Cellular and Molecular Life Sciences (2019) 76:903-920
https://doi.org/10.1007/s00018-018-2971-0

Cellular and Molecular Life Sciences

REVIEW

@ CrossMark

H19X-encoded miR-424(322)/-503 cluster: emerging roles in cell
differentiation, proliferation, plasticity and metabolism

Fan Wang'? - Rui Liang? - Neha Tandon? - Elizabeth R. Matthews? - Shreesti Shrestha? - Jiao Yang'2 -

Benjamin Soibam?- Jin Yang' - Yu Liu?

Received: 15 September 2018 / Revised: 5 November 2018 / Accepted: 13 November 2018 / Published online: 24 November 2018

©The Author(s) 2018

Abstract

miR-424(322)/-503 are mammal-specific members of the extended miR-15/107 microRNA family. They form a co-expression
network with the imprinted IncRNA H19 in tetrapods. miR-424(322)/-503 regulate fundamental cellular processes includ-
ing cell cycle, epithelial-to-mesenchymal transition, hypoxia and other stress response. They control tissue differentiation
(cardiomyocyte, skeletal muscle, monocyte) and remodeling (mammary gland involution), and paradoxically participate
in tumor initiation and progression. Expression of miR-424(322)/-503 is governed by unique mechanisms involving sex
hormones. Here, we summarize current literature and provide a primer for future endeavors.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs 18-24
nucleotides (nt) in length that regulate posttranscrip-
tional gene expression [1]. miRNA genes are transcribed
by RNA polymerase II to produce pri-miRNA, which is
cleaved by Drosha to give rise to hairpin-structured pre-
miRNA, ~60-100 nt in length. Exportin transports pre-
miRNA into the cytoplasm, where it is processed by Dicer
to produce a~22 nt double-stranded intermediate compris-
ing the mature miRNA strand and its complementary strand.
The mature miRNA is loaded into the RNA-induced silenc-
ing complex (RISC) where it binds to the 3" UTR of tar-
get mRNAs by partial sequence complement in the “seed”
region, causing degradation of the mRNA transcript or inhi-
bition of its translation.
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The miR-15/107 family of microRNAs shares the “AGC
AGC” sequence within the “seed” region, starting at either
the first or the second nucleotide from the 5’ end [2]. They
are critical regulators of cell division, apoptosis, stress
response and metabolism, and involved in cancer, cardiovas-
cular and neurodegenerative disorders. miR-424 (ortholog
of rodent miR-322) and miR-503 are mammal-specific
members of the miR-15/107 family. They are encoded as
one cluster by H19X, located in human Xq26.3 [3]. Their
expression is more dynamic and tissue restrictive than other
miR-15/107 family members. miR-424(322)/-503 regulate
fundamental processes such as cell cycle, epithelial-to-mes-
enchymal transition and hypoxia, drive tissue differentia-
tion and remodeling, and paradoxically participate in tumor
initiation and progression. Here, we summarize a decade
of literature and provide a primer for future investigation
concerning miR-424(322)/-503.

miR-424(322)/-503 are unique members

of the miR-15/107 miRNA family

The miR-15/107 family of miRNAs

The miR-15/107 family includes ten miRNAs based on the

presence of “AGCAGC?” in the “seed” region situated at
positions 2—7 from the 5’ end of mature microRNAs [2].
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A hsa-miR-107 AGCAGCAUUGUACAGGGCUAUCA
hsa-miR-103a-3p AGCAGCAUUGUACAGGGCUAUGA
hsa-miR-15a-5p UAGCAGCACAUAAUGGUUUGUG
hsa-miR-15b-5p UAGCAGCACAUCAUGGUUUACA
hsa-miR-16-5p UAGCAGCACGUAAAUAUUGGCG
hsa-miR-195-5p UAGCAGCACAGAAAUAUUGGC
hsa-miR-497-5p CAGCAGCACACUGUGGUUUGU
hsa-miR-503-5p UAGCAGCGGGAACAGUUCUGCAG
hsa-miR-424-5p CAGCAGCAAUUCAUGUUUUGAA
hsa-miR-646 AAGCAGCUGCCUCUGAGGC
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«Fig.1 Members of the miR-15/107 microRNA family. a 10 micro-
RNAs sharing “AGCAGC” within the “seed” region. b A phyloge-
netic tree of miR-15/107 family members from Homo sapiens (hsa),
Monodelphis domestica (mdo), Macaca mulatta (mml), Mus mus-
culus (mmu), Ornithorhynchus anatinus (oan), Gallus gallus (gga)
and Xenopus tropicalis (xtr). miR-103 and -107 are the least closely
related, and omitted in the plot. miR-424(322) is most closely related
to miR-15¢ in mdo, oan, gga and xtr, while miR-503 is most closely
related to miR-16c in gga, oan and xtr

However, there is no consensus regarding the criteria of
miRNA family classification; distinct classifications were
proposed for these ten miRNAs [4-9]. We have adopted
the classification by Finnerty et al. [2], but this is likely
to change with new functional data accumulated and new
miRNAs identified (Fig. 1a).

miR-15/107 family members are only expressed in
chordates, with several being mammal specific (miR-195,
-497, -503, -424 and -646) [2]. Genes of miR-15/107 fam-
ily members are genomically associated with protein-cod-
ing genes or IncRNAs. They also show conserved tandem
organization: miR-15 with miR-16, miR-424(322) with
miR-503, and miR-497 with miR-195. To explore the
evolutionary relation of miR-424(322)/-503 to others, we
have updated a phylogenetic tree originally built by Necsu-
lea et al. [3], using “stem-loop” pre-miRNA sequences in
Homo sapiens, Monodelphis domestica, Macaca mulatta,
Mus musculus, Ornithorhynchus anatinus, Gallus gallus
and Xenopus tropicalis extracted from miRBase. miR-
424 (together with miR-322 and miR-15¢) and miR-503
(together with miR-16c¢) represent two distinct subfamilies
related to miR-15 and miR-16, respectively (Fig. 1b).

Supporting a common phylogenetic origin, miR-15/107
family members have similar expression patterns and func-
tions. miR-15a, -15b, -16, -322 and -503 are dynamically
upregulated during serum starvation and contact inhi-
bition, with miR-503 showing the highest fold change
[10]. miR-15a, -15b, -16 and -497 are essential for the
switch from expansion to differentiation in precursor B
lymphocytes [11]. On the other side, loss of either miR-
15a/-16-1 or miR-15b/-16-2 by genomic deletion causes
B cell chronic lymphocytic leukemia [12—-14]. miR-15/-
16 family members also drive NK cell maturation, by
targeting Myb [15]. miR-15/107 family members inhibit
cell proliferation in many tissue types. They are broadly
upregulated after birth and cause cardiomyocyte mitotic
arrest in rodents [16, 17]. Additionally, miR-15/107 fam-
ily members respond to cellular stresses such as hypoxia,
ischemia, ultraviolet, environmental toxin, etc., and induce
adaptive changes in angiogenesis and cellular metabolism
[18-23]. As will be detailed in the rest of this essay, the
function of miR-424(322)/-503 overlaps with other family
members, but is under unique temporal and spatial regula-
tions and works in distinct processes.

Association with the imprinted paradigm IncRNA,
H19

Necsulea et al. surveyed eight organs in 11 tetrapod spe-
cies for the expression profiles of ncRNAs [3]. They have
identified approximately 400 IncRNA genes that are at least
300 million years old. These IncRNAs evolve rapidly in
terms of sequence and expression levels, but conserve tis-
sue specificity. One evolutionarily conserved co-expression
network is predicted to regulate placenta development. This
network comprises H19 and the IncRNA that encodes the
miR-424(322)/-503 cluster, which was hence named H19X.

H19 is best known as the imprinting paradigm [24-29]:
except under rare pathological conditions, the H19 gene
is only expressed from the maternal allele, while the adja-
cent IGF2 gene is only expressed from the paternal allele.
Imprinting provides an important mechanism of gene dose
control, allowing expression from only one allele, while the
other is epigenetically silenced. Many imprinted genes are
involved in placenta development; H19 regulates placenta
growth in late gestation, via its “spinoff” miR-675 [30].
Overexpression of H19 causes embryonic and perinatal
lethality [31]. H19 is quickly downregulated in most tissues
except skeletal muscles after birth [32, 33].

H19X resembles H19 in several ways. First, HI9X may
be imprinted (see following section). Second, miR-424 is
downregulated by hypoxia in trophoblasts, and higher miR-
424 levels are associated with fetal growth restriction, indi-
cating a role in placenta growth regulation [34, 35]. Third,
expression of H19X is striated muscle restricted during
embryogenesis. In addition to these suggestive evidences,
it will be important to know if H19 and H19X are mutually
regulatory, and if they cooperate with or compensate for
each other in genetic models. Addressing these questions
may provide insights into the intricate mechanisms of gene
dose control and coordination in embryonic development.

Structure of the H19X locus

The human H19X locus encodes seven non-coding RNAs,
including a number of microRNAs (miR-424, 503, 542,
450-1, 450-2, and 450b) and a long non-coding RNA
(miR503HG), spanning a region of ~7 kb pairs on Xq26.3
(Fig. 2). The microRNAs are highly conserved in mam-
mals. The IncRNA has similar expression patterns as miR-
424(322)/-503, agreeing with being the host gene of the
miRNA cluster. The ENCODE project has identified clus-
tered H3K27Ac and DNAse I signals, while the GeneHancer
project has identified a high-confidence cluster of regulatory
elements in the upstream regulatory region and gene bod-
ies of miR-424 [36], miR-503 and miR503HG, suggesting
that the H19X locus is actively transcribed and intricately
regulated.
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Fig.2 Schematic diagram of the H19X locus. miR-424, -503, -542,
-450b, -450al and -450al, and at least one IncRNA, miR503HG, are
encoded in the H19X locus. H19X spans approximately 7 k nucleo-
tides on the minus strand of Xq26.3. It is unknown if other adjacent
ncRNAs, such as 1inc00629, are related to H19X. In the upstream

In human and mouse genomes, H19X is situated between
PLACI1 and HPRT on the 5’ and 3’ ends, respectively.
PLACI is a placenta-specific protein whose expression is
restricted in the trophoblast lineage. PLACI is paternally
imprinted, and deficiency of it causes placentomegaly [37].
In marsupials, the downstream gene of H19X is RNA-on-
the-silent X (Rsx), an Xist-like IncRNA that drives X-inac-
tivation [38]. Collectively, the genomic location and indi-
cation in placenta growth suggest that H19X is probably
imprinted.

The precursor sequence of the miR-424(322)/-503 cluster
encodes both -5p and -3p mature miRNAs. According to
expression levels, miR-322-5p, miR-424-5p and miR-503-5p
are predominant over their -3p counterparts. The -3p miR-
NAs are not related to the miR-15/107 family. Throughout
this manuscript, miR-322, miR-424 and miR-503 refer to -5p
mature miRNAs. There are few studies about the function
of -3p miRNAs encoded by the miR-424(322)/-503 cluster;
how these -3p miRNAs contribute to described phenotypes
is completely unknown.

Roles in cell fate specification
and differentiation

Cardiomyocyte differentiation

In the embryo proper, expression from the H19X locus first
appears in Mespl-marked mesendoderm cells. Mespl is a
bHLH factor that is transiently expressed at the onset of
gastrulation [39, 40], marking a bipotent cardiac and skel-
etal muscle precursor population [41]. By surveying the
transcriptome of this precursor population, we found that
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regulatory regions as well as gene bodies, active epigenetic marks
including H3K27Ac and DNAse I-hypersensitive clusters were
identified by the ENCODE project; a high-confidence enhancer/pro-
moter cluster was identified by the GeneHancer project. Information
obtained from UCSC Genome Browser

miR-322 and -503 were highly enriched, together with other
H19X ncRNAs [42]. A knockin LacZ reporter demonstrated
that expression from H19X is restricted to the developing
heart, somites and skeletal muscles (Fig. 3a). miR-322/-503
augment the cardiomyocyte differentiation program while
inhibiting neuroectoderm cell fates. Mechanistically, miR-
322/-503 target Celf1 (note: only functionally and biochemi-
cally validated direct targets are included in this review), an
RNA-binding protein that regulates RNA alternative splic-
ing and decay and has a tight neuroectoderm association in
embryos [42] (Fig. 3b). Mesendoderm formation and cardiac
differentiation represent the first epithelial-to-mesenchymal
transition (EMT) in life; as discussed later, regulating EMT
is one of the chief mechanisms of miR-424(322)/-503 in
carrying out their functions.

Skeletal muscle differentiation

Agreeing with specific expression in skeletal muscle precur-
sor cells, miR-322(424)/-503 promote skeletal muscle dif-
ferentiation [43]. Skeletal muscle differentiation starts with
a G1 phase cell cycle arrest through inhibition of CDK?2 [44,
45]. miR-322(424)/-503 target Cdc25A, the phosphatase that
removes inhibitory phosphorylation on CDK?2 and causes
cell cycle progression [43]. This effect of miR-322(424)/503
is implicated in inducing cell cycle quiescence during mus-
cle differentiation.

Most miR-15/107 family members are broadly expressed
[2]. As to whether some members have relative tissue speci-
ficity, such as whether miR-103/-107 are highest in the brain,
and whether miR-15/-16 are higher in hematopoietic cells,
discrepant results exist [46-50]. Striated muscle restric-
tion appears to be unique for miR-322/-503. It is one place
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Fig.3 Role of miR-322/-503 in
embryonic myocyte differen-
tiation. a miR-322/-503 are
specifically expressed in the
embryonic hearts at ES.5, E9.5
and E10.5, and in the somites
at E10.5. b A working model:
miR-322/-503 target Celfl and
augment cardiac and skeletal
muscle cell differentiation at the
cost of neuroectoderm deriva-
tives
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where H19 and H19X cross path. H19 is broadly expressed
in embryos, but restricted in postnatal skeletal muscles [33,
43], whereas H19X shows early restriction which is lost after
birth [42]. Whether their functions are related or even coor-
dinated remain to be determined.
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Monocyte differentiation

The transcription factor PU.1 synergizes with miR-424 in
driving transcriptional commitment in the differentiation
from promyelocytic blasts to monocyte/macrophage lineages
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[51]. PU.1 transactivates miR-424; miR-424 then targets
NFI-A, whose downregulation is required for the commit-
ment of two myeloid-specific pathways (granulocyte and
monocyte/macrophage). miR-424, therefore, has a high hier-
archical position in monocyte/macrophage lineage differen-
tiation. Other mechanisms of miR-424 in inducing monocyte
differentiation have also been described. miR-155, miR-222,
miR-424 and miR-503 are induced by phorbol myristate
acetate which promotes terminal differentiation of acute
myeloid leukemia cells blocked in a progenitor cell state;
miR-155 arrests cells in G2 phase, miR-424/-503 arrest cells
in G1 and miR-222 induces apoptosis [52]. Interestingly,
miR-424/503 directly targets the anti-differentiative miR-9
[52]. In chronic myeloid leukemia, miR-424 suppresses
proliferation by directly targeting the oncogenic BCR-ABL
tyrosine kinase fusion gene [53].

One of the best characterized functions of miR-15/-16
is in hematopoiesis and leukemia [54, 55]. miR-15a/-16-1
are lost by 13q deletions in chronic lymphocytic leukemia,
which leads to activation of miR-15/-16 target, BCL2 [56,
57]. There appears a trend where miR-15/-16 regulate lym-
phoid cell differentiation, whereas miR-424(322)/-503 con-
tribute to myeloid cell differentiation [11, 51, 52]. These
miRNAs are predicted to target overlapping sets of mRNAs;
therefore, they are likely controlled by different lineage com-
mitment transcription factors to carry out similar functions
in the lymphoid and myeloid compartments, respectively.

Roles in regulating proliferation
and apoptosis, and as a tumor suppressor

Molecular targets in cell division and apoptosis

miRNAs have been long known to modulate cell cycle.
Members of the miR-15/107 family induce G1 arrest by
targeting primary cell cycle regulators including CDK1,
CDK?2, CDKG®6, cyclin D1, cyclin D3 and cyclin E1 [5, 6,
58-60]. Together with other miR-15 family members, miR-
424(322)/-503 are upregulated in G1l-arrested cells, serum
starvation, contact inhibition and cellular senescence, and
the change in miR-322/-503 levels is a multitude higher than
others [10, 61]. Moreover, miR-15/-16 regulate cell death
by targeting BCL2, which is an important mechanism in
chronic lymphocytic leukemia [56, 57]. Like miR-15/-16,
miR-424(322)/-503 are pro-apoptotic. Regulatory functions
in cell division and apoptosis underlay the involvement of
miR-424(322)/-503 in many biological processes, such as
differentiation, organ homeostasis and carcinogenesis. To
this front, Llobet-Navas et al. exemplarily dissected how
miR-424(322)/-503 regulate mammary gland involution
and work as a breast cancer tumor suppressor gene [62, 63].
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Function in mammary gland involution
and as a tumor suppressor

The mammary gland continuously undergoes tissue remod-
eling [64]. During pregnancy, secretory alveoli develop and
form a dense lactiferous epithelial tree. During weaning,
the alveoli and secretory duct structure collapses, known
as involution. Llobet-Navas et al. described a cascade of
molecular events in the involuting process [62]. Weaning
activates the TGF-f signaling pathway, which upregulates
the expression of the primary transcript of miR-424(322)/-
503. Once processed, the mature miRNAs target important
genes involved in cell division (Cdc25A) and survival or
death decisions (Bcl-2 and Igflr), resulting in significant
reduction in the activity of the AKT and ERK1/2 pathways.
These are conducive to inhibited growth and increased
apoptosis of mammary epithelial cells. Ablation of the
miR-424(322)/-503 gene leads to compromised regression
of the secretory acini of the mammary gland. Further, abla-
tion of miR-424(322)/-503 promotes breast tumorigenesis
after pregnancy in animal models [63]. miR-424(322)/-503
is frequently lost in a subset of aggressive primary breast
tumors which are chemoresistant, due to increased activity
of BCL-2 and IGF1R. Other miR-15/107 family members
are not among the most changed during mammary gland
involution, supporting that regulating mammary epithelial
cell growth is a unique function of miR-424(322)/-503.

A large corpus of evidence supports that miR-424(322)/-
503 work as a tumor suppressor whose deletion or downreg-
ulation contributes to tumor initiation or aggressive behav-
ior. We summarize the findings in Table 1, with apologies to
colleagues whose works are not included due to space. We
choose to highlight a few where multiple lines of evidences
are available, with emphasis given to gynecological cancers.

Several groups independently uncovered that miR-424 is
downregulated in cervical cancers; lower miR-424 is cor-
related with poor prognostic clinicopathological parameters
[67, 68, 82-85]. Xu et al. identified that miR-424 targets
CHKI, which is inversely correlated to miR-424 levels [68].
Ectopic miR-424 enhanced apoptosis and blocked G1/S tran-
sition, and suppressed cell migration and invasion in cervi-
cal cancer cell lines. Intriguingly, this mechanism is indi-
cated in human papillomavirus infection, a causative event
of cervical and other anogenital cancers [83]. HPV E6 and
E7 proteins suppress the levels of miR-424, while CHK1
is augmented. As a downstream effector kinase in the ATR
DNA repair pathway, increased CHK1 contributes to viral
genome amplification.

Lower miR-424 levels are also associated with epithelial
ovarian cancers [78, 86]. Ectopic miR-424-5p arrests ovarian
cancer cells in GO/G1 phase, via directly inhibiting cyclin
El1 [86]. In ovarian clear cell carcinoma, a subtype of epi-
thelial ovarian cancer associated with poor prognosis and
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Tab|§1 Tumor suppressor roles miR Cancer site Pathology Target Refs.

of miR-424(322)/503
miR-424-5p Breast Basal-like DCLK1 [65]
miR-322/-503 Breast NA CDC25A, CCNELl, [62, 63]

BCL-2, IGFIR

miR-503 Breast NA PYK2 [66]
miR-424-5p Cervix Adenocarcinoma KDMS5B [67]
miR-424 Cervix Cervical epithelial carcinoma CHKI1 [68]
miR-503 Esophagus ESCC CCND1 [69]
miR-503 Esophagus ESCC HOXC13 [70]
miR-503 Esophagus ESCC PRKACA [71]
miR-424 HSC CML BCR-ABL [53]
miR-424-5P Liver HCC ICAT [72]
miR-503 Liver HCC FGF2, VEGF-A [73]
miR-503 Liver HCC EIF4E [74]
miR-503 Liver HCC Cyclin D3, E2F3 [75]
miR-503 Lung NSCLC PI3K p85, IKK-f [76]
miR-424(322) Ovary Epithelial ovarian carcinoma PD-L1, CD8O [77]
miR-424 Ovary occc DCLK1 [78]
miR-503 Prostate NA ZNF217 [79]
miR-424 Uterus Endometrial carcinoma E2F7 [80]
miR-503 Uterus EEC CCND1 [81]

ESCC esophageal squamous cell carcinoma, CML chronic myelogenous leukemia, HCC hepatocellular car-
cinoma, NSCLC non-small cell lung cancer, OCCC ovarian clear cell carcinoma, EEC endometrioid endo-

metrial cancer

chemoresistance, miR-424 targets doublecortin-like kinase
1 (DCLK1) which is associated with cancer stem cells in
multiple cancers [78]. Moreover, miR-424(322) modulates
the PD-L1/PD1 and CD80/CTLA4 immune checkpoint [77].
PD1 and CTLA4 are T cell-expressed immunomodulatory
receptors, whereas PD-L1 (to PD1) and CD80 (to CTLA4)
are binding partners present on tumor cells and mac-
rophages, and dendritic cells, respectively. PD-L1/PD1 and
CD80/CTLAA4 interactions result in reduced CD8 + cytotoxic
T-lymphocyte proliferation and survival, and ultimately
immune tolerance [87]. In chemoresistant epithelial ovar-
ian cancers, miR-424(322) directly targets PD-L1 and CDS8O0.
Lower miR-424(322) and higher PD-L1 correlate to chem-
oresistant phenotypes [77]. Restoration of miR-424(322)
hence represents a new opportunity in increasing chemo-
sensitivity in ovarian cancers.

Regulation by hormones

The expression of miR-424(322)/-503 is significantly
altered during several hormone-controlled processes.
Endometriosis is a benign gynecological disease among
women in reproductive age, characterized by the pres-
ence of endometrial glands and stroma in locations other
than the uterine cavity. Several groups reported the down-
regulation of miR-424 or miR-503 in endometrial tissues

vs. controls, or in ectopic vs. eutopic endometrial tissues
[88-90]. There is an inverse correlation between miR-424
and the levels of VEGF-A [89]. Higher VEGF-A levels
may be responsible for elevated angiogenic activity in
endometriotic lesions. Ovary granulosa cells support the
growth and maturation of follicles, and they undergo con-
stant morphological and functional changes. miR-424/-
503 are highly expressed in granulosa cells, with vary-
ing expression levels during the menstrual cycle [91-93].
miR-424/-503 regulate proliferation of granulosa cells, but
how they affect follicle growth and maturation is unknown
[91, 94].

Two groups have reported that expression of miR-
424(322)/-503 is responsive to estrogen in MCF-7 breast
epithelial cells. One group captured the temporal profiles
of miRNAs and identified both miR-424 and miR-503 as
among the most upregulated by E2 [95]. The other group
captured the temporal profiles of mRNAs following E2 expo-
sure and reversely predicted miRNAs that may be regulated.
miR-424 was among the top findings and experimentally
vetted [96]. Though these studies support the close associa-
tion of miR-424 and -503 with estrogen, it is unknown if an
estrogen receptor element is present on the upstream regu-
latory region and essential for H19X transcription. Efforts
in this area will provide new insights into hormone-related
disease mechanisms. Further, as miR-424(322)/-503 emerge
as a critical regulator of muscle differentiation, growth

@ Springer



910

F.Wang et al.

and metabolism [42, 43, 97], their hormone link may help
explain sex differences in muscle physiology and diseases.

Roles in epithelial-to-mesenchymal
transition and tumor progression

Relation to the TGF-p pathway
and epithelial-to-mesenchymal transition (EMT)

The transforming growth factor beta family comprises struc-
turally related proteins that regulate cell proliferation, dif-
ferentiation, apoptosis and other functions [98—100]. TGF-f8
proteins bind to TGF-f type II receptors, which phosphoryl-
ate the type I receptor on its serine residues, and the latter
becomes activated. Next, type I receptors phosphorylate
R-SMADs (SMAD2 and SMAD3 for TGF-fs), increasing
their affinity to coSMAD (SMADA4). Finally, the RSMAD/
coSMAD complex translocates to the nucleus where it
functions to drive gene transcription. The TGF-f pathway
is regulated at multiple levels; R-SMADs are regulated by
inhibitory SMADs (I-SMADs) and proteasome-mediated
degradation. There are two I-SMADs: SMAD6 competes
with R-SMADs for SMAD4 binding, whereas SMAD7 com-
petes with R-SMADs for binding to type I receptors. Both
I-SMADs are downstream targets of TGF-f signaling, pro-
viding a negative feedback mechanism. E3 ubiquitin ligases
SMURF1 and SMURF?2 regulate the levels of R-SMADs via
proteasome-mediated degradation.

Mounting evidences support that TGF-f signaling is one
of the main drivers of miR-424(322)/-503 biogenesis [62,
101-104]. In mammary epithelial cells, activated TGF-f§
signaling leads to increased transcription of miR-424(322)/-
503, through an upstream SMAD-binding site [62]. Gu et al.
found that SMAD4 is required for miR-503 transactivation,
through the same SMAD-binding site, during smooth mus-
cle cell differentiation in mesenchymal stem cells [102].
Additionally, TGF-p upregulates miR-424 in glioblastoma,
cardiac fibrosis, myofibroblast differentiation from lung epi-
thelial cells and formation of cancer-associated fibroblasts
(CAFs) [101, 103, 104].

In some processes, miR-424(322)/-503 provide a feed-
forward mechanism to amplify TGF-f signaling (Fig. 4). In
distraction osteogenesis, a clinical strategy to promote bone
formation, miR-503 is one of the most upregulated miRNAs.
miR-503 targets SMURF1, and positively modulates TGF-f
signaling which is active during the early stage of distrac-
tion osteogenesis [105]. During TGF-p-induced EMT in
human lung epithelial cells and TGF-f-regulated intestinal
epithelial homeostasis, miR-424(322)/-503 target SMURF2
and enhance TGF-f signaling [103, 106]. The inhibitory
SMADY7 is also a target of miR-424, which relieves the
negative effects of SMAD7 on R-SMADs and contributes
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to smooth muscle cell differentiation in mesenchymal stem
cells [102].

miR-424(322)/-503 help carry out classic function of
TGEF-p, such as growth inhibition and EMT, by serving as
an effector and feedforward regulator. Confoundingly, miR-
424 may also negatively regulate TGF-f signaling by target-
ing TGFBR3 [107, 108]. Thus, miR-424(322)/-503 target
selection may be specific for individual processes, but more
likely, miR-424(322)/-503 may target a few TGF-f pathway
components simultaneously; the net outcome is a balance
among all the interactions. This agrees with the notion that
miRNAs regulate a network of genes by fine-tuning their
expression levels, and hence coordinating a biological
process.

miR-424(322)/-503-mediated EMT contributes to tumor
progression in some cancers. Drasin et al. described stage-
dependent roles of miR-424 in breast cancer [107]: down-
regulated miR-424 leads to tumor initiation, while subse-
quent upregulation facilitates metastasis. Twist and Snail,
classic transcription factors of mesenchymal programming,
drive miR-424 expression. Elevated miR-424 induces EMT
and cancer stemness-associated genes, by selectively tar-
geting TGFBR3. In metastases, miR-424 is downregulated,
which facilitates MET [107]. Completion of the EMT-MET
axis allows metastatic tumor outgrowth at the new site. The
importance of miR-424(322)/-503 in regulating EMT and
cellular plasticity has also been demonstrated in colorectal
cancer, prostate cancer and tongue squamous cell carcinoma
[108-110].

Other mechanisms contributing to tumor
progression

Suppressor of cytokine signaling (SOCS) factors are nega-
tive regulators of the JAK/STAT pathway. Lowered SOCS
expression leads to higher JAK/STAT activity, which is asso-
ciated with many cancers [111]. In oral squamous cell car-
cinoma, SOCS2 is downregulated and inversely correlated
with the level of miR-424-5p. There exists a signal-ampli-
fying loop in which IL-8 drives activity of STATS, STAT5
induces the expression of miR-424-5p, and miR-424-5p
enhances the activity of STATS by inhibiting SOCS2. This
signal loop mediates IL-8-induced cell migration and inva-
sion [112].

Dallavalle et al. reported another mechanism of miR-424
in activating STAT proteins. In prostate tumors, miR-424 is
upregulated due to lower expression of ESE3/EHF, which
binds to the promoter of miR-424 and represses its tran-
scription. E3 ubiquitin ligase COP1, an miR-424 target, is
downregulated. Consequently, several oncogenic transcrip-
tion factors including STAT3 evade proteasome-mediated
degradation and become activated [113].
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Fig.4 A feedforward mecha-
nism in TGF-p signaling. miR-
424(322)/-503 are direct down-
stream targets of the TGF-p/
SMAD?2/3 signaling pathway.
They inhibit the expression of
I-SMAD (SMAD7) and SMAD-
specific E3 ubiquitin protein
ligases (SMURF1/2), therefore
effectively activate SMAD2/3
and amplify TGF-p signaling

miR-424/-503
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growth inhibition, apoptosis,
epithelial-mesenchymal transition...

miR-424-5p facilitates gastric cancer cell proliferation
and invasion by targeting LATS1, a core component of the
Hippo pathway [114]. Circular RNA_LARP4 neutralizes the
activity of miR-424-5p by serving as a molecular sponge.
This is a rare demonstration of a posttranscriptional mecha-
nism in regulating miRNA accessibility.

In summary, the role of miR-424(322)/-503 in cancer is
highly contextual. While a tumor suppressive role has been
established in breast cancers, oncogenic functions are sug-
gested in glioblastoma and melanoma [63, 101, 115, 116].
The elegant works in breast cancer demonstrate the dynamic
roles of miR-424(322)/-503 through the initiation and pro-
gression of the disease, exemplifying the complexity of
gene regulation exerted by miRNAs. Potential redundant
or cooperative roles of other miR-15/107 family members

pose additional challenges in understanding the role of miR-
424(322)/-503 in cancer. Despite the confounding issues,
miR-424(322)/-503 has emerged as critical regulators of a
variety of cancer hallmarks. Additional genetic evidences,
as well as better appreciation of the dynamic interactions of
miR-424(322)/-503 with its target network may bring about
new therapeutic opportunities.

Roles in stress response
Expression of miR-15/107 family members is responsive to
a variety of cellular stresses, including UV damage, environ-

mental toxin, hypoxia and ischemic injury [18-23]. Among
miR-15/107 family members, miR-424(322)/-503 show the
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highest responsiveness under stress. [10]. Here we summa-
rize the underlying mechanisms that miR-424(322)/-503
use to alleviate damages and help adaptation during cel-
lular stresses.

Hypoxia and ischemia

Reduced availability of oxygen can occur in physiological
conditions such as wound healing and physical exertion
as well as pathological situations such as stroke and myo-
cardial ischemia. A complex adaptation system centered
around hypoxia-inducible factor (HIF) is responsible for
restoring oxygen and nutrient homeostasis [117] (Fig. 5a).
Under normoxia, HIF-1a is maintained at low levels due to
active proteasome-mediated degradation. The degradation
process starts with hydroxylation on two proline residues,
P402 and P564. Hydroxylated HIF-1a is recognized by von
Hippel-Lindau (VHL) protein, which brings hydroxylated
HIF-1a to the VCBCR (VHL, elongin C, elongin B, cullin 2,
and RBX1) E3 ubiquitin ligase complex. Poly-ubiquitination
and proteasome-mediated degradation ensue. In hypoxia,
HIF-1a becomes stabilized and forms a heterodimer with
HIF-18. The dimer migrates into the nucleus where it binds
to hypoxia response elements and transactivates genes regu-
lating metabolism, angiogenesis and erythropoiesis.
miR-424 and miR-210 are the most upregulated miR-
NAs in hypoxic vascular endothelial cells which sit at the
frontline of responding to hypoxia. Ectopic miR-424 sta-
bilizes both HIF-1a and HIF-2a, through targeting cullin
2 (CUL2), the scaffold protein for the E3 ubiquitin ligase
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Fig.5 miR-424/-503 mediated mechanisms in HIF-1a stabilization.
In normoxia, HIF-1a is hydroxylated by PHD, using O2 and a-KG.
Hydroxylated HIF-1a is recruited to the VCBCR complex in which
CUL2 serves as the scaffold. HIF-1a is degraded by the protea-
some system. In hypoxia, miR-424(322)/-503 are activated by fac-
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complex [118] (Fig. 5b). Accordingly, miR-424 overexpres-
sion promotes in vitro angiogenesis and neovascularization
in mice. Induction of miR-424 in hypoxia is through a C/
EBPa-RUNX-1/PU.1 cascade, in which C/EBPa in coopera-
tion with RUNX-1 transactivates PU.1 expression, and PU.1
transactivates miR-424 transcription through a PU.1-binding
site [118]. Hypoxia induces miR-424 in a myocardial infarc-
tion mouse model as well as a hind limb ischemia mouse
model, demonstrating the response is widespread in multiple
tissue types [118].

Hypoxia induces miR-424 in cancer cells as well. Zhang
et al. reported that in melanoma and colon cancer cell lines,
hypoxia transactivates miR-424 expression via a hypoxia
response element present on the promoter of miR-424.
Increased miR-424 renders resistance to apoptosis-inducing
drugs doxorubicin and etoposide [119].

Cerebral ischemia induces an acute increase in miR-424
levels in the peri-infarct cortex in a middle cerebral artery
occlusion/reperfusion mouse model. Ectopic miR-424
reduces neuronal cell apoptosis and infarct volume, accom-
panied by increased activity of MnSOD [120]. In neuronal
culture, H,O, upregulates miR-424 expression, similar to
ischemia or hypoxia exposure. Thus, it appears that the
dynamically reactive miR-424 provides an acute means of
reducing oxidative stress [120].

Endoplasmic reticulum stress

Deregulation of normal endoplasmic reticulum (ER) func-
tion leads to a conserved cellular response, unfolded protein
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tors including HIF-1la. They target the TCA cycle enzyme, IDH3,
and drop the levels of a-KG. They also target CUL2 and inhibit the
formation of the VCBCR complex. Collectively, miR-424(322)/-503
stabilize HIF-1o and enhance cellular response to hypoxia
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response (UPR) [121]. It can trigger cell death if ER stress
is prolonged. There are three ER transmembrane proteins
serving as sensors of unfolded protein accumulation in the
ER lumen: PERKI, IRE1, and ATF6. They represent three
branches of signaling pathways in restoring homeostasis.
Thapsigargin and tunicamycin, drugs causing accumulation
of unfolded protein in the ER lumen, downregulate miR-
424(322)/-503 in a PERK1-dependent fashion. miR-424
modulates the activity of two branches of UPR: it directly
binds to the 3'-UTR of ATF6 transcripts and inhibits trans-
lation, whereas it regulates the activity of “regulated IRE1
dependent decay” (RIDD) on the IRE1 branch. Together,
PERK-induced downregulation of miR-424(322)/-503 opti-
mizes the activity of IRE1 and ATF6 during ER stress, hence
serving as a node to coordinate UPR [122].

Roles in metabolism

Consistent with a role in adapting cells to changed envi-
ronment, miR-424 has been shown to regulate major meta-
bolic switches. TGF-f or PDGF-induced CAF formation is
accompanied by metabolic switch from oxidative phospho-
rylation to aerobic glycolysis [104]; miR-424 plays a critical
role in the process. TGF-f upregulates the expression of
miR-424, and miR-424 directly targets isocitrate dehydroge-
nase 3a, an enzyme catalyzing the conversion from isocitrate
to a-ketoglutarate (a-KG) in the tricarboxylic acid (TCA)
cycle. Upregulated miR-424 causes a drop in a-KG, which
contributes to the stability of HIF-1a. Proteasome-mediated
HIF-1a degradation requires HIF-1a hydroxylation on two
proline residues, P402 and P564; the activity of the responsi-
ble enzyme, proline hydroxylase, requires oxygen and a-KG.
Structural analogs of a-KG, such as succinate and fumarate,
inhibit proline hydroxylase activity [123—125]. Increased
miR-424 effectively drops the ratio between a-KG and suc-
cinate/fumarate, and reduces HIF-1a degradation [104]. This
is another mechanism that miR-424 uses to stabilize HIF-1a
(Fig. 5). Stabilized HIF-1a transactivates genes involved in
glycolysis.

Diabetic levels of glucose significantly drive down
miR-424 expression in breast cancer cells [126]. Lowered
miR-424 levels lead to higher expression of its target gene,
CDC42. CDC42 induces the expression of transcription fac-
tor PRDM 14, which is associated with poor prognosis in
breast cancer patients [126]. Wang et al. reported decreased
miR-150, miR-146a and miR-424 in peripheral blood mono-
nuclear cells from type I diabetic patients, and the decrease
is associated with ongoing autoimmunity of pancreatic islet
[127]. However, it is not clear how miR-424 is suppressed
under hyperglycemic conditions, and how this change con-
tributes to adaptive or pathological alterations. Research in
this area is not yet sufficient to build a unitary framework,

but miR-424(322)/-503 apparently influences metabolic
pathways, which serve as bridges linking many processes
discussed so far.

As biomarkers

Using circulating miRNAs as biomarkers has gained tremen-
dous research interests [128, 129]. Many cell types, such as
reticulocyte, dendritic cell, B cell, T cell, mast cell, epithe-
lial cell, as well as tumor cell, release miRNAs. They are
incorporated into exosomes/extracellular vesicles (EVs) and
transferred to body fluids, such as plasma, urine and saliva.
Exosomes/EVs carry and deliver mRNAs and miRNAs into
recipient cells and exert profound physiological and patho-
logical functions [130, 131]. Meantime, these circulating
RNAs constitute a new category of non-invasive disease
markers.

Circulating miR-15/-16 show correlation with several
cancer types, including glioma, esophageal adenocarcinoma,
cervical cancer and breast cancer [132—135]. They exhibit
prognostic value in melanoma and acute heart failure [136,
137]. miR-424(322)/-503, especially miR-424, often con-
stitute miRNA signatures with high predictive power for
disease outcomes. Bye et al. assayed 179 miRs in the serum
of 112 healthy participants who either suffered from fatal
AMI within 10 years or remained healthy. They established a
model for predicting future AMI consisting of miR-106a-5p,
miR-424-5p, let-7g-5p, miR-144-3p and miR-660-5p, with
74.1% and 81.8% correct classification for men and women,
respectively [138]. de Andrade et al. showed in 39 ALS
patients/39 controls that miR-424 and miR-206 were higher
in patient plasma and the baseline levels were associated
with clinical deterioration [139]. Two groups independently
demonstrated the prognostic value of miR-424 in non-small
cell lung cancers. One model includes four miRNAs (miR-
200c, miR-424, miR-29¢ and miR-124), whereas the other
includes six miRNAs (miR-29a, miR-542-5p, miR-502-3p,
miR-376a, miR-500a, miR-424), each holding prognostic
value for overall survival [140, 141]. A 3-miRNA signature
(miR-199a, miR-29¢ and miR-424) was found to distinguish
breast cancer patients from controls [142]. We have summa-
rized recent reports about miR-424(322)/-503 as circulating
biomarkers in a variety of diseases (Table 2). Though there
are many caveats regarding using circulating miRNA as bio-
markers, it is clear that miR-424 is one of the best candidates
that may be vetted in larger cohorts.

A major challenge is that the source of the circulat-
ing miRNAs is often unknown. It is critical to distinguish
whether they are from a primary lesion such as cancer, or
a secondary and reactive source, such as lymphocytes or
muscles. Technical issues include the lack of a housekeep-
ing circulating RNA control to normalize among individuals
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Table2 Detection f)f miR- . miRNA Disease or physiological status ~ Sample Expression Method Refs.
424(322?/—503 as biomarkers in change
body fluids
miR-424 Breast cancer Serum + SAM-RT-PCR [142]
miR-424 Advanced NSCLC Blood + miRNA microarray  [141]
miR-424 FXTAS Blood + miRNA microarray  [143]
and sequencing
miR-424 ALS Skeletal + miRNA microarray  [139]
muscle,
plasma
miR-503 Vertebral fractures Serum - qRT-PCR [144]
miR-503 Postmenopausal osteoporosis Blood - miRNA microarray  [145]
miR-424 PH Serum + qRT-PCR [146]
miR-424-5p  Type 1 diabetes Serum + qRT-PCR [147]
miR-424-5p  DVT Plasma + qRT-PCR array [148]
miR-424-5p  AMI Serum + qRT-PCR array [138]
miR-424-5p  Heart failure Plasma - qRT-PCR array [149]
miR-503 CAD Plasma - qRT-PCR [150]
miR-424-3p,  Aerobic exercise Serum + qRT-PCR [151]
miR-424-5p

sdM-RT-PCR serum-direct multiplex detection assay based on RT-PCR, NSCLC non-small cell lung can-
cer, FXTAS fragile X-associated tremor/ataxia syndrome, ALS amyotrophic lateral sclerosis, PH pulmonary
hypertension, DVT deep-vein thrombosis, AMI acute myocardial infarction, CAD coronary artery disease

and different diseases, and variations introduced by differ-
ent extraction and quantification methods. The importance
of addressing these challenges cannot be overestimated; it
likely constitutes a major milestone in diagnostics.

Conclusions and future perspectives

Over a decade of research has accumulated a large body of
knowledge related to the miR-424(322)/-503 cluster. Indi-
vidually or together, these miRNAs are involved in placenta,
heart and skeletal muscle development during embryogene-
sis. They regulate core cellular processes including cell cycle
control and EMT. They are the most dynamic in respond-
ing to a range of cellular stresses, including hypoxia and
ischemia, and help restore homeostasis. Hormonal regula-
tion over the biogenesis of these miRNAs and their involve-
ment in physiological and pathological processes of female
reproduction organs prompt an important question, are they
one of the deciding factors of sex differences? The identifi-
cation of miR-424(322)/-503 as biomarkers in many human
diseases, especially the frequent detection in plasma sam-
ples, poses exciting clinical opportunities. However, this is
still a new research subject; there remain many challenges
awaiting exploration.

Many important hypotheses are not validated. The con-
nection to H19 has not been supported by genetic evidence
in animal models. Does miR-424(322)/-503 overexpression
stall placental development, like in H19 transgenic mouse?

@ Springer

Is the H19X locus paternally imprinted? Genetic ablation
of H19 or miR-424(322)/-503 causes very mild systemic
phenotypes: H19 KO animal has mild overgrowth [29],
whereas miR-424(322)/-503 KO animal has mild white fat
accumulation [62]. Will double-knockout animal display
more pronounced phenotypes related to organism growth
or homeostasis? Answering these questions would provide
important insights into ncRNA regulatory mechanisms of
growth control.

It remains difficult to rank the importance of molecu-
lar targets of miRNAs in a biological process. Most studies
rely on computation programs or transcriptome survey to
predict miRNA targets, and select one or two for additional
investigation. Such strategies have intrinsic weaknesses:
miRNAs are known to target many genes simultaneously,
and mainly through affecting protein abundance, not mRNA
abundance. With the advancement of technologies such as
reverse phase protein array (RPPA), we may include protein
arrays into the toolbox of miRNA target identification. This
note is especially important for miR-424(322)/-503, as they
are highly dynamic and their identified targets sometimes
occupy opposite sides of signaling pathways.

Developing therapeutic interfering strategies require
understanding of the redundancy and coordination between
miR-424(322)/-503 and other miR-15/107 family miRNAs.
It is a challenging task to inhibit the activities of miR-
424(322)/-503, because other miR-15 family members may
be parallel or compensatory. Thus, developing strategies
that target all the miRNAs sharing the same seed sequence
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would provide conclusive evidence for the function of miR-
424(322)/-503 in important processes, and also form the
base for therapy development.

Finally, building connections among the currently sepa-
rated processes is critical. For instance, under cellular stress,
cell proliferation, plasticity and metabolism may be well
orchestrated, and miR-424(322)/-503 may coordinate the
expression of a network of genes and help cells adapt and
regain homeostasis. Systemic dissection of these processes,
especially at protein and organism levels, would likely yield
important insights that are currently unavailable.
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