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Abstract

Summary: CharGer (Characterization of Germline variants) is a software tool for interpreting and

predicting clinical pathogenicity of germline variants. CharGer gathers evidence from databases

and annotations, provided by local tools and files or via ReST APIs, and classifies variants accord-

ing to ACMG guidelines for assessing variant pathogenicity. User-designed pathogenicity criteria

can be incorporated into CharGer’s flexible framework, thereby allowing users to create a custom-

ized classification protocol.

Availability and implementation: Source code is freely available at https://github.com/ding-lab/

CharGer and is distributed under the GNU GPL-v3.0 license. Software is also distributed through

the Python Package Index (PyPI) repository. CharGer is implemented in Python 2.7 and is sup-

ported on Unix-based operating systems.

Contact: dr.adamscott@gmail.com or lding@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As genomic sequencing becomes increasingly important in research

and translational medicine, obtaining clinical interpretation of variant

predisposition for inherited disease phenotypes is critical. Currently,

the prediction of variant pathogenicity is not standardized, and differ-

ent clinical testing labs often produce conflicting results. For example,

manual examination of 239 variants extracted from 1,000 exomes

that were marked as pathogenic by the Human Gene Mutation

Database (HGMD) revealed that a mere 7.5% were correctly classi-

fied as pathogenic according to literature sources (Dorschner et al.,

2013). Recently, the American College of Medical Genetics and

Genomics (ACMG) provided updated standards and guidelines by

which to interpret germline variants (Richards et al., 2015).

There have been several efforts to develop automated variant in-

terpretation tools. For example, one group created a browser-based

ACMG variant classifier in which the ACMG criteria can be

selectively applied (Kleinberger et al., 2016). Another group devel-

oped InterVar (Li and Wang, 2017), a tool that automates the initial

variant interpretation but then relies on a manual review step to ad-

just the classification criteria based on prior information or domain

knowledge before arriving at a final interpretation. Another group

extended ACMG’s 33 rules with 108 refinements, including semi-

qualitative aspects in classification, into a framework called Sherloc

(Nykamp et al., 2017). However, its source code is not publicly avail-

able. The aim of this work is to provide an open-source framework

for conducting a fully automated, systematic interpretation of germ-

line variants based on ACMG guidelines and user-designed pathogen-

icity algorithms for customizing predictions for all inherited diseases.

CharGer (Characterization of Germline variants) provides a soft-

ware implementation of the ACMG guidelines, with several unique

modules not explicitly outlined by the ACMG, and a scoring system

for predicting pathogenicity of germline variants in a fully
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automated way. It includes 16 scoring modules of evidence, consist-

ing of 10 ACMG modules (8 pathogenic and 2 benign) and 6 custom

modules (4 pathogenic and 2 benign). CharGer can generate variant

pathogenicity classifications using two independent methods: one

implements the original ACMG scoring system and the other

extends the ACMG system to include custom modules and a user-

adjustable scoring system as described below.

2 Materials and methods

CharGer implements the ACMG guidelines for variant classification

by sequentially performing annotation, scoring and classification

(Fig. 1). A variant file in VCF or MAF format is the minimum input

requirement. Examples of optional input files include lists of inher-

ited genes, genes supporting pathogenicity/benignity, and de novo

variants. Tailoring these additional inputs to the disease of interest

allows users to increase the fidelity of the variant classifications.

Variant annotations from Ensembl’s Variant Effect Predictor

(VEP) (v81 or later) may be supplied within the input VCF file;

otherwise they will be generated automatically by CharGer via a

local installation of VEP and associated databases or via web acces-

sions using the VEP ReST API (McLaren et al., 2016). ExAC popu-

lation frequency annotations (Lek et al., 2016) can also be added by

CharGer if not already provided by pre-annotation with VEP. To

perform annotation using a snapshot of the ClinVar database, users

can provide a single-allele version of TSV-formatted ClinVar, which

provides consistent variants and annotations across the VCF, TXT,

and XML versions of NCBI’s ClinVar downloads (Zhang et al.,

2017). To check if variants are near mutation hotspots, CharGer

can parse results from somatic mutation clusters produced by

HotSpot3D (Niu et al., 2016).

CharGer operates by mapping ACMG modules to their corre-

sponding ACMG tier (strong, moderate, etc.). In the ACMG algo-

rithm, the modules that a variant satisfies are aggregated to produce

a prediction of pathogenicity (Richards et al., 2015). At present (ver-

sion 0.5.2), there are 16 total modules available for analyzing each

variant (Supplementary Table S1). Depending on usage case, certain

modules may be excluded from running (de novo vs. cohort).

CharGer’s classification system is flexible by allowing users to

assign custom scores for modules and classification thresholds con-

veniently using command line options. The utility of the customiz-

able scoring system can be demonstrated in cases where a disease

presents with stronger indicators for particular modules compared

to the default. Classification using the ACMG guideline, together

with the customized system and ClinVar annotations, population

frequency, VEP annotations, and module summaries, for each vari-

ant are recorded in an output file for downstream user analysis.

3 Results

We applied CharGer to classify 883 pediatric cancer germline variants

(Supplementary Table S2) across 1120 pediatric cancer cases from the

Pediatric Cancer Germline Project (PCGP) to obtain sensitivity and

specificity estimates according to a ground truth set provided by a

panel of clinical geneticists (Zhang et al., 2015). For the purpose of

this analysis of cancer predisposition, we supplied additional input

files to CharGer as follows: 152 cancer predisposition genes (Huang

et al., 2018), 1819 cancer predisposition variants as curated by the

TCGA PanCanAtlas Germline Analysis Working Group (Huang

et al., 2018), and 17, 555 somatic mutation clusters computed from

the TCGA MC3 MAF (Ellrott et al., 2018) using HotSpot3D (ver.

1.1.4, with the default settings except 10 Å cutoff and 20 Å maximum

radius). We also used a tab-delimited ClinVar flat file (accessed 30

October 2017 from github.com/macarthur-lab/clinvar) and annotated

using a local instance of VEP v76 with reference build GRCh37.

By grouping pathogenic and likely pathogenic variants (where the

latter are called “probably pathogenic” in PCGP’s classification

terms) vs. all other variants, the ACMG and CharGer custom algo-

rithms identified, respectively, 80 and 97 out of 127 panel-determined

pathogenic and likely pathogenic variants, and both algorithms classi-

fied 21 out of 756 PCGP panel-determined non-pathogenic variants

as pathogenic or likely pathogenic (15 of which are labeled as having

uncertain significance). These results translate to a sensitivity of 63%

for ACMG guidelines and 76% for CharGer’s custom algorithm and

a false-positive rate of 2.8% for both, demonstrating that CharGer’s

automated classification can effectively prioritize variants for investi-

gation (Supplementary Fig. S1).
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Fig. 1. CharGer workflow. Given an input variant file (and other optional inputs), CharGer performs variant annotation and then scores annotated variants accord-

ing to matching ACMG and custom modules. Module scores are then processed through ACMG’s and CharGer’s classification algorithms to produce pathogen-

icity classification of variants
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