals and signaling
machinery, as well as provided means to ask better
questions as to how development is controlled. To re-
alize our goal of understanding and re-engineering
development, we must pair biosensors with systems
biology to inform a predictive model of development.
Use of systems biology approaches and mathematical
modeling paired with transcriptional and translational
reporters, cell-type-specific promoters, and enhancers
have led to impressive breakthroughs (Vernoux et al.,
2011; Bargmann et al., 2013; Efroni et al., 2016; Je et al.,
2016; Sparks et al., 2016; de Luis Balaguer et al., 2017;
Wendrich et al.,, 2017; Drapek et al., 2018; Shibata et al.,
2018). For example, Shibata et al. used transcriptome
and chromatin immunoprecipitation data to develop a
gene regulatory network model controlling root hair
growth. This model identified both a key positive and
negative regulator of root hair growth that formed a
feedback loop. This model allowed the authors to
identify, and confirm experimentally, genetic manipu-
lations with strong effects on root hair growth. Indirect
biosensors paired with systems approaches have also
revealed fascinating dynamics of developmental sig-
naling that are still not completely understood, such as
oscillations in auxin response within the root meristem,
which determine the positions of future lateral roots
(Moreno-Risueno et al., 2010; Xuan et al., 2015, 2016;
Laskowski and Ten Tusscher, 2017). To track down the
unknowns of developmental dynamics will require a
better understanding of which signals indirect biosen-
sors are integrating, as well as development of new di-
rect biosensors, simultaneous measurement of multiple
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biosensors, and generation of dynamic omics datasets
paired with these sensors.

Recently, highly sensitive ratiometric sensors of the
auxin signaling network status were developed (Liao
etal., 2015) based on improved knowledge of specificity
within this network (Boer et al., 2014). These sensors
helped revealed new domains of auxin accumulation
that were previously predicted by models of auxin
transport and production (Scarpella et al., 2006;
Grieneisen et al., 2007; Robert et al., 2013). These models
were parameterized using translational fusion biosen-
sors, demonstrating the power of the application of
multiple biosensors, as the simultaneous measurement
of two species facilitates prediction of their dynamic
relationship. We highly anticipate proposed future
work combining these two high-sensitivity ratiometric
sensors (Liao et al., 2015), as well as the development of
a direct auxin biosensor (Vernoux and Robert, 2017).

A direct biosensor for gibberellin has recently
revealed a strong correlation between gibberellin and
cell elongation and helped to decipher the role of the
light-responsive  PHYTOCHROME INTERACTING
FACTORs in regulating gibberellin levels (Rizza et al.,
2017). Two indirect abscisic acid signaling biosensors
have also recently been developed (Wu et al., 2018).
These engineered abscisic acid-responsive promoters
complement the detection range of existing direct
abscisic acid biosensors (Jones et al., 2014; Waadt et al.,
2014). These reporters helped to solidify existing
knowledge of abscisic acid’s roles in the development of
lateral roots and stomata. They also revealed differen-
tial regulation depending on the sequence of the core
cis-regulatory element and cross-regulation of this
promoter by stem cell maintenance transcription fac-
tors in the stem cell niche. This important finding
highlights the importance and power of characterizing
promoter-based reporters thoroughly. In the future,
pairing direct and indirect biosensors to measure both
signaling inputs and transcriptional outputs may fa-
cilitate inference of the intervening network and ex-
amination of how these networks interact with cell fate
(Fig. 1).

Promoter-based indirect sensors have also been re-
cently used to examine the dynamic relationship be-
tween auxin and cytokinin in both barley (Hordeum
vulgare) and soybean (Glycine max; Fisher et al., 2018;
Kirschner et al., 2018). These reporters functioned as
expected in soybean; however, in barley, the auxin re-
porters DR5rev::GFP (Benkova et al., 2003) and DR5v2
(Liao et al., 2015) were poorly expressed and not auxin-
responsive (Kirschner et al., 2018). This interesting re-
sult compels further examination but may uncover
unique paths of evolutionary divergence in auxin sig-
naling components and root development. In soybean,
auxin and cytokinin signaling reporters were observed
simultaneously in premature root nodules (Fisher et al.,
2018). This revealed stark differences in the auxin/
cytokinin signaling ratio between premature vascular
and parenchyma cells of developing nodules. This pilot
study will, we hope, lead to better understanding of the
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complex roles hormones play in mediating symbioses
(Gamas et al., 2017; Betsuyaku et al., 2018; Kunkel and
Harper, 2018). Future work integrating multiple bio-
sensors for different developmental signals or different
elements within a signaling pathway will greatly im-
prove our understanding of the connectivity and tun-
ability of these signals and the developmental processes
they regulate. Integrating nutrient biosensors with de-
velopmental signaling will also be crucial to our ability
to engineer plants with low resource requirements
(Chen et al., 2012b; Upadhyay and Verma, 2015;
Okumoto and Versaw, 2017). Novel plant signaling
mechanisms are also being revealed by biosensors, such
as the recently uncovered Glu-triggered long-distance
calcium signaling after wounding (Toyota et al., 2018).

FRET-FLIM and FCS have also helped decipher com-
plex molecular interactions critical to development.
FRET-FLIM was recently used to reveal cell-type—specific
protein—protein interactions among the SHORTROOT,
SCARECROW, and JACKDAW transcription factors,
which regulate cell division and patterning in the root
(Long et al., 2017). FCS has also been used to track dif-
fusion and interaction of SHORTROOT and SCARE-
CROW (Clark et al., 2016). These studies clearly show
cell-type—specific variation in the composition, structure,
and activity of complexes of these transcription factors.
Future work employing these techniques to examine
dynamics of transcription factor complexes, as well
as hormone response complexes (Rios et al., 2017),
throughout development will provide a mechanistic
understanding of cell fate transitions.

MODEL

Measurements of signals alone are of limited use
without a predictive framework for linking develop-
mental signals and cell status to transcriptional and
phenotypic outcomes. Formulating our current under-
standing in the framework of a mathematical model
allows us to quantify the completeness of our under-
standing as the deviation between our model and ex-
perimental data. An accurate model and understanding
also facilitates rational engineering of plant develop-
ment (Guseman et al., 2015; Khakhar et al., 2018). If the
goal of our collective science is to generate the simplest
model that most completely predicts plant develop-
ment, then we must accept that our model is, by defi-
nition, incomplete. To achieve a maximally informative
yet simple model of development, we must carefully
design experiments to minimize the uncertainty in both
our model selection and parameterization (Smucker
et al., 2018). Several groups have developed frame-
works for computational design of the optimal set of
experiments to identify the mathematical relationship
among the signaling inputs, network status, and the
developmental outcome, i.e. model selection (Busetto
et al, 2013; Apri et al., 2014; Vanlier et al., 2014;
Minas et al., 2017; Rougny et al., 2018). Other statistical
frameworks aim to design optimal experiments for

889



Synthetic Biology in Plant Development

OUTSTANDING QUESTIONS

e How can we quantify the levels and dynamics of
diverse signals?

e How can signaling data be efficiently integrated
from across fields to generate unifying models
of development?

e  What tools and information are needed to re-
engineer or repurpose these signals for novel
ends?

determining parameter uncertainty in the chosen
model (Dehghannasiri et al.,, 2015; Fan et al.,, 2015;
Imani et al., 2018; Mohsenizadeh et al., 2018). For ex-
ample, Dehghannasiri et al. (2015) provides a method
for prioritizing future experiments based on existing
knowledge of a gene regulatory network and the de-
sired intervention in the network, where intervention in
this case is a therapy targeting a pathological network
state. Systems biology approaches including similar
frameworks have facilitated inference of networks and
logic in plant development (Astola et al., 2014; Fisher
and Sozzani, 2016; Ristova et al., 2016; de Luis Balaguer
etal., 2017; Minas et al., 2017; Shibata et al., 2018; Varala
et al., 2018). In addition to optimally improving our
knowledge of developmental networks, connecting
signaling network models with phenotypic outcome
models are of particular importance to the goal of engi-
neering plant development (Prusinkiewicz and Runions,
2012; O’Connor et al., 2014; Landrein et al., 2015; Mellor
et al., 2017; Schnepf et al., 2018). One effort critical to the
success of systems and synthetic biology in deciphering
development will be the continued collaboration among
and integration of statistical modeling, optimal experi-
mental design, and dynamic, multivariate molecular
genetics techniques.

LEARN

Synthetic biologists” goals for understanding plant
developmental biology are within reach. Mathematical
models that integrate cell state data from systems
approaches with dynamic signal data from biosensors
will greatly support efforts to rationally engineer plant
form and function. Such models facilitate prioritization
and design of experiments to minimize model pa-
rameters and improve the certainty of remaining
parameters. Implementing statistical tools to design
optimal experiments to improve certainty in model
selection and parameterization will allow new ques-
tions to be addressed efficiently in the context of exist-
ing knowledge.

Transdisciplinary approaches combining synthetic,
systems, and computational biology are making it in-
creasingly straightforward to quantify the dynamic
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behavior of signals we already know are important (the
“known unknowns”) and find new signals and circuits
(the “unknown unknowns”). This knowledge will be
invaluable in guiding rapid improvements in the
quality and quantity of the foods, fuels, fibers, and
pharmaceuticals that can be produced by the next
generation of crops.
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