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Abstract
The worldwide obesity epidemic continues unabated, adversely impacting upon global health and economies. People with 
severe obesity suffer the greatest adverse health consequences with reduced life expectancy. Currently, bariatric surgery is 
the most effective treatment for people with severe obesity, resulting in marked sustained weight loss, improved obesity-
associated comorbidities and reduced mortality. Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB), the most 
common bariatric procedures undertaken globally, engender weight loss and metabolic improvements by mechanisms other 
than restriction and malabsorption. It is now clear that a plethora of gastrointestinal (GI) tract-derived signals plays a criti-
cal role in energy and glucose regulation. SG and RYGB, which alter GI anatomy and nutrient flow, impact upon these GI 
signals ultimately leading to weight loss and metabolic improvements. However, whilst highly effective overall, at individual 
level, post-operative outcomes are highly variable, with a proportion of patients experiencing poor long-term weight loss 
outcome and gaining little health benefit. RYGB and SG are markedly different anatomically and thus differentially impact 
upon GI signalling and bodyweight regulation. Here, we review the mechanisms proposed to cause weight loss following 
RYGB and SG. We highlight similarities and differences between these two procedures with a focus on gut hormones, bile 
acids and gut microbiota. A greater understanding of these procedure-related mechanisms will allow surgical procedure 
choice to be tailored to the individual to maximise post-surgery health outcomes and will facilitate the discovery of non-
surgical treatments for people with obesity.
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Abbreviations
BA	� Bile acids
BMI	� Body mass index
CCK	� Cholecystokinin
DPP4	� Di-peptidyl peptidase inhibitor
FGF-19	� Fibroblast growth factor-19
FXR	� Farnesoid X receptor
GI	� Gastrointestinal
GIP	� Glucose-dependent insulinotropic polypeptide
GLP-1	� Glucagon-like peptide-1
OAGB	� One anastomosis gastric bypass

PYY	� Peptide YY3-36
RCT​	� Randomised clinical trial
RYGB	� Roux-en-Y gastric bypass
SG	� Sleeve gastrectomy
T2D	� Type 2 diabetes

Introduction

The prevalence of obesity continues to increase unabated. 
Globally in 2014, approximately 52% of the adult population 
were overweight (1.9 billion) or obese (> 600 million) [1]. 
Obesity increases mortality and its associated comorbidities 
including cardiovascular disease, type 2 diabetes (T2D) and 
some cancers, and represents a major health and economic 
burden.

Bariatric surgery is recognised as the most effective 
treatment for people with severe obesity, defined by a body 
mass index (BMI) equal to or greater than 40 kg/m2, or 
greater than 35 kg/m2 in the presence of obesity-related 

 *	 R. L. Batterham 
	 r.batterham@ucl.ac.uk

1	 Centre for Obesity Research, Rayne Institute, University 
College London, London, UK

2	 Centre for Weight Management and Metabolic Surgery, 
University College London Hospital Bariatric, London, UK

3	 National Institute of Health Research, University College 
London Hospital Biomedical Research Centre, London, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s40618-018-0892-2&domain=pdf


118	 Journal of Endocrinological Investigation (2019) 42:117–128

1 3

complications [2]. Bariatric surgery involves surgical mod-
ifications of the gastrointestinal (GI) tract anatomy with a 
consequent alteration of nutrient flow affecting GI biology 
[3]. Many clinical trials have demonstrated the superiority 
of bariatric surgery in terms of efficacy and sustainability of 
weight loss and resolution of obesity-related comorbidities 
when compared with intensive medical and lifestyle inter-
ventions [4–6].

The concept of bariatric surgery emerged during the 
1950s when procedures that involved small intestine resec-
tion were noted to result in weight loss [7–9]. The first bari-
atric procedures were, therefore, designed to specifically 
induce weight loss through pure malabsorption somewhat 
predictably these procedures led to severe nutritional defi-
ciencies and metabolic consequences. From the observation 
that patients undergoing gastric resection and/or bypass for 
peptic ulcer disease tended to lose weight, Mason and col-
leagues performed the first gastric bypass procedure in 1967 
[10, 11]. This procedure combined reduced stomach capac-
ity (restriction) and decreased digestion forming the basis 
for subsequent “malabsorptive” and “restrictive” procedures 
[10]. However, 50 years on, it is now accepted that most 
bariatric procedures engender weight loss and metabolic 
improvements by mechanisms other than restriction and/or 
malabsorption.

Over the past decade, the effectiveness of bariatric sur-
gery has resulted in a marked increase in the number of 
procedures undertaken worldwide, with approximately 
580,000 operations performed in 2014 [12]. The surgical 
procedures undertaken are continuously evolving, based 
on technical advances, efficacy data, short-term and long-
term complication rates, and increased understanding of 
the physiology underpinning their success. Currently, the 
most common procedures undertaken globally are sleeve 
gastrectomy (SG) (45.9%) and Roux-en-Y gastric bypass 
(RYGB) (39.6%), and these two procedures form the 
focus of this review. Purely restrictive procedures, such 
as adjustable gastric banding, are now less commonly per-
formed (7.4%) [12] (Fig. 1).

Despite the increasing use of bariatric surgeries, the 
underlying mechanisms remain incompletely understood. 
Post-operative weight loss is highly variable [13] and 
many studies suggest that the total amount of weight loss 
plays a major role in determining glycaemic improvements 
and remission of comorbidities after surgery [14]. Given 
the difficulty of accessing bariatric surgery in many coun-
tries, it is crucial to identify patients who may benefit the 
most from surgery and to tailor the surgical procedure to 
the individual patient to maximise health outcomes. To 
achieve this aim, we need to gain a greater understand-
ing of the mechanisms underlying the sustained weight 
loss produced by bariatric surgery, procedure-related 

Fig. 1   Schematic diagram 
illustrating the normal upper GI 
anatomy (a) and the two most 
commonly performed bariatric 
surgical procedures in the world 
with relative percentages. The 
metabolic procedures: b RYGB 
and c SG (surgical technique 
described in details in the main 
text). RYGB were the 39.6% 
and SG were the 45.9% of the 
total procedures performed 
in 2014 [12]. RYGB Roux-en-
Y gastric bypass, SG Sleeve 
gastrectomy
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differences and how these interact with the patient’s biol-
ogy. This review provides an overview of mechanisms, 
suggested to contribute to weight loss after RYGB and SG.

Roux‑en‑Y gastric bypass

In RYGB, the stomach is divided generating a small gas-
tric pouch (20–30 mL), which is then anastomosed with the 
mid-jejunum, creating the Roux or alimentary limb. Ingested 
nutrients thus bypass most of the stomach, duodenum, and 
the proximal jejunum. Anastomosis of the biliopancreatic 
limb with the jejunum allows drainage of bile acids (BA) 
and pancreatic secretions, which mix with the nutrients in 
the jejunum (common limb) [15] (Fig. 1). A technically 
easier version of the standard RYGB, the one anastomosis 
gastric bypass (OAGB) is gaining favour (approximately 
10,400 procedures worldwide in 2014, 1.8% of all bariatric 
procedures) but mechanistic studies and long-term outcome 
studies are awaited and OAGB will not be part of this review 
[12].

Sleeve gastrectomy

Sleeve gastrectomy (SG), was initially performed as a first-
stage procedure to reduce weight in patients with a BMI of 
greater than 50 kg/m2 and was intended as a purely restric-
tive procedure. However, the significant sustained weight 
loss and metabolic benefits obtained by SG led to its adop-
tion as a standalone procedure. SG involves transection 
along the greater curvature creating a tube-like new stomach 
removing the fundus and body [16] (Fig. 1). Gastric contents 
pass rapidly into the duodenum. SG has become the most 
common bariatric procedure because of the easier technique, 
shorter operation time, fewer surgical and nutritional com-
plications, and similar short-term weight loss and clinical 
outcomes compared with RYGB [12].

Weight loss and metabolic benefits 
after RYGB and SG

It has been clearly demonstrated that bariatric surgery is an 
effective treatment for severe obesity engendering marked 
weight loss, sustained in the long term when compared to 
calorie-restricted dieting. The 20-year outcome data from the 
Swedish Obese Subjects (SOS) study showed that patients 
who received bariatric surgery achieved a significantly 
greater mean body weight reduction of approximately 18% 
compared with approximately 1% in patients who received 

standard medical treatment through their local health centres 
[5]. RYGB patients were able to maintain more than 25% 
of their total weight loss after 20 years (SG was not per-
formed yet when the study started) [5]. Multiple retrospec-
tive uncontrolled observational studies and also randomised 
clinical trials (RCTs) have demonstrated the superiority of 
bariatric surgery both in terms of weight loss outcomes and 
resolution of comorbidities when compared with intensive 
medical and lifestyle interventions [4, 17]. The 5-year results 
from the STAMPEDE RCT, which recruited patients with 
obesity and T2D, clearly showed how bariatric surgery was 
more effective than intensive medical therapy in inducing 
weight loss and in decreasing, or even resolving, hypergly-
cemia [4].

A limited number of RCTs have compared the efficacy 
of RYGB against SG with regards to weight loss outcomes 
and resolution of obesity-related comorbidities, especially 
T2D. The STAMPEDE trial, which was not powered to 
detect differences between procedures, reported that RYGB 
was associated with greater weight loss and a need for 
fewer T2D medications after 5 years compared with SG. 
This is interesting considering that 3-year results from the 
same authors and from other short-term studies showed 
similar results for the two procedures [17–19]. The SM-
BOSS RCT reported no significant weight loss difference 
between the two procedures at 5 years post-surgery [20]. The 
5-year results from the SLEEVEPASS RCT showed how, 
although not statistically significant, RYGB was associated 
with greater weight loss, T2D remission, discontinuation 
of medications for dyslipidaemia and hypertension, the lat-
ter reaching statistical significance [21]. The 5-year results 
from the Strasbourg RCT confirmed this trend showing that 
RYGB resulted in more stable weight loss when compared 
to SG [22]. Furthermore, a recent meta-analysis including 
15 RCTs reported that RYGB may provide a greater degree 
of weight loss at 2–5 years post-operatively compared with 
SG [23]. Interestingly, the difference in weight loss between 
RYGB and SG groups increased with time. Another small 
2-year RCT reported that despite similar weight loss results, 
RYGB reduced truncal fat compared to SG. This differential 
impact upon truncal fat might in part explain why RYGB 
leads to greater glycaemic improvement than SG despite 
similar weight loss. However, larger studies are needed to 
investigate this finding [24].

The physiology of body weight regulation

Feeding behaviour is determined by homeostatic and 
reward-related brain centres that continually integrate 
peripheral signals relating to energy stores and nutrient 
availability [25] (Fig. 2). Obesity results when energy 
intake chronically exceeds energy expenditure, which in 
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turn may be due to an alteration of the homeostatic or 
hedonic system or both [26]. Peripheral energy signals 
are classified as long term, such as leptin and insulin, 
which provide information regarding energy stores and 
short term, including nutrient and meal-derived energy 
availability messages [25]. Gut hormones are secreted 
from the GI enteroendocrine cells in response to nutri-
ent ingestion and act as regulators of energy balance and 
glucose homeostasis [27]. The gut hormones, peptide 
YY3-36 (PYY) and glucagon-like peptide-1 (GLP-1), are 

secreted from enteroendocrine L cells present throughout 
the GI tract, in response to nutrient ingestion [27, 28]. 
Both PYY and GLP-1 have an appetite-suppressing effects, 
modulating neural activity within homeostatic and reward 
brain regions [28–30]. In addition, both PYY and GLP-1 
impact upon glycaemic regulation [31]. GLP-1 is one of 
the key mediators of the incretin effect (the augmenta-
tion of insulin secretion after oral as opposed to intra-
venous administration of glucose) [29]. Furthermore, 
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Fig. 2   Schematic diagram illustrating the mechanisms involved in 
regulating feeding behaviour. Nutrient entry into the GI tract causes 
stomach and intestine distension, secretion of pancreatic enzymes 
and BA, altered enteric and vagal nerve signalling and exposure of 
gut enteroendocrine cells to nutrients with altered circulating gut 
hormone levels (e.g. decrease in orexigenic hormone ghrelin and 
increase in anorectic hormones PYY3-36 and GLP-1). Gut-derived 
signals (nutrients, hormones, and neural) and adipokines (e.g. lep-
tin, IL-6, TNF-alpha and adiponectin) act directly and indirectly 
upon brainstem and hypothalamic arcuate nuclei (first order neurons: 
orexigenic NPY/AgRP and anorexigenic POMC/CART). ARC neu-
rons interact with second order neurons in the PVN, and to the LHA. 
All those mechanisms are involved in the regulation of homeostatic 

hunger. Social factors, emotion, reward, pleasure, increased food 
availability and sensory cues can influence brain reward and higher 
cognitive brain regions leading to altered feeding behaviour (hedonic 
hunger). Taste and olfactory signals can also influence energy intake 
acting on both homeostatic and brain reward systems. Insulin leptin, 
GLP-1, PYY and ghrelin are present in saliva with cognate receptors 
on taste buds and olfactory neurons. AgRP agouti-related peptide, 
ARC​ arcuate nucleus, CART​ cocaine and amphetamine-regulated 
transcript, FGF-19 fibroblast growth factor-19, GLP-1 glucagon-like 
peptide 1, IL-6 interleukin-6, LHA lateral hypothalamic area, NPY 
neuropeptide Y, PNS peripheral nervous system, PVN paraventricu-
lar nucleus, PYY3-36 peptide tyrosine–tyrosine 3-36, POMC pro-opi-
omelanocortin, SNS sympathetic nervous system



121Journal of Endocrinological Investigation (2019) 42:117–128	

1 3

GLP-1-based medications are used to treat people with 
T2D and more recently obesity [32].

In contrast to the anorectic actions of PYY and GLP-1, 
ghrelin, produced primarily by P/D1 cells in oxyntic glands 
in the gastric fundus, stimulates appetite and energy intake. 
Circulating ghrelin levels increase in the fasted state and 
decrease post-prandially proportionally to the amount of 
ingested food [33]. Ghrelin also acts on homeostatic and 
reward centres, and elevations of ghrelin levels can enhance 
the hedonic responses to eating [34].

BA are produced in the liver, stored in the gallbladder 
and secreted into the duodenum upon nutrient ingestion. 
Their main role is the facilitation of micelle formation pro-
moting the digestion of dietary fat and fat-soluble vitamins. 
More recently, BA have also been shown to play a role in 
regulating glucose and energy homeostasis [35]. BA activate 
GLP-1 secretion via activating G protein‐coupled receptors 
(TGR5) on L cells and fasting total circulating BA levels are 

positively correlated with postprandial GLP-1 levels [36]. 
BA also act on farnesoid X receptor (FXR) present in pan-
creatic β cells increasing insulin release [37]. BA activation 
of intestinal FXR cells stimulates the secretion of fibroblast 
growth factor-19 (FGF-19), a protein that contributes to 
improved peripheral glucose disposal and lipid homeostasis 
leading to reduced weight and increased metabolic rate [38, 
39]. In animal studies, BA supplementation has been shown 
to reduce weight gain, [40] and postprandial BA levels are 
inversely related with body fat mass [41]. Thus, the physi-
ologic effects of BA likely extend beyond the gut and pan-
creas with TGR5 receptors also located on skeletal muscle.

The human gut hosts trillions of microorganisms [42]. 
Gut microbiota can affect energy absorption, through alter-
ing intestinal mucosal permeability, energy expenditure by 
intracellular thyroid hormone activation via FXR signal-
ling [40] and immunologic systems of their human hosts 
[43]. Diet, antibiotic exposure and other environmental 

Fig. 3   Schematic diagram illustrating the different biological changes 
induced by weight loss obtained through dieting (upper part) com-
pared to bariatric/metabolic surgery (lower part). Powerful compen-
satory biological changes contribute to the high rate of weight recidi-
vism observed following lifestyle intervention weight management. 
Many homeostatic mechanisms act to defend higher body weight, 
and these includes hormonal alterations and a decreased energy 
expenditure leading to increased hunger and energy consumption. In 

contrast, bariatric surgery leads to a favourable biology that includes 
increased satiety hormones, reduced ghrelin, enhanced BA secretion 
and a “lean” microbiota. Together these mechanisms lead to reduced 
hunger and a shift towards healthier food options with a resetting of 
body weight “set point” to a lower level facilitating meaningful and 
sustained weight loss. GLP-1 glucagon-like peptide 1, PYY3-36 pep-
tide tyrosine–tyrosine 3-36. *Suggestion that leptin sensitivity may 
improve References for this figure [5, 60, 96]
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factors can in turn affect the diversity of the microbiota 
and their function [43].

Taste and olfactory signals can impact on energy intake 
by influencing food selection [44]. There is a close interac-
tion between signals of energy homeostasis, and taste and 
smell. Insulin leptin, GLP-1, PYY and ghrelin have been 
found in saliva and their cognate receptors identified on 
taste buds and olfactory neurons [44]. Rewarding food-
related sensory stimuli can override satiety signals leading 
to excess energy intake. The latter leads to deregulation of 
the homeostatic mechanisms that normally control body 
weight predisposing individuals to gain more weight [34] 
(Fig. 3).

The obese state: pathophysiologic changes

Obesity is the result of a chronic positive energy balance 
[45]. Once the obese state is fully established, many patho-
physiologic changes occur including leptin and insulin 
resistance together with reduced circulating plasma PYY 
and GLP-1 levels in response to nutrient ingestion. The 
postprandial suppression of circulating ghrelin is also 
reduced. Obesity has also been shown to blunt the rise in 
circulating postprandial BA levels [46].

A dysbiotic relationship between host and microbiome 
has been suggested to contribute to the development of 
obesity [47], with profound differences found between 
the microbiome composition of obese and lean individu-
als [48]. Obesity is associated with the relative increase or 
reduction of certain bacterial species and the importance 
of the relative proportions of those species remains an 
area of active investigation. Transplantation of gut bac-
teria from obese mice to normal weight germ-free mice 
results in weight gain in the recipients [49]. Conversely, 
faecal transplantation from lean human donors to recipi-
ent patients with metabolic syndrome led to improvements 
in insulin sensitivity. A dysbiotic relationship may affect 
host energy and nutrient metabolism altering intestinal 
mucosal permeability, promoting increased fat storage in 
adipose tissue [50], by enhancing the absorption of short-
chain fatty acids derived by otherwise indigestible luminal 
polysaccharides and by triggering inflammatory responses 
through a process referred to as “metabolic endotoxemia” 
[51, 52].

The neural response to food cues is altered in people 
with obesity compared to people with normal weight. 
This has been confirmed by brain-imaging studies show-
ing an increased stimulation of central reward pathways 
in response to eating or food cues [26]. In addition, there 
is evidence that eating behaviour in people with obesity 
becomes dissociated from perceptions of satiety and hun-
ger [53, 54].

Biological changes that favour weight 
recidivism following lifestyle interventions

Lifestyle interventions lead to weight loss. However, 
people with overweight and obesity find it very hard to 
maintain this weight loss in the long term. In response 
to weight loss, which throughout evolution would have 
been a threat to survival, multiple powerful biological 
changes occur that lead to increased hunger, enhanced 
neural responses to food cues and heightened drive to con-
sume energy-dense foods. Compensatory changes include 
decreased energy expenditure, due to reduced lean mus-
cle mass and reduced sympathetic activity [55], reduced 
circulating leptin, GLP-1 and PYY levels with increased 
ghrelin levels [54], and altered brain neural response to 
food cues. Impaired circulating BA levels, an altered gut 
microbiome, and decreased vagal signal transmission are 
also described [56]. These changes are summarised in 
Fig. 3 and contribute to the high rate of weight recidivism 
observed following lifestyle intervention weight manage-
ment programmes [57].

Biological changes that favour sustained 
weight loss following SG and RYGB

The multifactorial mechanisms promoting weight loss fol-
lowing RYGB/SG remain incompletely understood. How-
ever, it is clear that the beneficial effects are not achieved 
through malabsorption and restriction alone [58, 59]. 
Reduced energy intake, as a result of altered eating behav-
iour, is recognised as the main driver for weight loss. In con-
trast to the compensatory biological changes that are seen 
following weight loss induced by lifestyle interventions, SG 
and RYGB are associated with reduced hunger and reduced 
neural responsiveness to food cues. Moreover, food becomes 
less rewarding and there is a shift in preference from energy-
dense food rich in fat and sugar to healthier options enabling 
patients to adopt a favourable eating behaviour [60] (Fig. 3). 
These changes in eating behaviour are the result of multiple 
mechanisms, some of which are common to both SG and 
RYGB, and others that are procedure specific. These are 
summarised in Fig. 4.

RYGB and SG impact on GI‑derived signals

Gut hormones

In contrast to the unfavourable gut hormone changes that 
accompany weight loss induced by lifestyle intervention, 
RYGB and SG are associated with reduced ghrelin levels 
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and increased circulating meal-stimulated PYY and GLP-1 
levels. These gut hormone changes precede and are inde-
pendent from weight loss and are sustained up to 10 years 
post-operatively [61, 62].

Ghrelin

Since the landmark publication by Cummings et al. [63] 
showing that circulating ghrelin levels rose with calorie-
restricted diets but are markedly reduced post-RYGB, many 
studies have focused their attention on investigating the role 
of gut hormones as mediators of the beneficial effects of sur-
gery. Whilst some controversy exists regarding post-RYGB-
circulating ghrelin levels, these differences most likely 
reflect methodological variability, duration after surgery and 
sample processing techniques [64]. SG leads to sustained 
and greater reduction in circulating acyl-ghrelin levels than 
RYGB because of the removal of the fundus of the stomach 
where most ghrelin-producing cells are located [62].

GLP‑1 and PYY

Following RYGB, nutrient-stimulated circulating levels 
of PYY and GLP-1 are markedly elevated, most likely 
as a result of increased nutrient stimulation of L cells as 

a consequence of anatomical rearrangement. SG leads to 
rapid gastric emptying and enhanced exposure of L cells to 
nutrients with increased nutrient-stimulated PYY and GLP-1 
levels, but to a lesser extent than following RYGB.

Patients with poor post-operative weight loss reported 
increased subjective hunger and lower satiety levels cou-
pled with lower circulating PYY, GLP-1 and higher ghrelin, 
when compared with people with good weight loss [65]. 
These findings imply that gut hormones may play a causal 
role in mediating weight loss following RYGB and SG. This 
hypothesis is supported by three lines of evidence: first, the 
administration of the somatostatin analogue octreotide to 
people following RYGB leads to increased appetite and 
energy intake, and weight gain [66]; second, combined 
administration of di-peptidyl peptidase inhibitor (DPP4) 
inhibitor and exendin 9-39 (inhibiting the formation of 
PYY3-36 and blocking GLP-1 action) leads to increased 
food intake after RYGB [67]; and third profound anorexia 
and excessive weight loss post-SG have been shown to be 
associated with markedly elevated circulating fasted and 
post-meal PYY levels [68].

Fig. 4   Schematic diagram illustrating RYGB and SG and the mecha-
nisms leading to weight loss and resolution of comorbidities. For 
every mechanism the effect of the procedure is represented with a “↑” 
when stimulating or “↓” when suppressing. A “+” means that the pro-
posed mechanism is present only after surgery when compared to the 
pre-operative period. When the effect is stronger for one of the two 

procedures there is a double arrow compared with a single one. When 
the effect is missing for one procedure it means that the mechanism is 
procedure specific. RYGB Roux-en-Y gastric bypass, SG Sleeve gas-
trectomy, GLP-1 glucagon-like peptide 1, PYY3-36 peptide tyrosine–
tyrosine 3-36, GIP gastric inhibitory polypeptide, FGF-19 fibroblast 
growth factor-19, CCK cholecystokinin
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Other gut hormones

Other gut hormones with effects on feeding behaviour have 
also been studied. However, the extent of their role in medi-
ating the beneficial effects of RYGB and SG are unclear. For 
completeness, we have summarised these below:

Glucose-dependent insulinotropic polypeptide (GIP) is an 
incretin peptide hormone secreted by K-cells in the proximal 
small intestine. GIP increases postprandial glucagon secre-
tion, intestinal glucose absorption and storage of fatty acids 
in adipose tissue [69]. Previous studies have suggested that 
patients with T2D are resistant to the effects of GIP and this 
GIP resistance has precluded the development of GIP-based 
T2D therapies. Following RYGB, a reduction in postpran-
dial GIP levels has been reported [70, 71], most likely as a 
consequence of the K-cells being bypassed. In addition, a 
restoration of GIP sensitivity has also been suggested [71]. 
The effects of SG on circulating GIP levels have not been 
studied sufficiently.

Oxyntomodulin, a pro-glucagon-derived peptide with 
anorectic effects, is increased early after RYGB [27]. This 
effect has not been documented after SG.

Cholecystokinin (CCK), another anorexigenic hormone, 
has been suggested to act synergistically with leptin, and 
amylin, a pancreatic hormone co-secreted with insulin [72]. 
Increased levels of CCK following RYGB and SG have been 
reported. In one study, SG was associated with a larger CCK 
increase compared to the RYGB [73].

Gastrin is a peptide hormone that stimulates the secretion 
of gastric acid from the parietal cells of the stomach, aids in 
gastric motility and reduces appetite. There is some evidence 
suggesting that postprandial gastrin levels fall after RYGB 
[74] while SG may be associated with increased levels [75].

Neurotensin is co-expressed in enteroendocrine cells with 
GLP-1 and PYY. Circulating neurotensin levels increase 
after RYGB and have also been proposed to contribute to 
eating behaviour changes post-RYGB [76].

Additional gut hormones, such as ileal-derived FGF-19, 
(discussed below) may also contribute to weight loss and 
metabolic changes following bariatric surgery.

Bile acids

Following RYGB and SG, changes in circulating BA levels 
and composition are reported and these changes are sug-
gested to contribute to weight loss and improved glucose 
metabolism. Indeed, in animal models, rerouting bile to the 
distal small bowel by transposing the common bile duct 
results in improved body weight, glucose metabolism, and 
hepatic steatosis, and increases in plasma BA similar to 
those seen after RYGB. Despite their anatomical differences, 

RYGB and SG exert similar effects on BA, altering both 
their composition and circulating concentrations; however, 
the changes observed following SG are more modest [35, 
77]. The exact mechanism responsible for elevated BA is 
unclear following RYGB and SG, but animal work suggests 
that an accelerated nutrient flow to the distal small intes-
tine is a key mechanism [78]. The rise in circulating BA 
levels appears even greater several months post-operation 
and intestinal cellular adaptations may play a major role 
in explaining elevated postprandial BA levels [79]. These 
changes could be due to increased hepatic synthesis or 
altered enterohepatic recirculation of bile, or both. Meta-
bolic procedures may also alter intestinal gut microbiota, 
which are key regulators of BA conjugation and second-
ary BA formation [80]. Post-surgery increased BA diversity 
might also impact on GLP-1 secretion and energy expendi-
ture. Binding of BA TGR5 receptors in skeletal muscle and 
brown adipose tissue may contribute to an enhanced action 
of thyroid hormones by increasing energy expenditure [81]. 
Therefore, BA could contribute to weight loss and metabolic 
improvements after bariatric surgery through independent 
and dependent regulatory mechanisms. In RYGB subjects, 
bacterial overgrowth in the biliopancreatic limb may gener-
ate secondary BA species with differing affinity for FXR or 
TGR5 and different metabolic effects [82]. FXR gene knock-
out mice regained weight lost after SG, suggesting that the 
FXR plays a key role in mediating weight loss and metabolic 
improvements after SG [81]. Whether FXR signalling and/
or FGF-19 contributes to the beneficial effects of bariatric 
surgery in humans is uncertain at present. Finally, a study 
measured serum BA levels before and after bariatric surgery 
showed that they were significantly increased only at 1-year 
post‐surgery; whereas, the substantial increase in PYY and 
GLP-1 levels could be observed as soon as 1-week post-
surgery. This finding shows that increased plasma BA may 
not contribute to the early metabolic improvements observed 
after bariatric surgery [77]. Weight‐loss surgery can also 
affect the interplay between BA and gut microbiota, which 
can contribute to the metabolic effects observed in the post-
operative period [83].

Gut microbiota

Following RYGB and SG, the intestinal microbiome is 
altered. Animal studies with faecal transplant from RYGB-
treated to germ-free mice resulted in significantly greater 
weight loss suggests that the altered microbiome per se 
contributes to weight loss [84]. Significant differences exist 
between the rodent and the human microbiome, and the 
strict relationship between microbiome and BA in humans 
remains to be clarified. The profound post-surgical changes 
in the microbiome are probably the result of anatomical, 
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dietary and systemic changes (weight loss). In rodents, 
these changes can be detected as early as 7 days after RYGB 
[80], with similar patterns observed in humans [85]. The 
specific and procedure-related mechanisms responsible for 
post-surgery gut microbiota changes remain to be deline-
ated [86]. In a recent study, Murphy and colleagues found 
that RYGB produces greater and more favourable changes 
in gut microbiota functional capacity than SG [87], at 1-year 
post-operatively, despite similar weight loss. Another study 
by Medina confirmed a differential effect of RYGB and SG 
on gut microbiota species despite equal weight loss [88]. 
SG seems to have fewer effects on the intestinal microbiota 
compared to RYGB, consistent with another study carried 
out in rodents [89]. This could be due to the lesser physi-
cal manipulations of the intestinal tract of SG compared 
to RYGB. It is difficult to conclude that gut bacteria are 
essential for the effects of metabolic procedures, but we can 
conclude that changes in gut microbiota induced by RYGB 
are sufficient to produce weight loss [83].

Other mechanisms

Enteroplasticity

Enteroplasticity refers to the post-surgical adaptations, 
including remodelling of the intestinal mucosa, morphologic 
changes, and altered innervation [35]. There is evidence that 
L cells proliferate following RYGB and SG and that L cells 
exhibit increased nutrient sensitivity, releasing more PYY 
and GLP-1 for a given nutrient stimulant [90].

Glucose uptake

RYGB was recently reported to enhance SGLT1-dependent 
intestinal glucose uptake in the common limb and utilisa-
tion, leading to overall improvements in systemic glucose 
control [91]. Whether this alteration in glucose absorption 
is sufficient to affect whole-body glucose use, gut hormones 
secretion or weight loss remains uncertain [92].

Taste and smell

Post-surgery change in appetite, taste and smell may con-
tribute to food preference changes following RYGB and SG. 
Interestingly, early data suggest that RYGB and SG may 
differentially impact upon subjective changes in appetite, 
taste, olfaction and food aversion post-operatively. Large 
longitudinal studies combining subjective and objective 

measures of taste and olfaction are warranted to detect pos-
sible procedures-related effects [93].

Vagus nerve

Afferent vagal nerve fibres in the stomach are sensitive to 
mechanical stretch related to food ingestion and signal to 
the brain [94]. Following RYGB, vagal fibres to the gastric 
pouch remain largely intact [95], whereas SG removes this 
pathway. Moreover, neurophysiological studies suggest that 
vagus nerve signalling also increases post-RYGB [56] and 
these changes may reduce food intake. These adaptations 
may contribute to the sustained metabolic effects of bariatric 
surgery.

Conclusion

Bariatric surgery is the most effective weight loss strategy 
for people with severe obesity leading to reduced mortal-
ity and improvement in obesity-associated comorbidities. 
However, although bariatric surgery is highly effective, at 
the individual level, clinical response is highly variable. 
There are profound anatomical differences between RYGB 
and SG which in turn impact upon the mechanisms under-
lying the weight-reducing effects of these two procedures. 
Gut hormones, BA, gut microbiota and other mechanisms, 
many of them to be identified yet, contribute to the dura-
bility of decreased appetite and the sustainable weight loss 
following both RYGB and SG. Studies comparing weight 
loss suggest that after 3 years, a subtle weight loss differ-
ence may exist in favour of RYGB. Recent data suggest 
that longer-term health improvements are related to the 
degree of sustained weight loss achieved, thus highlighting 
the need to maximise post-surgery weight loss. A greater 
understanding of the procedure-related mechanisms and 
interaction with a person’s genetics and pre-surgery phe-
notype will allow surgical procedure choice to be tailored 
to the individual to maximise the weight loss and meta-
bolic outcomes, and will facilitate the discovery of novel 
non-surgical treatments for people with obesity.
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