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Abstract
Introduction  Matrix-assisted laser desorption/ionization−imaging mass spectrometry (MALDI−IMS) is a powerful approach 
for visualizing the localization of metabolites.
Objectives  A method to keep the shape of plant tissue needs to be developed for MALDI−IMS.
Methods  The method was developed using transfer tape and double-sided conductive tape.
Results  MALDI−IMS analysis using the developed method enabled to perform segmentation and correlation analysis of 
mass features.
Conclusion  This proof-of-concept study showed that rutin localizes in the epidermis, developing tissue, and protoxylem in 
Asparagus officinalis.

Keywords  Metabolomics · Imaging mass spectrometry · Liquid chromatography−tandem mass spectrometry · Specialized 
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1  Introduction

Specialized metabolites (previously called secondary metab-
olites) are significant natural products that are associated 
with certain species and accumulate in specific tissues and 
organs of plants. Previously, these metabolites were recog-
nized as the byproducts of primary metabolites and were 
considered irrelevant (Hartmann 2007). However, recent 
phytochemical genomics studies have shown that they have 
important biological functions (Field et al. 2006; Massalha 
et al. 2017; Tohge et al. 2018). Comparative analysis of tran-
scriptomics and metabolomics in transformants/mutants, 
which over-accumulate or lack certain metabolites by editing 

biosynthetic genes, can be used for identifying the functions 
of metabolites in plants (Nakabayashi et al. 2014). To iden-
tify biosynthetic genes responsible for specialized metabo-
lites, understanding the association of metabolite accumu-
lation with gene expression at certain parts is important 
(Saito 2013). However, this step for identifying the locali-
zation of the metabolites is time consuming. Therefore, new 
approaches need to be developed to reduce the time required.

Matrix-assisted laser desorption/ionization−imaging 
mass spectrometry (MALDI−IMS) is a powerful approach 
for visualizing the localization of metabolites and is used in 
sections of organisms (Dong et al. 2016; Fujimura and Miura 
2014; Lee et al. 2012; Sarabia et al. 2018; Sturtevant et al. 
2016). Recently, this approach has been applied to identify 
the localization of specialized metabolites in plants (Enom-
oto et al. 2018; Jarvis et al. 2017; Li et al. 2014; Shiono 
et al. 2017). One of the major challenges of MALDI−IMS 
is to keep plant tissue shapes during the preparation of 
sections. Plant tissues contain large amounts of water. A 
freeze-dried process is necessary to remove the water con-
tent from sections placed on glass slides. This process results 
in peeling the section from the slide using typical methods. 
Overcoming this problem may improve regional analysis via 
MALDI−IMS.
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In the present study, a method named NakaMi was devel-
oped for the preparation of plant sections. As a proof of con-
cept, this method was then applied to MALDI−IMS analysis 
on cross section in Asparagus officinalis (green asparagus), 
which is one of the staple crops in the world. A segmenta-
tion analysis showed that rutin (quercetin 3-O-rutinoside) 
localizes in the epidermis and developing stem tissue. Liq-
uid chromatography−tandem mass spectrometry (LC−MS/
MS) using the authentic standard compound supported the 
MALDI−IMS analysis result. The IMS analysis suggested 
that rutin accumulates in the protoxylem of Asparagus. A 
correlation analysis showed that the ion derived from rutin 
was correlated with the mass features of other metabolites.

2 � Materials and methods

2.1 � Chemicals

The chemicals used in this study are listed in Supplementary 
Table 1.

2.2 � Plant materials

Spears of Asparagus officinalis (green asparagus) were har-
vested at the end of April, 2018 from the Medicinal Plant 
Garden of Hoshi University, Japan.

2.3 � Preparing section

To prepare sections for MALDI−IMS analysis, a fresh 
Asparagus spear was transversely cut (for an approximate 
thickness of 10 mm) with a razor, then embedded with a rea-
gent (Surgipath FSC22: Leica Microsystems, Germany), and 
frozen in a − 75 °C acetone bath (Histo-Tek Pino: Sakura 
Finetek Japan Co., Ltd., Tokyo, Japan). The frozen sample 
block was placed on a cryostat specimen disk and was cut 
with the knife blade until the desired tissue surface appeared. 
Transfer tape (Adhesive Tape Windows, Leica Microsys-
tems, Germany) was placed on the face of the block to obtain 
sections (each with a thickness of 20 µm) in the CM3050S 
cryostat (Leica Microsystems, Germany). These sections 
were transferred to conductive Cu tape (double-sided, No. 
796) (TERAOKA SEISAKUSHO, Co. Ltd.) on a glass slide 
(ITO coating, Bruker Daltonik GmbH). The section on the 
glass slide was freeze-dried overnight at − 30 °C in the cry-
ostat. For light microscopy, the frozen sections were stained 
with 0.05% toluidine-blue O solution for 1 min and washed 
with distilled water. The micrographs were acquired with a 
BX51 microscope equipped with a digital camera (Olympus 
cellSens and DP26).

2.4 � MALDI−IMS analysis

A 2,5-dihydroxybenzoic acid (DHB) matrix solu-
tion (Supplementary Table 1) was sprayed on the pre-
pared section that was on the glass slide using Image-
Prep (Bruker Daltonik GmbH) running at the default 
parameters. The freeze-dried section with the matrix 
was analyzed in SolariX 7.0 T instrument (Bruker Dal-
tonik GmbH) for Fourier transform ion cyclotron reso-
nance−mass spectrometry. The MALDI parameters are as 
follows: geometry, MTP 384 ground steel; plate offset, 
100.0 V; deflector plate, 200.0 V; laser power, 50.0%; laser 
shots, 200; frequency, 2000 Hz; laser focus, small; ras-
ter width, 60 µm. The analytical conditions for the IMS 
analysis were identical to those for MALDI−MS analysis 
(Supplementary Methods).

The segmentation analysis was performed with the 
SCiLS Lab software (version 2019a). The mass features in 
the MALDI−IMS data (15,732 data points) were divided 
into seven groups by the bisecting k-means clustering 
(parameters: metric, Manhattan; minimal interval width, 
± 1.8111 mDa). The three groups of ions (purple for the 
ground tissue, yellow for the vascular bundles, and green 
for the epidermis and developing tissue) are listed in Sup-
plementary Data 1.

Pearson’s correlation analysis was performed using 
the SCiLS Lab. The ion at m/z 633.1425 observed as 
[M + Na]+ from rutin was calculated with 3,243 mass fea-
tures in half of the cross section (Supplementary Figure 1). 
A minimal interval width was set at ± 1.8111 mDa. Ions 
with correlation coefficient greater than 0.4 are listed in 
Supplementary Data 2.

3 � Results and discussion

To determine which matrix reagent is appropriate for 
detecting wide range of metabolites, we first performed 
the screening of matrix reagents in 36 metabolites that 
belongs to 12 metabolite types (alkaloid, anthocyanidin, 
anthocyanin, flavonoid aglycone, flavonoid glycoside, 
glucosinolate, lignan, phenolamide/hydroxycinnamic 
acid amide, phenylpropanoid/coumarin, saponin/glycoal-
kaloid aglycone, saponin/glycoalkaloid, and sulfur-con-
taining metabolite) using four matrix reagents, including 
α-cyano-4-hydroxycinnamic acid (CHCA), 1,5-diami-
nonaphthalene, DHB, and 3-hydroxypicolinic acid, via 
MALDI−MS analysis (Supplementary Methods and Sup-
plementary Table 2). Three compounds per metabolite 
type were selected, resulting in a total of 36 authentic 
standard compounds. The results suggest that CHCA and 
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DHB are appropriate for detecting metabolites at a high 
sensitivity in positive ion mode of MALDI−IMS analy-
sis. Notably, the signal intensities for DHB tended to be 
higher than those observed for CHCA. Negative ion mode 
that requires different parameters and reagents was out of 
scope in this study.

A method using transfer and conductive tape (termed the 
NakaMi method) was developed to keep the shape of the 
plant tissue on glass slides for MALDI−IMS analysis. All 
processes were performed in a chilled cryostat. The sec-
tion was placed on the conductive tape (marketed product, 
not for MALDI−IMS). Subsequently, the transfer tape was 
gently removed by hand (Fig. 1). The plant tissues were not 
removed from the conductive tape after spraying on the 
matrix reagent and MALDI−IMS analysis.

For the IMS analysis, DHB was selected to detect dif-
ferent types of metabolites in Asparagus officinalis (green 
asparagus). To understand the pattern of mass features of 
detected metabolites, the segmentation analysis was per-
formed using data from the cross section. The whole data 
comprised 15,732 data points; however, for data analysis, 
only half (7916 data points) were used for reducing the num-
ber of data points (Fig. 2). The colored map clearly showed 
that tissue-redundant metabolites existed in the section. The 
11,365 mass features in three of the seven groups (green, 
yellow, and purple) subjected to segmentation analysis are 
provided in Supplementary Data 1.

Rutin is a health-promoting specialized metabolite with 
antioxidant activity (Butelli et al. 2008; Tohge et al. 2015). 
This metabolite accumulates in the epidermis of plants, e.g., 
in the leaves of Zea mays (Korte et al. 2015). In Aspara-
gus, the localization of rutin has not been determined yet 
using MALDI−IMS. The IMS analysis showed that the ion 
at m/z 633.1425 was determined to be [M + Na]+ from rutin, 
which was distributed in the green group of the segmenta-
tion map. Light microscopy showed that the green represents 

the epidermis and developing stem tissue (Figs. 2 and 3a). 
To identify rutin, LC−MS/MS analysis was performed using 
the authentic standard compound (Supplementary Figure 2 
and Supplementary Methods), and it showed that the amount 
of rutin in the developing tissue and epidermis was more 
than that in the others’ part including the ground tissue and 
vascular bundles (Fig. 3b). In addition, the IMS analysis 
showed that rutin accumulates in the protoxylem (Fig. 4). 
Previous research identified the localization of flavonol 

Fig. 1   Procedure of preparing plant sections for MALDI−IMS in this 
study. A The transfer tape (pink) was put on top of the block of the 
embedding reagent with the plant sample in the chilled cryostat. B 

Sections were cut with the transfer tape. C The transfer tape was put 
on the conductive tape and dapped by finger. D The transfer tape was 
gently removed by hand

Fig. 2   Segmentation of detected mass features. Upper. The map high-
lighting the result in the segmentation analysis. All mass features 
were divided into seven colored groups (purple, red, orange, yellow, 
light green, blue, and green) in this case. Lower. Light microscopy 
in the sections stained using toluidine-blue O. dt developing tissue, e 
epidermis, gt ground tissue. Bar indicates 1 mm
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monoglycosides, including quercetin-3-O-β-glucoside, in 
xylem parenchyma cells (Kasuga et al. 2008).

The localization of rutin in the epidermis in this study 
is a rational finding. Surprisingly, rutin accumulated in the 
developing tissue that was not exposed to sunlight yet. The 
following hypotheses for the function of rutin in developing 
tissue are considered: (1) rutin may provide the young cells 
of the stem an instantaneous mitigation of the production of 
reactive oxygen species (ROS) against its unavoidable future 
exposure to sunlight, due to its further outgrowth, (2) rutin 
may mitigate the production of ROS in the developing tissue 
(Manzano et al. 2014), or (3) xylem parenchyma cells accu-
mulating rutin are differentiated in the developing tissue. 
To confirm these hypotheses, further studies need to be per-
formed. For instance, correlation analysis is a powerful tool 
to understand co-localized metabolites in the protoxylem. 
Data from the region of the ground tissue and vascular bun-
dles were used for the analysis (Supplementary Figure 1). 
This showed that the observed ion at m/z 633.1425 was cor-
related with 177 mass features (Pearson correlation coeffi-
cient PCC, ≥ 0.4) (Supplementary Data 2). The correlation 
coefficient of monoisotopic ion (m/z 633.1425) to its isotopic 
ion including 13C (m/z 634.1455) was 0.41. The IMS data 

included data points in which both the monoisotopic and iso-
topic ion were detected in higher signal intensity, and only 
monoisotopic ion was detected in lower signal intensity. The 
bias to detecting only the monoisotopic ion resulted in the 
lower value. Based on this result, the highly correlated ions 
with the ion at m/z 633.1425 can be candidates for chemical 
assignment in the future in another study.

Identification of the metabolites may help to understand 
the function of rutin in the protoxylem. Integrated metabo-
lomics with transcriptomics in the protoxylem can provide 
the associations of genes with rutin. The function of rutin 
may be predicted using annotations of genes associated with 
the metabolites. It is known that Asparagus is a transform-
able plant (Bytebier et al. 1987). Comparative analysis of the 
wild type gene and a transformant that lacks rutin can help 
directly understand its function.

The chemical diversity of the metabolome in the plant 
kingdom is vast. To probe the metabolome, polyhedral 
approaches are required. For example, some metabolites 
have been specifically detected via either MALDI−MS 
or electrospray ionization−MS (Nakabayashi et al. 2017). 
Additionally, analysis of these types of metabolites via 
IMS is becoming more common in the plant science field 
(Boughton et al. 2016; Etalo et al. 2015). The combination 
of both approaches is necessary for the comprehensive anal-
ysis of the localization of such metabolites.
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Fig. 3   Identifying the localization of rutin. A The localization of 
rutin was visualized with m/z 633.1425 ± 1.8111 as [M + Na]+ form 
on the cross section. Bar indicates 1 mm. B Comparing the relative 
signal intensity of rutin in liquid chromatography–tandem mass spec-
trometry. The signal intensity of rutin was divided with that of the 
internal standard lidocaine in each sample. Others include the vascu-
lar and ground tissues. Bar indicates standard deviation (n = 3)

Fig. 4   The localization of rutin in the protoxylem characterized by 
the IMS analysis. Upper. The localization of rutin with the ion m/z 
633.1425 ± 1.8111 as [M + Na]+. Lower. Light microscopy in the sec-
tions stained using toluidine-blue O. mx metaxylem, px protoxylem. 
Bar indicates 500 µm
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