Skip to main content
. Author manuscript; available in PMC: 2019 Feb 28.
Published in final edited form as: IEEE Trans Med Imaging. 2015 Oct 14;35(2):685–698. doi: 10.1109/TMI.2015.2490658
  1. Set k = 0. Initialize ĉi(0)(x),L^i(0)(y).

  2. Update p^j(k)(y,E) according to f^j(k)(y,E)=I0j(y,E)exp[i=12L^i(k)(y)μi(E)],p^j(k)(y,E)=dj(y)f^j(k)(y,E)Ef^j(k)(y,E).

  3. Update L^i(k+1)(y) using Newton’s method.
    1. Set m = 0. Let L^i_NEWTON(m=0)(y)=L^i(k)(y).
    2. L^i_NEWTON(m+1)(y)=L^i_NEWTON(m)(y)[2(y)]1(y), where ∇2(y), ∇(y) are evaluated at L^i_NEWTON(m)(y).
    3. Iterate until convergence to obtain nonnegative L^i(k+1)(y)=max (0,L^i_NEWTON(m+1)(y)).
  4. Update ĉi(k+1)(x) using the ID algorithm.
    1. Set n = 0. Let ĉi_ID(n=0)(x)=ĉi(k)(x).
    2. ĉi_ID(n+1)(x)=ĉi_ID(n)(x)yh(y,x)yh(y,x)L^i(k+1)(y)xh(y,x)ĉi_ID(n)(x).
    3. Iterate until convergence, ĉi(k+1)(x)=ĉi_ID(n+1)(x).
  5. Iterate B through D until convergence.