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Abstract

Motivation: Peptides crosslinked with cleavable chemical crosslinkers are identified with mass

spectrometry by independent database search of spectra associated with the two linked peptides.

A major challenge is to combine together the evidence of the two peptides into an overall assess-

ment of the two-peptide crosslink.

Results: Here, we describe software that models crosslink specific information to automatically

validate XL-MS cleavable peptide crosslinks. Using a dataset of crosslinked protein mixtures, we

demonstrate that it computes accurate and highly discriminating probabilities, enabling as many

as 75% more identifications than was previously possible using only search scores and a predict-

able false discovery rate.

Availability and implementation: XLinkProphet software is freely available on the web at http://bru

celab.gs.washington.edu.

Contact: jimbruce@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Crosslinking in conjunction with mass spectrometry (XL-MS) has

been used to establish distance constraints on protein residues, and

thereby provide structural information for proteins and multi-

protein complexes (Holding, 2015; Leitner et al., 2016). Cleavable

crosslinkers such as BDP (Zhang et al., 2009), DSSO (Kao et al.,

2011) and others (Kandur et al., 2015) are particularly useful for

detecting protein interactions in situ in biological contexts such as

tissue culture cells and tissues. Crosslinking studies of cells in pheno-

typic comparisons (Chavez et al., 2015), in response to drug treat-

ment (Chavez et al., 2016), or other perturbations can provide

unique insights into how protein interactions and conformations

change over time, increasing understanding at the systems structural

biology level. Identification of crosslinked peptides by XL-MS is

simplified by the use of cleavable crosslinkers since each peptide of

the crosslinked pair can be identified independently during database

search. In contrast, the use of non-cleavable crosslinkers requires a

database search of all peptide pairs which becomes impractical if

not impossible, with large numbers of proteins.

Several workflows have been described for using cleavable cross-

linkers in conjunction with XL-MS, and most require customized

data analysis (Gotze et al., 2015; Holding, 2015; Liu et al., 2017).

In contrast, MS3 spectra generated through ReACT (Weisbrod

et al., 2013) and MS2 spectra subjected to Mango (Mohr et al.,

2018), can be analyzed with any traditional search engine such as

Comet (Eng et al., 2013) to identify the released crosslinked pepti-

des. Nevertheless, it has been a challenge to combine together the in-

dependent evidence of the two peptides into an overall assessment of

the two-peptide crosslink. Traditionally this has been done in a con-

servative manner by using the worse search engine score assigned to

either of the two linked peptides, as was initially proposed in the

context of non-cleavable crosslinkers (Trnka et al., 2014), despite

not taking any additional crosslink specific information into consid-

eration. Here, we present the XLinkProphet software that models

several types of crosslink information, including the joint probabil-

ities that both crosslinked peptides are correct search results, to

compute accurate and discriminating probabilities that the cross-

linked peptide pairs are correct identifications in the dataset.
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2 Materials and methods

XLinkProphet can be applied to any cleavable crosslink XL-MS

data with database search results validated by PeptideProphet

(Keller et al., 2002), and a file indicating which pairs of spectra ori-

ginated from the same crosslink and the crosslink parent mass and

charge. With that information on hand, XLinkProphet models seven

pieces of discriminating information that relate to each crosslinked

peptide pair (Supplementary Material). Learning model distribu-

tions from the data by Expectation-Maximization (Dempster,

1977), it computes probabilities that each crosslinked peptide pair is

a correct identification. Proteins corresponding to the two cross-

linked peptides are prioritized based on ProteinProphet (Nesvizhskii

et al., 2003) analysis of the input search results, giving preference

when possible, for two identical proteins corresponding to an intra-

protein crosslink. XLinkProphet also combines probabilities of mul-

tiple identifications of the same crosslink (unique peptide sequences

and crosslink positions) in the data to a probability at the non-

redundant crosslink level, corresponding to the likelihood that at

least one observed instance is correct.

In order to evaluate XLinkProphet, we created a test dataset

from samples of nine commercially available protein mixtures which

were independently crosslinked with BDP-NHP (Weisbrod et al.,

2013) and initially subjected to shotgun analysis to identify their

protein contents. In total 65 proteins were identified with a

ProteinProphet probability of 1 in the acquired data (Supplementary

Table S1). The nine samples were independently subjected to

ReACT and Mango XL-MS analysis. The spectra obtained, MS3 for

ReACT and MS2 for Mango analysis, were searched with Comet

using a Fasta database with sequences of the 65 standard proteins,

4185 B. subtilis proteins and equal numbers of reverse decoys.

Crosslinks between two standard proteins identified by shotgun ana-

lysis in that sample were classified as true positives, whereas those

between one or more B. subtilis proteins, or with a standard protein

not in that sample, were classified as false positives (Supplementary

Material).

3 Results

Database search results of ReACT and Mango spectra were vali-

dated with PeptideProphet followed by iProphet (Shteynberg et al.,

2011). XLinkProphet was then run on the iProphet results, assigning

probabilities that each identified crosslink is correct (Supplementary

Table S2). Figure 1A illustrates that 589 crosslinks were identified

with ReACT at 1% actual FDR using XLinkProphet probabilities to

filter the data, 26% more than the 468 obtained using the tradition-

al filter employing the greater (worse) of the two peptides’ Comet

expect scores. Similarly, 903 crosslinks were identified with Mango

at 1% FDR using the computed probabilities, 75% more than the

516 obtained using the maximum expect score. Supplementary

Figure S1 shows a ROC plot demonstrating improved sensitivity

over a wide range of FDR values using probabilities to filter the data

rather than Comet expect scores. Good agreement was observed be-

tween the actual and modeled distributions learned from the data

(Supplementary Table S3). It is evident that the models discriminate

well between correct and incorrect results, particularly the ‘joint

score’ (joint PeptideProphet or iProphet probability that both pepti-

des are correct search results), ‘intra-link’ (whether non-identical

peptides corresponding to the same protein were assigned to both

ends of the crosslinker) and ‘nsx’ (the number of other confident

crosslinks between the same two proteins) distributions.

XLinkProphet probabilities of both the ReACT and Mango

results are close to their actual values, as determined by numbers of

classified true and false positives, enabling accurate predictions of

FDR based on the probabilities (Supplementary Figure S2). The

ReACT and Mango results were combined together with iProphet,

and their non-redundant crosslinks uploaded at a predicted 1%

FDR to XLinkDB (Zheng et al., 2013), a publicly available web re-

source designed to integrate XL-MS data with databases of protein

structure. There the protein–protein interaction network can be

viewed and the crosslinks observed in the context of protein struc-

ture models. Figure 1B shows that 709 non-redundant crosslinks

involving 23 of the 65 standard proteins in the Fasta database were

identified, of which 65% were intra-protein. Identified intra-protein

crosslinks of 99%, in the contexts of protein structures, had lysine–

lysine Euclidean distances within the expected 35 Å (Navare et al.,

2015), compared with 80% of random inter-lysine distances in

those structures. Solvent accessible surface distance (SASD) has been

shown to better predict the consistency of structures with identified

crosslinks than Euclidean distance (Allen Bullock et al., 2016), and

whereas 79% of intra-protein crosslinked residues had SASD within

35 Å, only 40% of random lysine pairs did (Supplementary Figure

S3). Almost all of the identified inter-protein crosslinks are consist-

ent with known yeast, bovine, or human direct interactions. For ex-

ample, 181 identified inter-protein crosslinks involve histone protein

components of the nucleosome core that are known to interact with

one another in bovine or human cells (Miller and Costa, 2017), as

well as the interaction between high mobility group protein B1

(HMGB1) and histone H3 (Watson et al., 2014). Two crosslinks

spanned yeast ADH1 and ADH2, previously known to interact

(Gao et al., 2010). Finally, several inter-protein crosslinks were iden-

tified among bovine caseins a-S1, a-S2, b, and j. These proteins,

major components of milk, are known to aggregate and form

micelles under certain salt conditions (Phadungath, 2005), so likely

interacted to an extent in the a-casein and b-casein samples.

XLinkProphet was applied to a large crosslinked human tissue

culture dataset consisting of 99 raw files acquired with ReACT and

searched with Comet (Chavez et al., 2016). This resulted in the iden-

tification at 1% decoy estimated FDR of 27 456 crosslinks (includ-

ing redundancies), 12% more than the number identified sorting

and filtering data based on the maximum expect score. It was also

applied to published MS2 data acquired from HeLa lysate samples

treated with a different crosslinker, DSSO (Liu et al., 2017) and ana-

lyzed with Mango. This led to 3859 identified crosslinks at a decoy

estimated FDR of 1%, more than double the 1639 identified based

Fig. 1. (A) Number of crosslinks identified at 1% FDR in the ReACT and

Mango datasets when filtering by maximum Comet expect score versus

XLinkProphet probability. (B) Protein-protein interaction network showing

709 non-redundant crosslinks at predicted 1% FDR in the combined ReACT

and Mango datasets. Nodes indicate crosslink sites in proteins and are

grouped together by Uniprot ID (blue label). Edges correspond to crosslinks

and are colored based on known interactions, as indicated in the legend.

False positive protein PKSJ_BACSU is indicated as a green node
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on filtering with the maximum expect score (Supplementary

Material).

4 Conclusion

XLinkProphet enables robust validation of crosslinked peptides

identified in XL-MS employing cleavable chemical crosslinkers and

independent database search to assign sequences to the two released

peptides. Its computed probabilities are accurate and highly discrim-

inating, enabling greater numbers of identifications at a predicted

FDR when used to filter data relative to using search scores, particu-

larly with MS2-based methods like Mango. Since cleavable cross-

linkers and MS2-based methods are rapidly emerging as structural

proteomics tools in many labs, XLinkProphet can have widespread

utility within this community.
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