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Studies have shown that up to 60% of women screened 
with mammography over 10 years have at least one 

abnormal result, even though no breast cancer is pres-
ent. Hence, reducing false-positive mammograms and 
false-positive biopsies could substantially lower the cost of 
screening (1–6). A promising approach to improve clinical 
decision support is radiomics. Although computer-aided 
detection has been part of the routine clinical assessment of 
screening mammograms in the United States, computer-
aided diagnosis has been an area of active research for quite 
some time (7) but, to date, has not been approved by the 
U.S. Food and Drug Administration for mammography. 
Radiomics is an extension of computer-aided diagnosis 
and refers to the comprehensive quantification of tumor 
phenotypes by extracting a large number of quantitative 

image features (8) for data mining and precision medicine. 
In recent years, investigators have shown success using 
radiomics for breast cancer, extracting a variety of clinically 
relevant features, merging them into signatures, and esti-
mating the probability of malignancy of identified lesions 
(9–11). In addition, radiomics has been used to assess the 
risk of future breast cancer (12) and predict breast cancer 
prognosis (13,14). Observer studies have shown some 
improvement in radiologists’ performances in diagnostic 
tasks when a computer aid is used (7,15,16).

There is a strong biologic basis as to why the micro-
scopic features of a tumor produce macroscopically distinct 
compositions amenable to measurement. First, inva-
sive cancer is highly angiogenic. Weind et al (17) com-
pared the central to peripheral microvasculature of invasive 
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Purpose:  To investigate the combination of mammography radiomics and quantitative three-compartment breast (3CB) image 
analysis of dual-energy mammography to limit unnecessary benign breast biopsies.

Materials and Methods:  For this prospective study, dual-energy craniocaudal and mediolateral oblique mammograms were obtained 
immediately before biopsy in 109 women (mean age, 51 years; range, 31–85 years) with Breast Imaging Reporting and Data 
System category 4 or 5 breast masses (35 invasive cancers, 74 benign) from 2013 through 2017. The three quantitative compart-
ments of water, lipid, and protein thickness at each pixel were calculated from the attenuation at high and low energy by using 
a within-image phantom. Masses were automatically segmented and features were extracted from the low-energy mammograms 
and the quantitative compartment images. Tenfold cross-validations using a linear discriminant classifier with predefined feature 
signatures helped differentiate between malignant and benign masses by means of (a) water-lipid-protein composition images 
alone, (b) mammography radiomics alone, and (c) a combined image analysis of both. Positive predictive value of biopsy performed 
(PPV3) at maximum sensitivity was the primary performance metric, and results were compared with those for conventional 
diagnostic digital mammography.

Results:  The PPV3 for conventional diagnostic digital mammography in our data set was 32.1% (35 of 109; 95% confidence 
interval [CI]: 23.9%, 41.3%), with a sensitivity of 100%. In comparison, combined mammography radiomics plus quantitative 
3CB image analysis had PPV3 of 49% (34 of 70; 95% CI: 36.5%, 58.9%; P , .001), with a sensitivity of 97% (34 of 35; 95% CI: 
90.3%, 100%; P , .001) and 35.8% (39 of 109) fewer total biopsies (P , .001).

Conclusion:  Quantitative three-compartment breast image analysis of breast masses combined with mammography radiomics has 
the potential to reduce unnecessary breast biopsies.
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yields quantitative and reproducible pixel-by-pixel estimates of 
water, lipid, and protein thicknesses throughout the breast (24).

The aim of this study was to investigate the potential of mam-
mography radiomics (lesion texture, size, shape, and morpho-
logic characteristics), in vivo measurement of the biologic tissue 
composition derived from 3CB imaging with dual-energy mam-
mography, and the two measures combined to avoid unneces-
sary benign biopsies. Hence, we were interested in decreasing the 
number of false-positive biopsy results and at the same time not 
missing invasive cancers that should undergo biopsy.

Materials and Methods
This prospective diagnostic 3CB imaging clinical study was 
approved by the institutional review board and followed 
Health Insurance Portability and Accountability Act–compliant 
protocols. All study participants provided written informed 
consent.

Study Participants
Women were recruited consecutively for participation in our 
study, and the inclusion criterion was presentation with Breast 
Imaging Reporting and Data System (BI-RADS) category 4 
or 5 findings on the basis of diagnostic mammography (25). 
Exclusion criteria were previous biopsy in the same quadrant 
of the affected breast or systemic hormone therapy or chemo-
therapy. From 2013 through 2017, women with BI-RADS 
category 4 or 5 findings were identified after undergoing 
diagnostic mammography and approached for enrollment in 
our study immediately before breast biopsy at two clinical 
sites (University of California, San Francisco, San Francisco, 
Calif, and H. Lee Moffitt Cancer Center, Tampa, Fla). After 
providing written informed consent, study participants un-
derwent unilateral dual-energy mammography of the affected 
breast with use of digital mammography equipment (Selenia; 
Hologic, Marlborough, Mass) to derive breast composition 
(24). The most common reason to decline study participation 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = confi-
dence interval, PPV3 = positive predictive value of biopsy performed, 
3CB = three-compartment breast

Summary
When combined with mammography radiomics, the water-lipid-
protein breast tissue composition measured with quantitative three-
compartment breast image analysis may reduce unnecessary biopsies 
of benign breast masses and result in a higher positive predictive 
value of biopsy performed.

Implications for Patient Care
nn Three-compartment (water, lipid, and protein) breast imaging 

with noncontrast dual-energy mammography is readily imple-
mented with existing digital mammography or tomosynthesis 
equipment and results in a 10% higher mean glandular dose of an 
average screening mammogram.

nn Quantitative three-compartment breast (3CB) image analysis 
before breast biopsy provides predictive information about the 
malignant potential of breast lesions that cannot be obtained by 
visual interpretation of mammography alone.

nn The combination of quantitative 3CB image analysis and mam-
mography radiomics may reduce unnecessary biopsies of benign 
breast masses and result in a higher positive predictive value of 
biopsy performed in breast masses deemed suspicious by the 
breast radiologist.

tumors and fibroadenomas and found that vasculature differed 
substantially among normal tissue, fibroadenomas, and different 
grades of invasive ductal carcinoma. Second, Cerussi et al (18) 
found a 20% reduction in lipid and 50% elevation in water in 
invasive breast cancer versus normal breast tissue and a strong 
positive correlation (R = 0.98) between the macroscopic water 
concentration and the Scarff-Bloom-Richardson score (a histo-
logic grading scale ranging from 3 to 9 that accounts for tubule 
formation, nuclear pleomorphism, and mitosis counts [19]). 
Third, invasive cancers have been found to have significantly 
lower x-ray attenuation than fibroadenomas, 
suggesting a distinctly different composition 
between cancerous and benign masses. The 
kinetic blood flow differences due to differ-
ential vascularization of cancerous and be-
nign tissues have been used to improve the 
diagnostic accuracy of gadolinium-enhanced 
MRI and mammographic methods, such as 
contrast material–enhanced digital mam-
mography (20,21) and contrast-enhanced 
breast tomosynthesis (22,23). But MRI is 
expensive and contrast agents are invasive 
and potentially toxic. Three-compartment 
breast (3CB) imaging is a dual-energy mam-
mography technique that does not require a 
contrast agent, is easily implemented with 
minimal changes in workflow of digital 
mammography (or breast tomosynthesis) 
equipment, and results in only a 10% higher 
dose over standard mammographic views 
(24). Three-compartment breast imaging 

Figure 1:  Images in 71-year-old woman with 1.6-cm invasive ductal carcinoma (Breast 
Imaging Reporting and Data System category 5, with category C breast density). Low-en-
ergy mammogram and corresponding regions of interest for mammogram (top) and breast 
tissue composition images (bottom two rows).
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was the additional radiation exposure resulting from the need 
for additional views of the affected breast in addition to the 
previous clinical diagnostic views. However, the mammogra-
phy equipment used in our prospective 3CB imaging study 
is approved by the U.S. Food and Drug Administration and, 
in future practice, 3CB imaging could replace conventional di-
agnostic digital mammography because low-energy mammog-
raphy is performed under “standard” settings, eliminating the 
need for extra views.

Computational Methods
Radiomic analysis was performed by using the low-energy 
mammograms (equivalent to mammograms acquired with 
conventional clinical settings) obtained in the “for process-
ing” mode (craniocaudal and mediolateral oblique diagnostic 
images of 0.07-mm resolution). The corresponding quantita-
tive breast tissue composition images, that is, the 3CB thick-
ness maps of water, lipid, and protein, were derived from the 
dual-energy mammograms from the attenuation at both high 
and low energy in combination with an in-image phantom of 
known modeled compartment thickness combinations (0.14-
mm resolution) (Fig 1; Appendix E1 [online]). The high-en-
ergy mammograms were used only to derive the 3CB thickness 
maps and were not otherwise analyzed.

Only in-house–developed software was used. The classifi-
cation task of interest was the differentiation between malig-
nant and benign breast masses. The mammography radiomics 
method required the approximate lesion center of the mass on 
a mammogram as determined from the lesion outline drawn by 
an expert radiologist. Each lesion was then automatically seg-
mented (26), and lesion image features were extracted from the 
mammograms by using the computer segmentations (Appen-
dix E2 [online]). For quantitative 3CB image analysis, features 
were extracted from the corresponding water, lipid, and protein 
composition images, again by using the computer segmentations 
(Appendix E1 [online]).

In our analyses, we used predefined lesion signatures, that is, 
predefined feature combinations, directly obtained from prior 
work on different data sets for both mammography radiomics 
(27) and quantitative 3CB (27,28). For mammography ra-
diomics, a five-feature signature was used: the lesion size, average 
gray value, contrast, and two features describing a combination 
of mass shape and margin, which was derived in previous work 
from 432 biopsy-proven mass lesions imaged with a Senographe 
2000D system (GE Medical Systems, Milwaukee, Wis) (27). For 
quantitative 3CB, a four-feature signature was derived from fea-
ture selection within pilot study data (no overlap with the current 
data set) of 45 breast lesions (including 27 masses, five of which 
were cancerous) (28,29). Because 3CB thickness maps are quanti-
tative, “simple” quantitative 3CB features, such as mean and me-
dian of the water-lipid-protein compartment thicknesses within 
each mass and its surrounding parenchyma, were extracted (Ap-
pendix E1 [online]). Features selected from the pilot study data 
and used herein were the median water thickness within a mass, 
the median water thickness within the surrounding parenchyma, 
the ratio of the median water thicknesses of a mass and the sur-
rounding parenchyma, and the skewness of the lipid thickness 

Table 1: Description of the 109 Women with Breast 
Masses Imaged with the Three-Compartment Breast 
Protocol for Our Current Study

Parameter No. of Women
Age
  ,40 y 5 (4.6)
  40 to ,50 y 37 (33.9)
  50 to ,60 y 39 (35.8)
  60 to ,70 y 14 (12.8)
  70 to ,80 y 10 (9.2)
  80 4 (3.7)
BI-RADS breast density*
  A 10 (9.2)
  B 49 (44.9)
  C 45 (41.3)
  D 4 (3.7)
Menopause status
  Unspecified 1 (0.9)
  Premenopause 40 (36.7)
  Perimenopause 2 (1.8)
  Postmenopause 67 (61.5)
Postmenopause HRT (n = 67)
  None 58 (87)
  ,5 y 5 (7.4)
  5 y 4 (6.0)
BMI (kg/m2)
  ,18.5 3 (2.8)
  18.5 to ,25 29 (26.6)
  25 to ,30 26 (23.8)
  30 51 (46.8)
BI-RADS assessment
  4 98 (89.9)
  5† 11 (10.1)
Pathologic finding
  Invasive cancer 35 (32.1)
  Benign 74 (67.9)
Mass size (mm)‡

  Invasive cancer (n = 35)
    5 1 (2.9)
    .5 but 10 3 (8.6)
    .10 but 20 18 (51)
    .20 but 50 13 (37)
    .50 0 (0)
  Benign (n = 74)
    5 3 (4.1)
    .5 but 10 34 (46)
    .10 but 20 28 (38)
    .20 but 50 8 (11)
    .50 1 (1.4)

Note.—Numbers in parentheses are percentages. BI-RADS = 
Breast Imaging Reporting and Data System, BMI = body mass 
index, HRT = hormone replacement therapy.
* BI-RADS breast density is as follows: A = fatty, B = scattered fibro-
glandular tissue, C = heterogeneously dense, D = extremely dense.
† All BI-RADS category 5 masses were invasive cancers.
‡ The maximum linear size was determined from radiologist-drawn 
lesion outlines; radiologist-drawn outlines were not used in the 
radiomics and quantitative three-compartment breast methods.
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classifier (linear discrimi-
nant analysis), and (c) 
used predefined mass 
feature signatures as ex-
plained earlier, that is, 
no feature selection was 
performed. In the 10-
fold cross-validations, 
within each fold, 90% of 
the data (extracted tumor 
features) served as train-
ing and 10% as testing. 
In each of the 10 training 
or testing folds, the classi-
fier was trained by using 
the training data, which 
were then applied to the 
left-out test fold. Parti-
tioning of the data set 
for cross-validation was 
performed "by lesion": 
All images (craniocaudal, 
mediolateral oblique, 
and corresponding water, 
lipid, and protein thick-
ness images when ap-
plicable) pertaining to a 
given lesion were either 

all part of a training fold or all part of a testing fold to avoid 
training the classifier on some images of a given lesion and then 
testing it on different images of that same lesion.

Note that 10-fold cross-validation does not result in a single 
model (classifier weights), even when predefined feature signa-
tures are used, but rather results in 10 models (one for each train-
ing fold). If models obtained from the different training folds 
are similar, one can derive a “final” model from these 10 models 
(Appendix E3 [online]) and the cross-validation is expected to 
give a realistic impression of the classification performance of 
the final model in an independent test setting (if larger data sets 
were available).

Performance was evaluated “by lesion,” and estimated image-
based probabilities of malignancy for images (craniocaudal, 
mediolateral oblique views for mammography radiomics and 
corresponding water, lipid, and protein images for quantitative 
3CB) of the same lesion were averaged.

Statistical Analysis
Classification performance was assessed for the radiologists’ 
diagnoses based on conventional diagnostic digital mammog-
raphy as part of the regular clinical assessment and for all three 
proposed approaches: quantitative 3CB analysis alone, mam-
mography radiomics alone, and combined radiomics plus 
quantitative 3CB analysis. The primary performance metric 
was positive predictive value of biopsy performed (PPV3) at 
maximum sensitivity. To attain maximum sensitivity, the “op-
timal” threshold for the decision variable (estimated prob-
ability of malignancy) was determined within the classifier 

within a mass (quantifying the asymmetry of the lipid thickness 
distribution). For the combined mammography radiomics plus 
quantitative 3CB analysis, the radiomics and quantitative 3CB 
signatures were combined into a predefined nine-feature signa-
ture (five features from mammography radiomics and four from 
quantitative 3CB) (Appendix E3 [online]). Given the modest 
size of the data set, we (a) performed 10-fold cross-validation 
for classifier training and testing, (b) used a “simple” but robust 

Figure 2:  Flowchart of study participant enrollment. DCIS = ductal carcinoma in situ; site 1 = University of 
California, San Francisco, San Francisco, Calif; site 2 = H. Lee Moffitt Cancer Center, Tampa, Fla.

Table 2: Subtype and Hormone Receptor Status of  
Invasive Cancers

Parameter
No. of Cancers  
(n = 35)

Subtype
  Ductal 28 (80)
  Ductal with lobular features 1 (2.8)
  Lobular 4 (11)
  Carcinoma with neuroendocrine features 1 (2.8)
  Unspecified 1 (2.8)
Hormone receptor status
 � Estrogen and/or progesterone positive  

  and HER-2 negative
19 (54)

  HER-2 enriched 4 (11)
  HER-2 equivocal 6 (17)
  Triple negative 4 (11)
  Unavailable 2 (5.7)

Note.—Numbers in parentheses are percentages. HER-2 = human 
epidermal growth factor receptor 2.
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All statistical analyses were performed 
in Matlab (version R2018a; MathWorks, 
Natick, Mass). Bootstrapping (1000 boot-
strap samples) was used to calculate 95% 
confidence intervals (CIs) of the perfor-
mance metrics. The statistical significance of 
differences in performance was determined 
from the bootstrap samples through 95% 
CIs and the associated P values for these dif-
ferences. The PPV3 of conventional diagnos-
tic digital mammography and our analyses 
were compared in ascending order (three 
comparisons). AUCs were compared in a 
similar fashion (two comparisons). P values 
were corrected for multiple comparisons by 
using the Holm-Bonferroni method (31). 
A corrected P , .05 was considered to in-
dicate a statistically significant difference in 
performance.

Results

Study Participants
At the time of this analysis, 387 women 
with BI-RADS category 4 or 5 findings had 
enrolled in our 3CB imaging study. Only 
women with masses were included because 
the radiomics method used was developed 
for segmentation and classification of breast 
masses (27). A total of 122 women had a 
mass as the primary finding, and a total of 
109 of these women (mean age, 51 years; age 
range, 31–85 years) had mammograms, 3CB 
images, radiologist delineations, and patho-
logic “truth” from biopsy (Table 1, Fig 2).  
In 11 women, microcalcifications were pres-
ent as a secondary finding (six malignant 
and five benign findings), and these were 

included in our analysis. All malignant masses were invasive 
cancer (Table 2).

Performance Evaluation and Statistical Analysis
The derived classification models were stable, and quantitative 
3CB analysis and mammography radiomics demonstrated an 
additive benefit in the estimation of the probabilities of malig-
nancy (Appendix E4 [online]). The quantitative 3CB analysis 
demonstrated a higher PPV3, that is, it suggested nine fewer 
unnecessary benign biopsies (nine of 74) than conventional di-
agnostic digital mammography (P < .001) but also erroneously 
eliminated biopsy of one cancer (one of 35) (P , .001) (Table 
2; Figs 3, 4).

Both mammography radiomics and the combined approach 
avoided more benign biopsies (28 of 74 [P , .001] and 38 of 
74 [P , .001] fewer benign biopsies than conventional diag-
nostic digital mammography, respectively), but also on average 
misclassified one cancer (one of 35) (P , .001) (Figs 3, 4). One 
invasive cancer was misclassified with mammography radiomics. 

training and testing cross-validation. For each training fold, 
the threshold value for the estimated probability of malig-
nancy resulting in 100% sensitivity for that training fold was 
determined and subsequently applied to the corresponding 
“unseen” test fold. Note that this does not guarantee 100% 
sensitivity for the test folds. The corresponding PPV3 was 
then calculated per the BI-RADS manual (25) along with the 
adjunct performance metrics of obtained sensitivity, specific-
ity, and negative predictive value.

Receiver operating characteristic analysis was used to assess 
overall classification performance for the task of differentiating 
between breast cancers and benign breast masses, and receiver 
operating characteristic curves, as well as areas under the receiver 
operating characteristic curves (AUCs), were estimated by using 
the proper binormal model (30) (available at metz-roc.uchicago.
edu). Note that receiver operating characteristic analysis could 
not be performed for conventional diagnostic digital mammog-
raphy because probabilities of malignancy were not routinely 
provided in the clinical work-up.

Figure 3:  Region of interest from digital mammography depicts invasive cancer misclas-
sified with mammography radiomics. Images in 50-year-old woman with invasive cancer 
(Breast Imaging Reporting and Data System category 4, with category C breast density) 
without (left) and with (right) radiologist and computer delineations (solid and dashed lines, 
respectively).

Figure 4:  Region of interest from digital mammography depicts invasive cancer misclas-
sified with quantitative three-compartment breast (3CB) analysis and combined mammogra-
phy radiomics plus quantitative 3CB analysis. Images in 53-year-old woman with invasive 
cancer (Breast Imaging Reporting and Data System category 4, with category C breast den-
sity) without (left) and with (right) radiologist and computer delineations (solid and dashed 
lines, respectively).
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A different cancer was misclassified with quantitative 3CB anal-
ysis and the combined analysis (Figs 3, 4). These misclassified 
cancers were both BI-RADS category 4. Overall, the combined 
approach suggested 35.8% (39 of 109) fewer total biopsies than 
did conventional diagnostic digital mammography, at the cost 
of a 2.9% (one of 35) reduction in sensitivity (P , .001). The 
improvements in PPV3 for mammography radiomics versus 
quantitative 3CB analysis (34 of 82 vs 34 of 99, respectively; 
P = .002) and the combined approach versus mammography 
radiomics (34 of 70 vs 34 of 82; P = .006) were statistically 
significant (Table 3, Fig 5).

At receiver operating characteristic evaluation, the AUCs for 
the task of differentiating between malignant and benign 
masses were 0.76 (95% CI: 0.66, 0.85), 0.80 (95% CI: 0.72, 
0.88), and 0.86 (95% CI: 0.78, 0.92), for quantitative 3CB 
analysis, mammography radiomics, and the combined ap-
proach, respectively (Fig 6). Although the improvement in AUC 

for mammography radiomics relative to quantitative 3CB failed 
to reach statistical significance (P = .55), the combined analysis 
outperformed mammography radiomics at a statistically sig-
nificant level (P = .04).

Discussion
In the classification for malignancy of mammographic BI-
RADS category 4 and 5 breast masses, we obtained, with use 
of in-house–developed mammography radiomics and quantita-
tive 3CB methods, a PPV3 of 49% (34 of 70) and an AUC of 
0.86 (95% CI: 0.78, 0.92) for the combined mammography ra-
diomics plus quantitative 3CB analysis. Our study demonstrated 
synergy between mammography radiomics and quantitative 
3CB analyses, with P values corrected for multiple comparisons 
of less than .05 when comparing the PPV3 for the combined 
approach to that for mammography radiomics and to conven-
tional diagnostic digital mammography. This suggests that the 
water-lipid-protein breast tissue composition measured with 
3CB imaging yielded biomarkers that cannot be gleaned from 
traditional mammographic techniques. One should note that 
both mammography radiomics and quantitative 3CB analysis 
can be performed in real time.

Because 3CB imaging to date has been used only in the 
diagnostic rather than screening setting, all breast masses in-
cluded in our study were BI-RADS category 4 or 5 findings, 
that is, they all underwent biopsy. Both mammography ra-
diomics and combined radiomics plus quantitative 3CB analy-
ses would have resulted in substantially higher PPV3  values  
than the actual value for this data set, albeit at the cost of, on 
average, missing one of the 35 cancers. This loss in sensitivity 
resulted from the determination of the threshold value for the 
estimated probability of malignancy within each training fold 
of the classifier training and testing protocol (and applying the 
threshold obtained for a given training fold to the correspond-
ing unseen test fold). In contrast, a posteriori selection of a 
single threshold value for the entire set would have given the 
illusion of operating at no loss in sensitivity (100% sensitiv-
ity) but would have been incorrect because then one would 
effectively have used the pathologic truth for the entire data 
set twice: first to determine the optimal threshold resulting in 
100% sensitivity and then to calculate PPV3 at that thresh-
old. The sensitivity of the combined approach of 97% (95% 
CI: 90.3%, 100%) at a specificity of 51% (95% CI: 39.9%, 

Table 3: Performance Metrics Corresponding to the Maximum Attained Sensitivity

Technique PPV3 (%) Sensitivity (%) Specificity (%) NPV (%)
Conventional diagnostic  
  digital mammography

32.1 (35/109) [23.9, 41.3] 100 0 0

q3CB 34 (34/99) [25.0, 43.1] 97 (34/35) [90.3, 100] 12 (9/74) [4.2, 18.7] 90 (9/10) [62.0, 100]
Mammography radiomics 41 (34/82) [31.7, 53.0] 97 (34/35) [90.0, 100] 35 (26/74) [25, 46.7] 96 (26/27) [86.0,100]
Combined mammography  
  radiomics plus q3CB

49 (34/70) [36.5, 58.9] 97 (34/35) [90.3, 100] 51 (38/74) [39.9, 60.1] 97 (38/39) [91.1,100]

Note.—Data are from 109 masses, 35 of which were invasive breast cancers. Numbers in parentheses are raw data, and numbers in brackets 
are 95% confidence intervals. NPV = negative predictive value, PPV3 = positive predictive value of biopsy performed, q3CB = quantitative 
three-compartment breast image analysis.

Figure 5:  Graph shows positive predictive value of biopsy 
performed at maximum attained sensitivity. Error bars represent 
95% confidence intervals. combination = combined quantitative 
three-compartment breast (q3CB) analysis and mammography 
radiomics analysis, conventional = conventional diagnostic digi-
tal mammography, mammo = mammography.
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60.1%) in our diagnostic study was comparable to the 98% 
sensitivity observed in a breast cancer radiomics study (11) and 
does not seem unreasonable compared with results reported in 
a large retrospective reading study in which 26 radiologists as-
sessing screening mammograms obtained a sensitivity of 89% 
(95% CI: 86%, 92%) at 51% specificity in the detection and 
diagnosis of mammographic breast masses in 7000 cases with 
1137 cancers (32).

Our study had some limitations. First, we used in-house–
developed methods both for 3CB image acquisition and mam-
mography radiomics. Even though these methods have been 
described in previous publications (24,26–28), this may hamper 
reproduction of our results. Second, our data set size is mod-
est despite being accumulated over 4 years of active participant 
recruitment. Moreover, even though this study served as a vali-
dation of predetermined mass feature signatures, the data set 
was not used as a true independent test set. The latter was not 
possible given that the mammography radiomics signature was 
defined by using mammograms obtained with different equip-
ment (27), hence requiring recalibration of the classifier because 
mammography radiomics generally depends on the imaging 
equipment and protocols used during acquisition. Moreover, 
even though 3CB imaging yields quantitative and reproduc-
ible breast composition maps, the pilot study data set for the 
quantitative 3CB analysis was too small to serve as a training set 
(28). Conversely, we conducted our analyses taking utmost care 
to minimize the risk of overfitting. The performances obtained 
by using predefined mass feature signatures were similar to those 
observed in the published pilot study (28) in which leave-one-
case-out analyses yielded AUCs of 0.72 (standard error, 0.07) 
for quantitative 3CB analysis, 0.81 (standard error, 0.07) for 
mammography radiomics, and 0.86 (standard error, 0.04) for a 
merged approach. Note that while our current quantitative 3CB 
mass signature did not contain any features pertaining to protein 

content, these features may be important for classification of 
other lesion types or for classification of cancer subtypes.

Future work will expand the analysis to include all suspicious 
lesions being considered for biopsy rather than only the subset 
of mammographic masses and will include a multireader, mul-
ticase radiologist reading study focusing on whether mammog-
raphy radiomics and quantitative 3CB analysis have potential 
to reduce unnecessary benign biopsies and improve specificity. 
It should be noted that while quantitative 3CB analysis on its 
own did not perform as well as mammography radiomics, 3CB 
imaging provides both mammograms and 3CB composition 
maps. Because 3CB imaging can be performed with conven-
tional mammography or breast tomosynthesis equipment with 
minimal changes in workflow and minor modifications, and 
with only a 10% higher dose (24), the potential exists for wide 
application of 3CB imaging in diagnostic breast imaging and 
perhaps also in screening. Our study showed that more inves-
tigation into the application of 3CB imaging is warranted, and 
we have initiated a research study incorporating 3CB imaging 
into breast tomosynthesis.
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