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Abstract

Druglikeness is a useful concept for screening drug candidate compounds. We developed QEX, which is a new druglikeness
index specific to individual targets. QEX is an improvement of the quantitative estimate of druglikeness (QED) method, which
is a popular quantitative evaluation method of druglikeness proposed by Bickerton et al. QEX models the physicochemical
properties of compounds that act on each target protein based on the concept of QED modeling physicochemical properties
from information on US Food and Drug Administration-approved drugs. The result of the evaluation of PubChem assay data
revealed that QEX showed better performance than the original QED did (the area under the curve value of the receiver
operating characteristic curve improved by 0.069-0.236). We also present the c-Src inhibitor filtering results of the QEX
constructed using Src family kinase inhibitors as a case study. QEX distinguished the inhibitors and non-inhibitors better
than QED did. QEX works efficiently even when datasets of inactive compounds are unavailable. If both active and inactive
compounds are present, QEX can be used as an initial filter to enhance the screening ability of conventional ligand-based
virtual screenings.

Keywords Computational drug discovery - Druglikeness - Virtual screening - Quantitative estimate of druglikeness (QED) -
QEX
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EF Enrichment factor

QEPT Quantitative estimate of plant translocation
TP True positive

FP False positive

FN False negative

TN True negative

TPR True positive rate

FPR False positive rate

Introduction

Drug molecules are known to share similar physicochemical
properties. Molecules possessing these properties are called
druglike. Druglikeness is a useful and simple criterion to
screen potential drug molecules. The most popular method
for evaluating druglikeness is Lipinski’s rule (rule of five,
RO5) [1], a rule of thumb focusing on orally administered
drugs. The rule consists of criteria related to the following
four properties:

e The number of hydrogen bond acceptors (HBA) is no more
than 5.

e The number of hydrogen bond donors (HBD) is no more
than 5.

e The molecular weight (MW) is less than 500.

e The calculated value of the logarithm of the octanol-water
partition coefficient (CLogP) is less than 5.

Molecules that fulfill all the criteria are determined to
possess druglikeness. The outcome of Lipinski’s rule is basi-
cally binary, i.e., whether druglike or not, while the number
of fulfilled criteria can be used as a multistage evaluation
of druglikeness. In contrast, the quantitative estimate of
druglikeness (QED) [2] proposed by Bickerton et al. [3]
provides continuous scores of druglikeness. QED is based
on eight properties: HBA, HBD, MW (which also appear
in ROS5), LogP value estimated using the Ghose—Crippen
method [3] (ALogP), molecular polar surface area (PSA), as
well as numbers of rotatable bonds (ROTB), aromatic rings
(AROM), and structural alerts [4] (ALERTS). A QED score is
calculated using the geometric mean of desirability functions
[5], each of which corresponds to an individual property. The
functions are modeled as asymmetric sigmoidal functions
and fitted to the histogram of a corresponding physicochem-
ical property of the oral drug. Since each function is adjusted
to a maximum value of 1, the QED score is also between 0
and 1. Consequently, a higher QED score indicates the com-
pounds are more favorable as a drug.

After QED, Yusof and Segal [6] developed another quan-
titative estimation method called relative drug likelihood
(RDL). While the QED method is based on similarity to
known drugs, RDL focuses on differences between drug and
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non-drug compounds. The RDL score is calculated as the
geometric mean of relative likelihoods instead of the sim-
ple desirability functions. Therefore, the relative likelihood
is a ratio of the posterior probability of a compound being a
drug to that of not being one, which is derived from Bayes’
theorem.

The QED approach assesses the similarity of a sub-
stance to known US Food and Drug Administration (FDA)-
approved drugs, i.e., 771 drugs curated by its authors, which
constitute a heterogeneous mixture of drugs. Favorable prop-
erties for drugs depend on the characteristics of the target
protein. For instance, the MW of a drug is thought to be
affected not only by the constraint to maintain permeability
but also by the volume of the binding pocket. Indeed, distribu-
tions of QED scores of drugs vary depending on their targets
[2], suggesting that QED is not an optimal method for every
target and there is room for improvement of at least some tar-
gets. Therefore, we proposed a target-specific QED, named
QEX, which specifically screens drug candidates directed at
particular targets. Although RDL has been shown to apply to
specific objectives such as screening of orally administrated
G protein-coupled receptor (GPCR) inhibitors, a dataset of
inactive compounds required by modeling of RDL is not
necessarily available in other cases. In contrast, since QEX
and the original QED can be modeled with only the active
compound, it can be used even in cases lacking inactive com-
pounds. In this study, the effectiveness of QEX was examined
using several targets, in comparison with the original QED.

Results and discussion

QEX outperforms the original QED for individual
targets

The screening ability of QEX was examined by cross-
validating five targets. The benchmark screening scores of
QEX, the original QED, and Lipinski’s RO5 are shown in
Table la, b, and Table S1 in Supplementary Material 1,
respectively. The QEX performed better than the original
QED and ROS5 did in every case shown in Table 1 and Table
S1. As shown in Table S2 and Figure S1, ROS5 passed most
of the compounds, thus showing poor screening ability. The
result indicates that QEX has an advantage in being able to
screen active compounds for a specific target.

The properties that showed peaks of distribution are
shown in Table 2. Theoretically, they indicate the ideal
values of the ability of each physicochemical property to
inhibit a corresponding target, because compounds possess-
ing that property are the most frequent in datasets of known
inhibitors. Thus, these properties are assumed to reflect the
nature of the target protein, especially the inhibitor-binding
pocket. In addition, peak values of the original QED but not
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Table 1 Comparison of screening scores between QEX and the original quantitative estimate of druglikeness (QED). Benchmark results of screening
using (a) QEX models specialized for each of five targets and (b) original QED model

(a) QEX (proposed)

Target AUC EF EF EF EF EF EF
(1%) 2%) (5%) (10%) (20%) (50%)
Streptokinase 0.678 2.387 2.365 2477 2.230 1.991 1.489
PP1 0.668 3473 3.126 2.582 2.462 2.085 1.450
TIM10 0.744 3.196 2.975 2.754 2.533 2.302 1.696
SENP8 0.777 5.580 5.038 4.335 3.557 2.722 1.743
KCNK9 0.700 2.527 2.503 2.623 2.313 2.008 1.566
(b) Original QED
Target AUC EF EF EF EF EF EF
(1%) 2%) (5%) (10%) (20%) (50%)
Streptokinase 0.485 0.586 0.563 0.586 0.545 0.635 0.922
PP1 0.432 0.299 0.149 0.358 0.397 0.541 0.757
TIM10 0.599 0.952 0.850 0.959 0.976 1.080 1.279
SENPS8 0.708 3.251 3.211 2.770 2.124 1.640 1.631
KCNK9 0.497 0.381 0.381 0.610 0.649 0.722 0.957

PP1, protein phosphatase 1; TIM10, translocate of the inner mitochondrial membrane subunit 10; SENPS, sentrin-specific protease 8; KCNK9,
potassium two-pore domain channel subfamily K member 9; AUC, area under the curve; EF, enrichment factor

Table 2 Distribution peaks of each physicochemical property. Properties showing peaks of curve fitted to its distribution are shown for each QEX

model and the original quantitative estimate of druglikeness (QED)

Target MW ALogP HBD HBA PSA ROTB AROM ALERTS
Streptokinase ~ 367.0 427 0.62 4.78 715 3.73 2.8 —45
PP1 383.6 4.10 0.75 5.44 79.8 4.04 3.2 — 2362
TIM10 315.0 3.61 1.11 4.10 57.8 3.26 2.1 —24.6
SENPS 269.0 3.41 1.14 3.75 54.1 2.47 2.0 — 1179
KCNK9 375.6 4.53 0.90 4.40 54.8 4.93 2.9 — 1442
Original 305.0 2.70 1.19 2.38 57.3 3.03 1.8 —24.6
QED

PP1, protein phosphatase 1; TIM10, translocate of the inner mitochondrial membrane subunit 10; SENP8, sentrin-specific protease 8; KCNKO,
potassium two-pore domain channel subfamily K member 9; MW, molecular weight; ALogP, LogP value estimated using Ghose—Crippen method;
HBD, hydrogen bond donors; HBA, hydrogen bond acceptors; PSA, polar surface area; ROTB, rotatable bonds; AROM, aromatic rings; ALERTS,

structural alerts; QED, quantitative estimate of druglikeness

QEX are also supposed to reflect absorption, distribution,
metabolism, excretion, and toxicity (ADMET) because the
original QED is trained with FDA-approved oral drugs. For
instance, the peak value of LogP of the original QED model
is lower than that of any QEX model in Table 2, suggesting
that low lipophilicity and high hydrophilicity are important
for orally absorbed drugs. Then, it can be assumed that the
original QED and QEX have different roles in the process of
drug discovery.

An advantage of QEX is that its model is only trained with
a dataset of active compounds. In other words, QEX does
not require a dataset of inactive compounds, which are often
difficult to obtain in large numbers from public databases
[7, 8]. If the examples of inactive compounds provided are

insufficient, the performance of the machine learning classi-
fier would be worse. In that situation, QEX could be more
effective than the machine learning method is. Compared to
the original QED oriented to oral drugs, QEX is suitable for
screening lead compounds acting on a specific target.

Application to c-Src inhibitor screening

To further assess the QEX, we used it to screen for c-Src
inhibitors. c-Src is a tyrosine kinase, and many cellular pro-
cesses are driven by the activation and inactivation of protein
tyrosine kinases through phosphorylation. The interplay of
c-Src and other proteins has been widely studied, and its role
in pluripotent embryonic stem cells has also been reported
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[9]. Thus, inhibitors of c-Src have been identified using com-
putational and experimental techniques [10].

For the compound screening, a known inhibitor library
was obtained from Chiba et al. [11], and a QEX model
for c-Src was built using these inhibitors. Then, we applied
our QEX and the QED models to three popular c-Src
inhibitors, PP2, gefitinib, and sunitinib, and three non-
inhibitors, oseltamivir, aspirin, and arginine. The resulting
QEX and QED scores (Table 3) show that the QEX model
distinguished the inhibitors and non-inhibitors better than the
QED model did. In particular, the QEX model showed a low
score not only for arginine with its low druglikeness, but also
for oseltamivir and aspirin, which are not c-Src inhibitors.

Conclusions

QEX was better suited for screening inhibitors of specific
targets than the original QED. QEX is easy to use when
datasets of inactive compounds are not available. If both
active and inactive compounds are available, QEX can be
used as an initial filter to enhance conventional ligand-based
virtual screenings.

The concept of QEX could be expanded beyond deter-
mination of druglikeness. Indeed, Limmer and Burken [12]
developed desirability functions to describe chemical trans-
port across plant root—soil boundaries based on the concept
of QED, which are called the quantitative estimates of plant
translocation (QEPT) [12]. Thus, it is possible to target-
specific QEPT using numerous data entries, which could
contribute to phytoremediation efforts and herbicide design.
Finally, this topic is one of our proposed future studies.

Materials and methods
Calculation of QEX and original QED values

A QEX was calculated using a procedure that was basi-
cally identical to that of the original QED, except that the
QEX was modeled using compounds targeting a particu-
lar protein or protein family. The algorithm used is briefly
described below. In the initial modeling steps, each of the
eight physicochemical properties (MW, ALogP, HBD, HBA,
PSA, ROTB, AROM, and ALERTS) was computed from a
dataset of known active compounds using RDKit [13] version
2015.03.1. Then, a histogram of each property was con-
structed and was fitted to the asymmetric double sigmoidal
function Q(x) shown in Eq. (1) by implementing the Leven-
berg—Marquardt algorithm in SciPy [14].
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All the fitted functions (Qmw(x), QALogP(X),...)
were divided by the maximum values so as

to adjust the maximum divided function to 1.
The divided function Q;(x) ( € C, C =
{MW, ALogP, HBD, HBA, ROTB, AROM, ALERTS})
was used as the desirability function, and a QEX score was
assigned as the weighted geometric mean of all desirability
functions as shown in Eq. (2).

e Wi ln(Qo)

()
ZieC wi

QEX score = exp(

All the eight weights were exhaustively tried from O to 1
in increments of 0.25, and the mean of the 1000 weight com-
binations which provided the highest Shannon entropy was
adopted here. A Shannon entropy of a model was calculated
as shown in Eq. (3).

n
Entropy = — Z (QEX scorey) log, (QEX scorey) 3)
k=1

where n is the number of compounds used for modeling.

The original QED values in this study were also calcu-
lated using the same implementation used for the QEX but
were modeled using 771 FDA-approved drugs curated by
Bickerton et al. [2] (Supplementary Material 2).

Dataset

All assayed compound data for the five target proteins were
obtained from PubChem [15]. Table 4 shows each target
as well as the numbers of active (positive) and inactive
(negative) compounds. All compound structure data can be
downloaded in SDF (structure data file) format in Supple-
mentary material 3, 5, 7, 9, and 11. Their label information
is in Supplementary material 4, 6, 8, 10, and 12. Building
the QEX model only requires active compounds while inac-
tive compounds were used only for evaluating the prediction
performance of ROS, QED, and QEX.

Validation of druglikeness screening performance
The AUC of the ROC [16] and early EF [17] are considered

in evaluating screening performances, which are generally
used in virtual screening studies. In this study, we used a
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Tal?le 3 QEX, quqntitative Compound 2D structure Src QEX QED RO5
estimates of druglikeness inhibition score score score
(QED), and Lipinski’s rule of PP2 v 0.75 0.74 4
five (ROS) scores for c-Src
inhibitors and non-inhibitors
Gefitinib v 0.70 0.51 4
Sunitinib v 0.69 0.39 4
Oseltamivir fe) - 0.26 0.69 4
O,
/j/ . O/\
HN Y
NH
/&O 2
Aspirin o - 0.16 0.55 4
O)J\
O~ OH
Arginine NH, 0 - 0.05 0.23 4
PN
HoN N OH
NH,

Table 4 Dataset for evaluation of QEX performances. All compound data are available in Supplementary Materials

PubChem AID Target name Active (#) Inactive (#)
1915 Streptokinase 2220 1017
2358 PP1 1007 937
463215 TIM10 2941 1695
488912 SENPS 2491 3705
492992 KCKN9 2097 2820

PP1, protein phosphatase 1; TIM10, translocate of the inner mitochondrial membrane subunit 10; SENP8, sentrin-specific protease 8; KCNK9,

potassium two-pore domain channel subfamily K member 9

list of experimentally verified active and inactive compounds
(positive and negative samples, respectively). These posi-
tives and negatives were further categorized as true or false
according to their rank above or below a certain threshold
of the QEX and QED filtering results. Therefore, the actives
ranked above a chosen threshold were considered true posi-
tives. In contrast, ROS5 rankings are based on the number of
rules passed. To generate the ROC curve, the true positive
ratio (TPR=TP/(TP+FN)) and false positive ratio (FPR =

FP/(TN +FP)) were calculated, where TP, FP, FN, and TN
are the number of true positives, false positives, false nega-
tives, and true negatives, respectively. In the ROC curve, the
TPR was plotted as a function of the FPR. The AUC was then
calculated to assess the quantitative performance of different
QEX and QED models. An AUC of 0.5 corresponded to a
random selection of the compounds using the target.

The EF (x%) value indicates how much more often an
active compound is ranked in the top x% of a screening
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Fig. 1 Overview of dataset construction and cross-validation for evaluating Lipinski’s rule of five (ROS), quantitative estimate of druglikeness
(QED), and QEX models. FDA, US Food and Drug Administration; AUC, area under the curve; EF, enrichment factor

result than it is randomly selected, i.e., the times the dataset
is enriched. Specifically, the EF was calculated using Eq. (4):

x%
EF (x%) = ——2_ 4
(x%) N % 1% )
where ngf‘l’, is the number of experimentally verified actives

in the top x% of the database and N is the total number of
actives in the database. In this study, EF (1%), EF (2%), EF
(5%), EF (10%), EF (20%), and EF (50%) were calculated
from the top 1, 2, 5, 10, 20, and 50% of the screening results,
respectively.

Learning and evaluation of the QEX model function were
performed using 5-fold cross-validation. Specifically, the
active compounds were divided into five subsets, and the
parameters of the fitting functions were determined using
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four of the five subsets, and the AUC and EF of the remain-
ing subset were obtained. In addition, the QED model, which
was constructed in advance using 771 FDA-approved drugs,
was also applied to the same subset. The AUC and EF val-
ues shown in Table 1 were the average of five validations
obtained from five subsets. An overview of the dataset and
the validation method is shown in Fig. 1.

Application to c-Src inhibitor screening

Experimentally determined inhibitors of Src family kinases
were obtained to construct a Src-specific QEX model for
major c-Src inhibitors and irrelevant compounds, which was
then compared with the QED model. Inhibitors of Src fam-
ily kinases were published by Chiba et al. [11, 18] through
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Table 5 Src family proteins obtained from ChEMBL [20]

ChEMBL ID Target molecule
CHEMBLA4223 Tyrosine-protein kinase FRK
CHEMBL3234 Tyrosine-protein kinase HCK
CHEMBL3905 Tyrosine-protein kinase LYN
CHEMBL2250 Tyrosine-protein kinase BLK
CHEMBL258 Tyrosine-protein kinase LCK
CHEMBL4454 Tyrosine-protein kinase FGR
CHEMBL5703 Tyrosine-protein kinase SRMS
CHEMBL1841 Tyrosine-protein kinase FYN
CHEMBL267 Tyrosine-protein kinase SRC
CHEMBL2073 Tyrosine-protein kinase YES

the second computer-aided drug discovery contest of the
Initiative for Parallel Bioinformatics (IPAB) [19]. The tar-
get Src family consists of ten proteins shown in Table 5.
They were extracted using ChEMBL version 19 [21] and
BindingDB [22]. The extraction criteria were as follows:
half-maximal inhibitory concentration (IC5¢) < 10 pmol L™ L
K; <10 pwmol L', K; <10 pmol L™!, and inhibition
rates >30%, whereas the experimental conditions were not
considered. Finally, 3528 unique compounds were iden-
tified. They are available in Supplementary material 13
(Src_inhibitors.sdf) and can be obtained from the IPAB Web
site [19].
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