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Abstract

The digital world is generating data at a staggering and still increasing rate. While these ‘Big 

Data’ have unlocked novel opportunities to understand public health, they hold still greater 

potential for research and practice. This review explores several key issues arising around big data. 

First, we propose a taxonomy of sources of big data in order to clarify terminology and identify 

threads common across some subtypes of big data. Next, we consider common public health 

research and practice uses for big data, including surveillance, hypothesis-generating research, and 

causal inference, while exploring the role that machine learning may play in each use. We then 

consider the ethical implications of the big data revolution with particular emphasis on 

maintaining appropriate care for privacy in a world in which technology is rapidly changing social 

norms regarding the need for (and even the meaning of) privacy. Finally, we make suggestions 

regarding structuring teams and training to succeed in working with big data in research and 

practice.
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Introduction

As measurement techniques, data storage equipment, and the technical capacity to link 

disparate datasets develop, increasingly large volumes of information are available for public 

health research and decision-making.(11) Numerous authors have described and made 

predictions about the role of this ‘big data’ in health care, (13; 93) epidemiology,(59; 92) 

surveillance,(62; 113) and other aspects of population health management.(88; 95) This 

review first describes types of big data, then describes methods appropriate for core 

functions of public health: surveillance, hypothesis-generating discovery, and causal 

Corresponding Author: Stephen Mooney, Harborview Injury Prevention & Research Center, 401 Broadway, 4th Floor, Seattle, WA 
98122, smooney27@gmail.com, Phone: (206) 799 3977, Fax: (206) 744-9962 . 

HHS Public Access
Author manuscript
Annu Rev Public Health. Author manuscript; available in PMC 2019 April 01.

Published in final edited form as:
Annu Rev Public Health. 2018 April 01; 39: 95–112. doi:10.1146/annurev-publhealth-040617-014208.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inference, and finally addresses maintaining care for privacy and structuring teams and 

training to succeed in working with big data.

Taxonomy of Big Data in Public Health

Most big data used by public health researchers and practitioners fits one of five 

descriptions. Big public health datasets usually include one or more of a) measures of 

participant biology, as in genomic or metabolomic datasets, b) measures of participant 

context, as in geospatial analyses (84; 91), c) administratively collected medical record data 

that incorporates more participants than would be feasible in a study limited to primary data 

collection,(93; 104) d) participant measurements taken automatically at extremely frequent 

intervals as by a GPS device or FitBit,(39) or e) measures compiled from the ‘data effluent’ 

created by life in an electronic world, such as search term records,(67) social media 

postings,(7) or cell phone records.(1; 137)

While data collection from each of these sources leverages emerging technologies to collect 

larger volumes of data than was available prior to the technological development, each form 

of data has fundamentally different implications for public health research and practice, as 

noted in Table 1. ‘Wider’ datasets (i.e. datasets in category (a) or (b), measuring many 

potential relevant aspects of each subject at each measurement time) typically require 

reducing the number of dimensions in the dataset to a more interpretable number, either 

selecting specific variables of greater interest for further analysis (as in selecting candidate 

biomarkers from a metabolomics dataset or identifying ‘eigengenes’(3)) or by identifying 

variance patterns within these variables (as by a principal component analysis identifying 

patterns of gut bacteria). (125) By contrast, ‘taller’ datasets (i.e. categories (c) and (d)) may 

require more work to filter out irrelevant or low quality observations (e.g. health records of 

clinical visits unrelated to the hypothesis of interest) or to condense observations into a more 

tractable, yet information-rich summary.(37) Effluent data offers access to constructs that 

have heretofore been extremely difficult to measure directly, such as social network structure 

(1; 49) or racial animus.(89)

Each subtype of data poses unique challenges. Biological data is subject to lab effects 

(where one or more observations may be strongly affected by lab procedures hidden from 

the analyst) and geospatial data is subject to auto-correlation (wherein spatial units near each 

other tend to be more correlated), electronic health record data is subject to potentially large 

standardization and quality-related challenges. ‘Effluent data’, wherein a hypothesis test 

focuses on analyzing data not originally collected for research purposes, may require 

substantial attention to the way the data were initially collected (e.g. using 311 records for 

noise or graffiti complaints as a marker of neighborhood characteristics requires careful 

understanding of the factors leading residents to call 311, and whether these factors are 

demographically patterned).(139) Broadly, data collected automatically, as in personal 

monitoring and effluent data, are often of interest to behavioral researchers, but typically 

obscure intention, frustrating attempts at truly understanding behavior.

While this taxonomy is intended to categorize sources of big data, a given dataset may of 

course include more than one, as when a hospital’s data warehouse includes not only 
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electronic medical records of a given patient’s visits but also the results from sequencing her 

whole genome. Indeed, such merged datasets may be the key to identifying etiologic links 

that have heretofore perplexed researchers, such as gene-environment interactions.

Big Data Surveillance using Machine Learning

Public health surveillance systems monitor trends in disease incidence, health behaviors, and 

environmental conditions in order to allocate resources to maintain healthy populations.

(121) While some of the highest profile uses of big data for surveillance relate to effluent 

data (e.g. Google Flu Trends), all five categories of big data may contribute to informing 

authorities about the state of public health. However, the scale of these novel sources of data 

poses analytic challenges as well. Within the data science field, the “curse of 

dimensionality”(14) associated with wide datasets has been somewhat alleviated through the 

adoption of machine learning models, particularly in contexts where prediction or hypothesis 

generation rather than hypothesis-testing is the analytic goal. We review here some inroads 

machine learning has made in public health, with particular emphasis on surveillance, and 

provide a glossary of terminology as used in machine learning for public health researchers 

(Table 2).

Broadly, machine learning is an umbrella term for techniques that fit models algorithmically 

by adapting to patterns in data. These techniques can be classified as one of: a) supervised 

learning, b) unsupervised learning, and c) semi-supervised learning. Supervised learning is 

defined by identifying patterns that relate variables to measured outcomes and maximize 

accuracy when predicting those outcomes. For example, an automatically fitted regression 

model (including any form of generalized linear model) is a supervised learning technique. 

By contrast, unsupervised learning exploits innate properties of the input data set to detect 

trends and patterns without explicit designation of one column as the outcome of interest. 

For example, principal component analysis, which identifies underlying covariance 

structures in observed data, is unsupervised. Semi-supervised learning, a sort of hybrid, is 

used in contexts where prediction is a goal but the majority of data points are missing 

outcome information.(148) Semi-supervised and unsupervised methods are often used in the 

“data mining” phase as precursors to supervised approaches intended for prediction or more 

rigorous statistical analyses in a follow-up.

While machine learning has been more broadly adopted within data science, some public 

health researchers and practitioners have embraced machine learning as well. For example, 

unsupervised learning has been used for spatial and spatio-temporal profiling,(4; 134) 

outbreak detection and surveillance,(38; 146) identifying patient features associated with 

clinical outcomes (47; 142) and environmental monitoring.(26; 65) Semi-supervised variants 

of existing learning algorithms (Table 3) have been utilized to build an early warning system 

for adverse drug reactions from social media data, (145) detect falls from smartphone data 

(33) and identify outlier air pollutants, (18) among other applications. Supervised learning 

has been used to predict hospital readmission, (32; 44) tuberculosis transmission, (87) 

serious injuries in motor vehicle crashes (61) and Reddit users shifting towards suicidal 

ideation, (28) among many other applications. Table 3 reviews some specific applications of 

machine learning techniques to address public health problems.
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Using Machine Learning for Hypothesis Generation from Big Data

Machine learning has also been used in big data settings for hypothesis generation. 

Algorithmic identification of the measures associated with an outcome of interest allows 

researchers to focus on independent validation and interpretation of these associations in 

subsequent studies. Techniques to identify subsets of more strongly associated covariates, 

referred to within machine learning as ‘feature selection’, can broadly be divided into three 

groups: wrapper methods, filter methods, and embedded methods. Wrapper methods involve 

fitting machine learning models (such as those used for prediction) on different subsets of 

variables. Based on differences in how well models fit when variables are included, a final 

set of variables can be selected as the most predictive. For example, the familiar stepwise 

regression technique is one such wrapper method.(30; 128) By contrast, filter methods 

leverage conventional measures such as correlation, mutual information, or P-values from 

statistical tests to filter out features of lower relevance. Filter methods are often favored over 

wrapper methods for their simplicity and lower computational costs.(24) Finally, embedded 

methods embed the variable selection step into the learning algorithm. Embedded methods 

such as least absolute shrinkage and selection operator (LASSO), (123) elastic nets (150) 

and regularized trees (29) have been used to select features for the prediction of “successful 

aging”, (54) flu trends (112) and lung cancer mortality, (63) among others. Scalable 

approaches to feature selection in extremely large feature spaces (“ultra-wide” data sets) 

constitute an active area of research.(119; 144)

Analysis of Big Data for Causation

Causal inference from observational data is notoriously challenging,(45) and yet remains a 

cornerstone of public health research, particularly epidemiology. Within the public health 

community, it is well known that the conditions under which an observed statistical 

association in observational data can be explained only as the effect of manipulating the 

exposure of interest cannot typically be ensured, regardless of the scale of data.(107) 

Moreover, confounding, selection bias, and measurement error, all common threats to valid 

causal inference, are independent of sample size. However, there are four key ways big data 

and the machine learning techniques developed in part to work with big data may improve 

causally-focused research.

First, novel sources of exposure data increase the availability of potential instrumental 

variables. In instrumental variable analyses, an upstream exposure that causes an outcome 

only by manipulating a downstream exposure of interest can be used to estimate the causal 

effect of the downstream exposure.(46) For example, it is plausible that changes to 

compulsory schooling laws change all-cause mortality only by affecting years of schooling 

completed.(79) Under this ‘instrumental variable assumption’, compulsory schooling laws 

can be used as an instrument to estimate the effect of education on all-cause mortality. 

Instrumental variables have been used extensively for Mendelian randomization studies (in 

which a genetic variant acts as the instrumental variable).(115; 131) Recent developments in 

analytic techniques combining estimates from using multiple genetic variants, which may be 

considered a form of meta-analysis, are a particularly intriguing use of big data.(19; 55) 

However, we caution that the instrumental variable assumption for any given instrument 
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variable must be considered carefully and the assumption requires specific background 

knowledge.(36) As such, proliferation of potential instruments is not in itself beneficial; it is 

only proliferation of valid instruments that can improve causal research.

Second, wider datasets with more measured covariates offer opportunities to use negative 

controls (76) more extensively to estimate the potential magnitude of residual confounding, 

measurement error, or selection bias.(8) For example, an analyst using electronic medical 

records to estimate the impact of BMI in early adulthood in relation to risk of adult onset 

diabetes might be concerned about confounding by socio-economic status (acting as a 

fundamental cause through health-orientation, health literacy, etc.(75)) and might control for 

the best available proxy measure of socio-economic status (e.g. median income in reported 

ZIP code). While this measure is likely imperfect and thus may leave residual confounding, 

she might take advantage of the breadth of outcomes available in electronic medical records 

that might act as negative controls by, for example, assessing whether BMI is associated 

with mammography screening after controlling for the socio-economic proxy. If an 

association exists before controlling for ZIP code median income but drops close to zero 

after controlling, the analyst may conclude that residual confounding due to error in her 

socio-economic status measure is unlikely to result in strong bias in her primary analysis 

because such error would need to be uncorrelated with screening status (though residual 

confounding can never be ruled out). The use of negative controls has been described 

extensively in the epidemiologic methods literature (76; 77) but remains relatively 

uncommon.

Third, the availability of more covariates may allow for more precise causal mediation 

estimates (130) allowing stronger “causal explanation” tests of hypotheses regarding health 

production.(42) For example, studies exploring residential proximity to fast food as a cause 

of obesity (e.g.(25)) typically hypothesize that the exposure (proximity) affects the outcome 

(obesity) as mediated by consuming fast food. Such a study could benefit from linked GPS-

based personal monitoring data that allow researchers to consider whether study subjects 

actually visited the fast food restaurants proximal to their residential location.

Finally, machine learning is increasingly being integrated into causal inference techniques, 

particularly in contexts where prediction or discovery is a component of an inferential 

process. For example, analysts using target maximum likelihood estimation (TMLE) to 

estimate causal treatment effects frequently use SuperLearner, an ‘ensemble’ supervised 

learning technique (i.e. one that combines estimates from multiple machine learning 

algorithms), as a portion of the targeting phase. In TMLE, the targeting step requires a 

predictive model incorporating information from covariates but imposes no functional form 

on that model; thus, tunable predictive models such as SuperLearner are ideal.(129) 

Similarly, methodologists have recently proposed techniques using machine learning to 

identify the strata in which a randomized intervention has the strongest effect. In this case, 

machine learning is being used for discovery, as an efficient search over set of potential 

groupings too large to test each one independently.(2; 132)
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Big Data and Privacy

The proliferation and availability of big data, especially effluent data, has already fostered 

privacy concerns among the general public, and these concerns are expected to grow and 

diversify.(86) With respect to public health research and practice, big data raises three key 

issues: 1) the risk of inadvertent disclosure of personally identifying information (e.g. by the 

use of online tools(10)), 2) the potential for increasing dimensionality of data to make it 

difficult to determine if a dataset is sufficiently de-identified to prevent ‘deductive 

disclosure’ of personally identifying information (Figure 1), 3) the challenge of identifying 

and maintaining standards of ethical research in the face of emerging technologies that may 

shift the generally accepted norms regarding privacy (e.g. GPS, drones, social media, etc.).

Although avoiding disclosure of study participants’ private information is a key principle of 

research ethics mandated in the United States by the Health Insurance Portability and 

Accountability Act (HIPAA),(69; 97) inadvertent disclosure of publically identifying 

information by health researchers has occurred repeatedly.(94) Indeed, inadvertent 

disclosure has become increasingly commonplace as increasing volumes of personally 

identifying data are stored in massive data warehouses. (81) While such disclosure can occur 

owing to malicious acts by malefactors, it may occur more frequently due to 

misunderstandings of well-meaning individuals.(94) For example, researchers may be 

unaware that using online geographic tools such as Google Maps to identify contextual 

features of subjects’ neighborhood constitutes a violation of typical terms of Institutional 

Review Board conditions.(10) Similarly, researchers who report pooled counts or allele 

frequencies in genome-wide association studies may inadvertently reveal the presence of an 

individual in that study sample to anyone who knows that person’s genotype.(20; 48)

Secondly, increasing columns of data may create a form of fingerprint such that subjects in 

de-identified datasets containing could be re-identified, a process known as deductive 

disclosure.(110; 126) Whereas institutional review board terms have conventionally treated 

the 18 columns of data specified by the HIPAA privacy rule to be the personally identifying 

ones (e.g. name, phone number), they often consider data derived from these identifying 

measures to connote anonymity (e.g. mean household income among census respondents 

living within a 1 km radius of the subject, or a specific variant of a given SNP taken from the 

whole exome dataset), formally, HIPAA specifies that data is considered identifiable if there 

is a way to identify an individual regardless of the columns included. Merged datasets 

containing many columns of big data from different domains that are themselves de-

identified may still combine to make subjects re-identifiable (e.g. neighborhood median 

income plus ARDB2 Gln27Glu variant may be sufficient to identify a subject who would not 

be identifiable through neighborhood median income or Gln27Glu variant alone). Figure 1 is 

a schematic representation of this deductive disclosure that may occur as a result of merging. 

Techniques to protect confidentiality in the face of data merges (see sidebar on Data 

Perturbation for one such example), may become a key component of future data sharing 

agreements, though such techniques induce precision costs.

Finally, in part because of changing technologies including social media, drone surveillance, 

and open data in general, some ethicists suggest accepted norms around privacy may change.
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(143; 149) Changing privacy norms have a long history: formal definitions of privacy have 

been inconsistent, from “the right to be left alone”(135) in 1890 to the late 1960’s idea that 

privacy amounted to control over the information one produces (138) to more recent notions 

defining non-intrusion, seclusion, limitation, and control as separate categories of privacy.

(120) A recurring theme in discussions of privacy, even prior to the big data era, is that the 

notion of ownership of information is problematic because nearly all data-producing actions, 

from clinical visits to social media postings to lab-based gene expression measurement, 

involve the work of more than one person, each of whom have created and therefore have 

some rights to the data.(85; 117) If anything, one constant theme regarding privacy is that no 

single clear definition suffices,(122) and we may expect the waters to get muddier as more 

people are involved in the data creation and collation process. For public health, there are no 

proscriptive answers; rather, we must follow and contribute to the societal discussion of 

privacy norms while remaining true to principles of using fair procedures to determine 

acceptable burdens imposed by our decisions.(58)

Big Data, Public Health Training, and Future Directions

The use of big data in public health research and practice calls for new skills to manage and 

analyze these data, though it does not remove the need for the skills traditionally considered 

part of public health training, such as statistical principles, communication, domain 

knowledge, and leadership.(124) However, the training and effort required to gain and 

maintain current knowledge of recent advances in algorithmic and statistical frameworks is 

non-trivial.

Two specific skills may become important to foster for all big data users. First, it may be 

important to develop the capacity to ‘think like a computer’ when working with data. For 

example, while it is comparatively easy for a person to guess that records showing a “Bob 

Smith” and “Robert Smirh” living at the same address probably represent the same person, it 

is a much more complex leap for a simple name-matching algorithm that naively compares 

one letter at a time, to recognize not only that Bob is a common nickname for Robert, but 

also that t and r look similar in some fonts and are next to each other on a keyboard. Such 

‘computational thinking’, wherein an analyst can recognize which problems pose greater 

algorithmic challenges, runs deeper than simply knowing how to program, run software, or 

build hardware, and has been suggested as a supplement to reading, writing, and arithmetic 

early in a child’s life.(141) But even public health trainees without childhood computational 

education may benefit from being able to “think like a computer” when faced with data sets 

that are time- and resource-intensive. We refer the reader to important reviews (41; 83) that 

have concretized the two core principles in computational thinking: abstraction and 

automation.

Second, quantitative bias analysis and related techniques will likely become a more 

important part of public health training, especially within epidemiology and biostatistics. As 

complex public health data sets become more integrated, more studies are expected to use 

secondary data. However, because systematic biases are harder to rule out in contexts where 

the investigator was not part of the data collection process, techniques that can explore the 

probability of incorrect inference under different assumptions of bias will be important to 
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retain confidence in substantive conclusions.(60) Similarly, decisions about choice and 

evaluation of methods often involve tradeoffs between correctness on specific data points 

and probabilistic notions of correctness on the whole data set, e.g. gene-specific vs. genome-

wide predictive models (106) and will require deep understanding of probability and 

statistics.

These two core skills are only a subset of the overall data science skills needed to work with 

public health big data, including an understanding of health informatics, data engineering, 

computational complexity, and adaptive learning. However, because these skills require 

substantial investment to master, we submit that training in more advanced data science 

techniques should be available but not required of public health students, analogous to other 

optional but important skills such as community-based health assessment.(74) This 

cultivation of specialized skills will necessitate diverse teams, a model already familiar to 

public health practitioners but less incorporated in training to date. Sidebar 5 summarizes 

how specialization in training has shaped bioinformatics education, which may provide a 

template for public health education. Numerous other perspectives on data science education 

may also be helpful.(40; 99)

As both specialized and generalized big data skills become more common in the public 

health workforce, these skills should be used to optimize data collection procedures. A 

biostatistician comfortable with real-time data processing may be more likely to push for 

data-adaptive trial protocols,(6) for example, or an informatics specialist with experience 

using natural language processing techniques to extract data from clinician notes might help 

a clinician understand how to frame her notes to be most efficient for clinical and research 

use. Epidemiologists comfortable with stepped wedge designs(118) may be more likely to 

suggest them to policy makers rolling out public health initiatives. Broadly, learning new 

ways to work with data effectively will and should shape not only which data we will choose 

to collect but also how we choose to collect it.

Limitations and open issues in the use of Machine Learning for Big Data 

Public Health

Appropriate use of both big data and machine learning rely on understanding several key 

limitations of each. First, we observe that machine learning’s capacity to overcome the curse 

of dimensionality requires tall data sets.(43) Small and/or biased training sets can lead to 

overfitting (Table 2) which limits the problems that current machine learning methods can 

address. Second, machine learning models are often described as “black boxes” whose 

opacity precludes interpretability or sanity-checking of key assumptions by non-experts.

(109) While recent work has partially addressed this limitation (Sidebar 4),the problem 

persists. Third, in some instances, observers assume that models that learn automatically 

from data are more objective therefore more accurate than human-constructed models. 

Although data-driven models frequently can predict outcomes better than theory-driven 

models, data-driven model building also involves subjective decisions, such as choice of 

training and evaluation data sets, choice of pre-processing criteria, and choice of learning 

algorithms and initial parameters. These decisions cumulatively result in biases and 
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prejudices that may be obscured from casual users.(17; 21) Fourth, data quantity often 

comes at the expense of quality. This is an issue for any big data analysis, but may be 

especially pernicious in the context of machine learning methods that use a test set to 

estimate prediction accuracy in the broader world. If data collection artifacts render training 

and test sets overly similar to each other but different from those of the data sets that the 

model would typically be applied to, overfitting may lead to unanticipatedly poor prediction 

accuracy in the real world.(15; 23) Finally, because big data studies often requires linking 

secondary-use data from heterogeneous sources, discrepancies between these data sources 

can induce biases, including demographically patterned bias (e.g. linking by name more 

frequently misses women who change surname after marriage.(16))

Conclusions

As the big data revolution continues, public health research and practice must continue to 

incorporate novel data sources and emerging analytical techniques, while contributing to 

knowledge, infrastructure, methodologies, and retaining a commitment to the ethical use of 

data. We feel this is a time to be optimistic: all five sources of big data identified in this 

review hold considerable potential to answer previously unanswerable questions, perhaps 

especially with the use of modern machine learning techniques. Such successes may arrive 

more quickly and more rigorously to the extent that the public health community can 

embrace a specialized, team science model in training and practice.
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Sidebar 1. Measurement Error and Big Data

Although larger sample sizes afforded by big data reduce the probability of bias due to 

random error, bias due to measurement error is independent of sample size. (50; 56; 92) 

While some have argued the decrease in random error allows researchers to tolerate more 

measurement error,(88) this perspective implicitly assumes that hypothesis testing rather 

than estimation is an analyst’s goal, a perspective which has repeatedly been rejected 

within the public health literature.(35; 103) Indeed, measurement error may be more 
problematic in big data analyses,(64) because analysts working with secondary or 

administrative data may not have access to knowledge about potential data artifacts. For 

example, metabolomic datasets are vulnerable to measurement error related to timing of 

sample collection,(108; 111) but if the timing of sample collection was not included the 

dataset, an analyst will be unable to assess the potential impact of this error. Emerging 

machine learning techniques accounting for measurement error (known within that 

literature as ‘noisy labels’) may also be informative.(52; 53; 90; 96)

Sidebar 2. Data Perturbation

Data perturbation is a technique in which random noise is added to potentially identifying 

observed variables in order to prevent study participants from being identified while 

attempting to minimize information loss.(57) For example, a data perturbation algorithm 

might replace identifying information (e.g. birthdate) with values sampled from observed 

distribution of that variable. This idea has been developed extensively within the 

computer science data mining literature,(72; 78; 114) but relatively less explored within 

public health research to date (with some notable exceptions, including the National 

Health Interview Survey (80)).

Sidebar 3. Specialization in Bioinformatics Training

Bioinformatics curricula are typically framed to support three roles: (a) scientists, who 

use existing tools and domain expertise to develop and test hypotheses, (b) users, who 

consume information generated through bioinformatics research but typically do not 

apply the tools directly (e.g. genetic counselors, clinicians, etc.) (c) engineers, who 

develop novel bioinformatics tools to address problems that may or may not be specific 

to a domain.(136) Although many individuals act more than one of these roles at some 

point in an informatics career, identifying the core competencies of each role helps to 

frame the training need to specialize in each. For example, whereas engineers require 

strong algorithmic and programming skills, users need only a conceptual understanding 

of algorithms (but require much stronger interpretive and translational skills).

Sidebar 4. Interpretability of Machine Learning Models

While interpretability is not the primary goal of machine learning, some algorithms (e.g. 

decision trees) are inherently more interpretable than others. Broadly, interpretation of 

models is an area of active research, wherein one key idea involves the separation of the 

predictive model and the interpretation methodology itself. For instance, a naive approach 

involves the post hoc ranking of features based on empirical P-values calculated against a 

null distribution for each feature.(71) A modification of this involves ranking features in 
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terms of their actual values in situations where they can be interpreted as probabilities.

(102) More sophisticated approaches such as LIME (105) and Shap (82) provide general 

yet simple linear explanations of how features are weighted when a prediction is made, 

irrespective of the underlying model.

Sidebar 5. Future Directions in Machine Learning for Big Data in Public Health

There are three developments in machine learning that may be of interest to public health 

researchers and practitioners. First, machine learning has recently begun to formally 

confront outcome measurement error, (52; 53; 90; 96) particularly for datasets with a 

low-sensitivity outcome measure.(22; 98; 147) Second, several machine learning 

approaches designed for real-time prediction learn through a penalty-reward system 

based on feedback on its predictions rather than by fitting a model to a previously 

collected dataset.(140) This class of approaches, known as reinforcement learning, could 

be used in online data collection tools and surveillance. Finally, ‘deep learning’ 

approaches, which use large volumes of data and computational power to identify 

common but abstract components for automated classification (without the need for 

human guidance), have been used extensively in image classification and natural 

language processing.(68) It is expected that they will gain increased application to health 

data in the future as computational costs decrease.(66)
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Figure 1. 
A schematic illustration of deductive disclosure: merging two datasets that are each 

successfully anonymized may result in a dataset in which subjects can be personally 

identified.
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Table 1:

Types of Big Data for Public Health

Source Examples Aspect of bigness
1 Key technical issues Typical uses

-omic/biological Whole exome profiling, 
metabolomics

Wide Lab effects, informatics pipeline Etiologic research, screening

Geospatial Neighborhood characteristics Wide Spatial autocorrelation Etiologic research, surveillance

Electronic health records Records of all patients with 
hypertension

Tall, often also 
Wide

Data cleaning, natural language Clinical research, surveillance

Personal monitoring Daily GPS records, Fitbit 
readings

Tall Redundancy, inferring intentions Etiologic research, potentially 
clinical decision-making

Effluent data Google Search Results, 
Reddit

Tall Selection biases, natural 
language

Surveillance, screening, 
identifying hidden social 
networks.

1
‘Wide’ datasets have many columns; ‘tall’ datasets have many rows.
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Table 2.

A glossary of terms used in data science and machine learning for public health researchers and practitioners

Data Science Term Related Public Health Research Term or Concept

Accuracy Proportion of results correctly classified (i.e. (true positives plus true negatives) divided by total number of results 
predicted)

Data mining Exploratory analysis

Ensemble learning A machine learning approach involving training multiple models on data subsets and combining results from 
these models when predicting for unobserved inputs

Features Measurements recorded for each observation (e.g. participant age, sex, and BMI are each features)

Label Observed or computed value of an outcome or other variable of interest

Labeling The process of setting a label for a variable, as opposed to leaving the variable’s value unknown

Learning algorithm The set of steps used to train a model automatically from a data set (not to be confused with the model itself, e.g. 
there are many algorithms to train a neural network, each with different bounds on time, memory and accuracy).

Natural language Working with words as data, as in qualitative or mixed-methods research (generally, human-readable but not 
readily machine-readable)

Noisy labels Measurement error

Out-of-sample Applying a model fitted to one dataset to make predictions in another

Overfitting Fitting a model to random noise or error instead of the actual relationship (either due to having a small number of 
observations or a large number of parameters relative to the number of observations)

Pipeline (From bioinformatics) The ordered set of tools applied to a dataset to move it from its raw state to a final 
interpretable analytic result

Precision Positive predictive value

Recall Sensitivity

Semi-supervised learning An analytic technique used to fit predictive models to data where many observations are missing outcome data.

Small-n, large-p A wide but short dataset: n = number of observations, p= number of variables for each observation

Supervised learning An analytic technique in which patterns in covariates that are correlated with observed outcomes are exploited to 
predict outcomes in a data set or sets in which the correlates were observed but the outcome was unobserved. For 
example, linear regression and logistic regression are both supervised learning techniques.

Test dataset A subset of a more complete dataset used to test empirical performance of an algorithm trained on a training 
dataset

Training Fitting a model

Training dataset A subset of a more complete dataset used to train a model whose empirical performance can be tested on a test 
dataset

Unsupervised learning An analytic technique in which data is automatically explored to identify patterns, without reference to outcome 
information. Latent class analysis (when used without covariates) and k-means clustering are unsupervised 
learning techniques.
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Table 3:

Selected machine learning approaches that have been applied to big data in public health

Approach Learning type Usage Examples

K-means clustering Unsupervised Hot spot detection(5)

Retrospective Event Detection Unsupervised Case ascertainment(34)

Content Analysis Unsupervised Public health surveillance(38)

K-nearest neighbors clustering Supervised Spatio-temporal hot spot detection;(133) Clinical outcomes from genetic data; falls from 
wearable sensors

Naïve Bayes Supervised Acute gastrointestional syndrome surveillance; (51)

Neural Networks Supervised Identifying microcalcification clusters in digital mammograms;(100) predicting mortality 
in head trauma patients;(31) predicting influenza vaccination outcome(127)

Support Vector Machines Supervised Diagnosis of diabetes mellitus; (12) detection of depression through Twitter posts(27)

Decision trees Supervised Identifying infants at high risk for serious bacterial infections;(9) comparing cost-
effectiveness of different influenza treatments;(116) and physical activity from wearable 
sensors(101)
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