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Adenocarcinomas are the most prevalent subtype of non-
small cell lung cancer, making it the most common 

true-positive finding in a given noncontrast lung cancer 
screening population (1), whereas noncalcified granulomas 
represent the most common and possibly most confound-
ing false-positive finding (2,3). Differentiating these two 
pathologic conditions is one of the most challenging issues 
faced by thoracic radiologists due to their similar appear-
ance on CT images. A majority of noncalcified granulomas 
(,1 cm in size), like adenocarcinomas, also tend to appear 
fluorodeoxyglucose avid at PET/CT during their acute 
phase of infection (4).

There is a substantial interest in the use of radiomics 
(computer-extracted imaging features) (5) on CT images 

for distinguishing between benign and malignant nod-
ules on lung CT images (6–9). Hawkins et al (9) dem-
onstrated that shape features of lung nodules can help 
to detect malignant nodules on screening CT images. 
However, lobulated shape features of malignant nodules 
can also be seen in 25% of benign nodules (10). The ad-
vent of deep learning algorithms, particularly convolu-
tion neural networks (CNNs), has emerged as a popular 
methodology for lung nodule classification (11,12). Jin 
et al (11) constructed a three-dimensional CNN on 888 
CT images to achieve a sensitivity of 92% and to reduce 
false-positive detections in pulmonary nodules. Another 
CNN-based study obtained an error rate of 4.5% in clas-
sifying malignancy in 776 nodules (12).
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Purpose:  To evaluate ability of radiomic (computer-extracted imaging) features to distinguish non-small cell lung cancer adenocar-
cinomas from granulomas at noncontrast CT.

Materials and Methods:  For this retrospective study, screening or standard diagnostic noncontrast CT images were collected for 290 
patients (mean age, 68 years; range, 18–92 years; 125 men [mean age, 67 years; range, 18–90 years] and 165 women [mean age, 
68 years; range, 33–92 years]) from two institutions between 2007 and 2013. Histopathologic analysis was available for one nodule 
per patient. Corresponding nodule of interest was identified on axial CT images by a radiologist with manual annotation. Nodule 
shape, wavelet (Gabor), and texture-based (Haralick and Laws energy) features were extracted from intra- and perinodular regions. 
Features were pruned to train machine learning classifiers with 145 patients. In a test set of 145 patients, classifier results were com-
pared against a convolutional neural network (CNN) and diagnostic readings of two radiologists.

Results:  Support vector machine classifier with intranodular radiomic features achieved an area under the receiver operating char-
acteristic curve (AUC) of 0.75 on the test set. Combining radiomics of intranodular with perinodular regions improved the AUC 
to 0.80. On the same test set, CNN resulted in an AUC of 0.76. Radiologist readers achieved AUCs of 0.61 and 0.60, respectively.

Conclusion:  Radiomic features from intranodular and perinodular regions of nodules can distinguish non-small cell lung cancer ad-
enocarcinomas from benign granulomas at noncontrast CT.
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Data
A subset of this data has been previously published (16–18), in 
which nodule segmentation and classification by using intrano-
dular, shape, and vessel tortuosity features were studied in 195 
patients. Our work incorporates perinodular radiomics, evalu-
ates a deep learning approach, and assesses the human-machine 
comparison. Between January 1, 2007 and December 31, 2013, 
radiologic image archives of participating institutions were 
searched consecutively to identify 471 patients who either had 
a granuloma or an adenocarcinoma as assessed with histopatho-
logic analysis. Patients with the following criteria were included: 
availability of pathologic report through thoracoscopic wedge 
resection, presence of a screening or diagnostic thoracic CT im-
age in axial view, and presence of a solitary pulmonary nodule. 
To this cohort of 405 patients, we applied the exclusion criteria 
of removing images with CT artifacts (n = 48), images with pres-
ence of contrast enhancement (n = 37), and patients who under-
went biopsy prior to imaging (n = 30). The final cohort had 290 
patients (Fig 2), which was randomly divided into a training set 
that consisted of 145 patients with 73 adenocarcinomas and 72 
granulomas and a test set that contained 72 adenocarcinomas 
and 73 granulomas. The CT images were acquired from Siemens 
(Sygno; Erlangen, Germany), General Electric (Lightspeed16; 
Waukesha, Wis), Philips (iCT; Cleveland, Ohio), or Toshiba 
(Aquilion; Tochigi-ken, Japan). Further details regarding image 
acquisition are provided in section 1 of Appendix E1 and Table 
E1 (both online).

Nodule Segmentation and Feature Extraction
The nodule was identified by a single board-certified cardio-
thoracic radiologist (R.G., with 20 years of experience) and 
the region of interest was manually segmented (R.G.) across 
all of the two-dimensional sections of the nodule with a hand-
annotation tool in axial view by using an open-source soft-
ware (3D Slicer, version 4.7; National Institutes of Health–
funded; https://www.slicer.org) (19,20). The radiologist was 
blinded to pathologic diagnosis but was provided with clini-
cal information such as age, and was also given the option to 
vary the window and level setting within this software to ef-
ficiently annotate the nodule. From this intranodular region, 
two-dimensional texture features were extracted from a single 
representative section that had the largest nodule area (21). 
To assess for segmentation variability, two additional readers 
(P.R., a radiologist with 11 years of experience in thoracic 
radiology and K.B., a physician with 3 years of cardiothoracic 
research experience) were recruited to independently segment 
a random cohort of 60 nodules. Further details can be found 
in section 4 of Appendix E1 (online).

After the intranodular mask was annotated, depending on the 
pixel size, a morphologic operation of dilation was performed to 
capture the region outside the nodule up to a radial distance of 30 
mm. The intranodular mask was then subtracted from this dilated 
mask to obtain a ring of lung parenchyma immediately around 
the nodule (see Fig 3). Further details about perinodular mask 
generation are provided in section 2 of Appendix E1 and Figure 
E1 (both online). From this 30-mm perinodular region, features 
were extracted (Fig 3, C) and then divided into 5-mm rings (Fig 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = con-
fidence interval, CNN = convolution neural network

Summary
Perinodular and intranodular radiomic features corresponding to 
texture and shape (radiomics) were evaluated to distinguish non-
small cell lung cancer adenocarcinomas from benign granulomas at 
noncontrast CT.

Implications for Patient Care
nn A radiomic machine classifier could potentially aid in distinguish-

ing granulomas from adenocarcinomas at lung CT.
nn Radiomics analysis of lung CT has potential to reduce the number 

of interventions and repeat imaging scans due to benign granulo-
mas misidentified as indeterminate or suspicious.

Although radiomic or CNN-based analysis to distinguish 
benign and malignant lung nodules is extensive, no specific em-
phasis has been given to distinguish granulomas from adenocar-
cinomas on CT images. In a single-site study (13) of 55 nodules, 
the role of intranodular texture for distinguishing granulomas 
from adenocarcinomas was evaluated. However, we are not 
aware of any work that has attempted to collectively evaluate 
the role of nodule shape and textural patterns of heterogeneity 
within the nodule and also assess the perinodular habitat outside 
the nodule to classify granulomas from adenocarcinomas. On a 
small data set of 50 nodules with unconfirmed diagnosis (14), 
pulmonary parenchyma was evaluated to identify 39 significant 
radiomic features but lacked an independent validation set for 
final determination of algorithm utility.

Density of tumor-infiltrating lymphocytes and tumor-asso-
ciated stromal macrophages in the stroma around tumor has 
been shown to be associated with likelihood of metastasis (15). 
We hypothesized that the peritumoral region may possess this 
valuable information to improve the efficiency of intranodular 
radiomic analysis. Our study attempted to evaluate whether 
radiomic features associated with heterogeneity patterns in the 
immediate vicinity outside of the nodule (perinodular habitat) 
was predictive of malignancy on noncontrast CT images, and 
whether the combination of peri- and intranodular radiomic 
patterns together was more predictive of nodule malignancy 
compared with intranodular measurements alone. A machine 
classifier was trained on a cohort of 145 patients to evaluate peri-
nodular versus a combination of intra- and perinodular radiomic 
features for discriminating adenocarcinomas from granulomas 
on noncontrast CT images. We also compared the approaches 
against a CNN. All approaches were then independently evalu-
ated on a separate cohort of 145 patients. An overview of our 
methodology is illustrated in Figure 1, A.

Materials and Methods
Our study is Health Insurance Portability and Accountability  
Act–compliant and institutional review board–approved, where 
a retrospective chart review with de-identified data was used 
and no protected health information was needed. Thus, need 
for an informed consent from all patients was waived.
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deviation of 1). The detailed description of the features extracted 
(Haralick, wavelet-based Gabor responses, and Laws energy) are 
provided in section 3 of Appendix E1 (online). Table E2 (online) 
details the possible pathophysiologic relevance of these features. 
Table E3 (online) lists the shape features extracted. A pictorial 

3, D) by calculating median, standard deviation, skewness, and 
kurtosis.

Additionally, 12 shape features were also extracted with the 
Matlab platform (version 2015b; Mathworks, Natick, Mass). 
All feature values were normalized (mean of 0 and a standard 

Figure 1:  A, Images show overview of methodology. CT images were retrospectively collected. Region of interest was manu-
ally segmented in axial view to obtain intranodular mask, and perinodular masks were automatically generated for varying 
distances (shown here at 5 mm) outside tumor. Haralick, Laws energy, Gabor texture, and shape features were extracted from 
largest tumor slice. Next, t test was implemented to select top 12 features to train support vector machine classifier and validate 
it on independent set (n = 145). B, Diagram shows features extracted in each experiment before feature selection was imple-
mented. Total of 1776 features were extracted from each solitary pulmonary nodule, with 252 features from intranodular re-
gion, 12 shape features, and 1512 features from perinodular regions (252 features from each of the six perinodular regions).
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Figure 2:   Consolidated Standards of Reporting Trials, or CONSORT, flow diagram of 
patient enrollment, eligibility, and exclusion criteria of data set.

representation of features extracted from each region is shown in 
Figure 1, B.

To extract deep features by using a CNN, two-dimen-
sional patches with a receptive field size of 100 pixels around 
the center of the identified nodule were cropped across all 
slices and fed as input. Deep features were extracted by us-
ing a multilayer LeNet model (22), which consisted of three 
sets of convolutional, activation (rectified linear activation), 
and pooling layers, and a softmax classifier. Figure E7 (on-
line) illustrates these different layers of the LeNet model. 
Further information is provided in section 6 of Appendix 
E1 (online).

Statistical Analysis
Statistical analysis reported in our study was performed with 
Matlab (Mathworks). The t test was implemented as a fea-
ture selection method (23), and to avoid the curse of dimen-
sionality and reduce the risk of overfitting, only the top 12 
performing features with the lowest unadjusted P value (P , 
.05, by using two-sided Wilcoxon rank sum tests) were used 
for further analysis (6).

In the first experiment, to determine 
perinodular imaging features that best dis-
criminated adenocarcinomas from granu-
lomas on CT images, top 12 features were 
used to train linear discriminant analysis, 
quadratic discriminant analysis, support 
vector machine (support vector machine–
linear and radial basis function kernels) 
(24), and random forest classifiers and 
then validated on an independent set (n = 
145) by using the area under the receiver 
operating characteristic curve (AUC) met-
ric. Next, to identify quantitative imag-
ing (intra- and perinodular) texture and 
shape features that best discriminated 
adenocarcinomas from granulomas on 
CT images, similarly to the first experi-
ment, top features were used to train 
multiple classifiers (linear discriminant 
analysis, quadratic discriminant analysis, 
support vector machine–linear and radial 
basis function kernels, and random for-
est) and then validated on the indepen-
dent test set. Unsupervised hierarchical  
clustering was also performed on the test 
set to assess the predictive ability of the 
identified features. These experiments 
were performed by four authors (N. Beig, 
M.K., M.A., and P.P.) in consensus.

To understand the biologic infer-
ence and potentially recognize a possible 
physiologic basis for these top-expressing 
radiomic features, hematoxylin and eo-
sin–stained pretreatment diagnostic core 
biopsy specimens for representative pa-
tients (Fig 4) were qualitatively and inde-

pendently examined by a single board-certified pulmonary 
pathologist (M.Y., with 10 years of experience).

The machine learning classifier was compared against the 
deep learning algorithm by training and validating on a two-
dimensional LeNet-tuned CNN architecture (22) and the 
nodule-evaluating ability of two human readers, who worked 
independently. Reader 1 (P.R.) was a board-certified attending 
radiologist and reader 2 (C.D., with 3 years of experience in 
reading chest CT images) was a pulmonologist. In this single 
readout session, both readers were blinded to the pathologic 
diagnosis and clinical information (ie, age and sex). Readers 
were allowed to go back between the images multiple times as 
required to make their final diagnosis and were also given the 
option to vary the window and level setting to adjust image in-
tensity. Their individual nodule scores (score of 1 was “benign,” 
score of 2 was “mostly benign,” score of 3 was “not sure,” score 
of 4 was “mostly malignant,” and score of 5 was “malignant”) 
were recorded for comparison with the machine learning clas-
sifier. Last, influence of CT acquisition parameters (manufac-
turer, section thickness, type of image) was also assessed for the 
ability to distinguish adenocarcinomas from granulomas.
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frequency Gabor features in adenocarcinomas can be seen when 
compared with granulomas in Figure 5, C. A higher filter response 
of Laws energy (R5S5) was also detected in the peritumoral region 
of adenocarcinomas, which perceives spotlike textural patterns.

By using these top 12 features, highest AUC on the test 
set of 0.74 (95% confidence interval [CI]: 0.57, 0.90) was 
obtained by using the support vector machine classifier with a 
linear kernel. The other performance metrics were accuracy of 
68%, sensitivity of 77%, and specificity of 63% at the operat-
ing point on the receiver operating characteristic curve (see 

Results

Perinodular Radiomics 5 mm from the Nodule 
Discriminate Adenocarcinomas from Granulomas
The most predictive features were found to be within an imme-
diate distance of 5 mm from the nodule. The top 12 radiomic 
feature set obtained from the training set are listed in Table 1. 
Higher expression of low-frequency Gabor features in adenocar-
cinomas was frequently represented, occupying 11 of the top 12 
features (Fig E4 [online]). In Figure 4, C, higher expression of low-

Figure 3:  Images show feature extraction from perinodular region. A, B, Noncontrast CT scans in axial view of adenocarcinoma in a 55-year-
old man and granuloma in a 67-year-old woman, respectively. C, Heat map of Haralick entropy feature that was extracted from lung parenchyma 
(also termed perinodular region of lung nodule) demonstrates, D, various intervals (up to 30 mm of lung parenchyma, outside lung nodule) from 
which radiomic features were extracted as annular rings.

Figure 4:  Images show intranodular and perinodular radiomics of adenocarcinoma in a 61-year-old woman at noncontrast CT (axial view). A, 
Higher spatial resolution image of malignant nodule. B, Top row represents higher expression of Laws energy (E5W5) inside tumor; E5W5 implies 
that Laws energy–based textural patterns of edges (or E ) in horizontal direction and waves (or W ) in vertical direction by using five-pixel by five-
pixel two-dimensional convolution filter. Further information on Laws energy features can be found in Table E2 (online). Bottom row shows repre-
sentative hematoxylin and eosin (H&E) stain of adenocarcinoma (original magnification, 3100), where tumor cells show high nucleus-to-cytoplasm 
ratio with irregularly shaped nuclei. Tumor cells form angulated irregular acini in background of fibrosis. Scant intranodular lymphocytes are pres-
ent. Pigmented macrophages are present within malignant acini. C, Top row represents radiomic heat map of low-frequency Gabor feature, which 
is expressed higher in adenocarcinomas in peritumoral region, and bottom row is H&E stain of adenocarcinoma (original magnification, 3100), 
where increased lymphocytes and macrophages are observed at interface between tumor and normal lung. This “rim” of lymphocytes and macro-
phages is less than 1 mm. D, Shape of entire malignant nodule.
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pendix E1 and Fig E8 [both online]). Weights learned from 
the training phase were then used on the same indepen-
dent test set, and predicted probabilities were used to ob-
tain AUC of 0.76 (95% CI: 0.60, 0.92) with sensitivity and 
specificity of 72% and 76%, respectively.

For the multireader study, reader scores were mapped to 
a classifier probability measure (score 1 of “benign,” 20.20; 
score 2 of “mostly benign,” 20.40; score 3 of “not sure,” 
20.60; score 4 of “mostly malignant,” 20.80; and score 5 
of “malignant,” 21). Readers achieved AUCs of 0.61 and 

Fig E6 [online]). Table 2 lists 
the AUCs of the other classifiers. 
The classification ability of intra-
nodular radiomic features alone 
has been reported in section 5 
of Appendix E1 and Figure E3 
(both online).

Combined Radiomics 
(Intranodular and 
Perinodular Texture 
Features) to Distinguish 
Adenocarcinomas from 
Granulomas
The top 12 radiomic features 
obtained from the training set 
are listed in Table 1. Three fea-
tures were from the perinodu-
lar distance of 5 mm outside 
the tumor, where midfrequency 
Gabor features were prominent 
in granulomas. The remaining 
nine features were picked from 
the intranodular region, where 
seven high-frequency Gabor fil-
ters were expressed higher in the 
granulomas when compared with 
adenocarcinomas. Additionally, 
three Laws energy features from 
the intra- and perinodular regions 
identified microstructure charac-
teristics of wavelike patterns and 
edge enhancement in the adeno-
carcinomas (Fig E5 [online]). In-
terestingly, none of the shape attri-
butes of the nodule were selected.

In a supervised setting, AUC 
of 0.80 (95% CI: 0.65, 0.94) was 
obtained on the test set by using 
support vector machine classifier 
with a linear kernel. This classi-
fier yielded an accuracy of 0.71 
(sensitivity of 74% and speci-
ficity of 68%). When unsuper-
vised hierarchical clustering was 
implemented on the test set, ac-
curacy of 69% was observed with 
sensitivity and specificity of 73% and 67%, respectively (Fig 
6, A). This unsupervised clustering alternatively evaluated the 
combined features, where two distinct patient groups showed 
corroboration between the combined features and pathologic 
diagnosis.

Comparative Deep Learning Model and Multireader 
Study
The CNN model was trained over 100 epochs after which 
the weights were locked down for testing (section 6 of Ap-

Table 1: Top 12 Radiomic Features Identified in Each Experiment to Distinguish  
Adenocarcinomas from Granulomas on CT Images

Feature No. Feature Family Descriptor* Statistic
Nodule Region of  
Feature Extraction† P Value‡

Perinodular Radiomic Features
1 Gabor f = 16, u = p/8 Skewness Perinodular <.001
2 Laws energy R5S5† Median Perinodular <.001
3 Gabor f = 8, u = p/2 SD Perinodular <.001
4 Gabor f = 8, u = 3p/4 Kurtosis Perinodular .001
5 Gabor f = 2, u = p/2 Skewness Perinodular .001
6 Gabor f = 2, u = 3p/4 Kurtosis Perinodular <.001
7 Gabor f = 4, u = p/4 Median Perinodular <.001
8 Gabor f = 4, u = p/8 Kurtosis Perinodular <.001
9 Gabor f = 4, u = p/8 Median Perinodular <.001
10 Gabor f = 2, u = 3p/4 Skewness Perinodular <.001
11 Gabor f = 4, u = p/8 SD Perinodular <.001
12 Gabor f = 2, u = 3p/4 Skewness Perinodular <.001

Combined Radiomic Features
1 Gabor f = 16, u = p/8 Skewness Perinodular <.001
2 Gabor f = 32, u = 3p/4 Kurtosis Intranodular <.001
3 Gabor f = 4, u = 3p/4 Skewness Intranodular <.001
4 Gabor f = 4, u = p/2 Median Intranodular .001
5 Laws energy R5 W5§ Median Perinodular <.001
6 Laws energy W5E5§ Median Intranodular <.001
7 Laws energy S5E5§ Median Intranodular <.001
8 Gabor f = 32, u = 3p/4 Median Intranodular <.001
9 Gabor f = 8, u = p/2 SD Perinodular <.001
10 Gabor f = 32, u = p/2 Median Intranodular <.001
11 Gabor f = 32, u = 3p/8 Skewness Intranodular .003
12 Gabor f = 8, u = 3p/4 Kurtosis Intranodular <.001

Note.—Combined radiomic features include intranodular, perinodular, and shape features. SD = 
standard deviation.
* Data indicates details about the feature (such as f = frequency of the filter, u = orientation of the 
filter with respect to the normal axis). 
† “Intranodular” implies that the texture within the lung nodule was a strong radiomic predictor of 
malignancy status. “Perinodular” (distance of 0–5 mm) indicates the region of the lung parenchyma 
immediately outside the CT nodule that has radiomic-based imaging markers that can differentiate 
adenocarcinomas from granulomas.
‡ P values were computed by using the paired Student t test for continuous variables.
§ Feature descriptors for Laws energy descriptors include all combinations of five one-dimensional 
filters: level (L), edge (E), spot (S), wave (W), and ripple (R). For example, in the perinodular 
radiomic feature experiment, R5S5 (feature number 2) implies that Laws energy-based textural pat-
terns of ripples (R) in the horizontal direction and spots (S) in the vertical direction by using five-
pixel by five-pixel two-dimensional convolution filter was statistically different (P , .001) between 
adenocarcinomas and granulomas. Further information on Laws energy features can be found in 
Table E2 (online).
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Discussion
In this study, we investigated the ability of radiomic features ex-
tracted from intra- and perinodular regions of lung nodules on 
CT images to distinguish adenocarcinomas from granulomas.

We found that in the immediate vicinity of 5 mm outside the 
tumor, low and middle frequencies of Gabor filters had a higher 
response in adenocarcinomas. In the representative hematoxylin 
and eosin–stained images, interface of the tumor had a “rim” of 
densely packed tumor-infiltrating lymphocytes and tumor-asso-
ciated macrophages. At a macroscopic scale, the densely packed 
stromal tumor-infiltrating lymphocytes around adenocarcino-
mas manifest as smooth texture on CT images and potentially 
results in high expression of low-frequency Gabor filters. Simi-
larly, Laws energy features detected heterogeneous patterns of 
spots in adenocarcinomas, potentially detecting higher presence 

0.60, respectively. Details of 
human machine comparison are 
provided in Table E4 of Appen-
dix E1 (online).

Influence of Clinical 
Parameters, CT Image 
Acquisition, and Manual 
Nodule Segmentation
The clinical parameters of smok-
ing status and age were the only 
patient factors that were found 
to be significantly different be-
tween the two nodule classes (as 
shown in Table 3). The influ-
ence of reconstruction kernel on 
CT radiomics has been demon-
strated by several groups (25), and therefore precaution was 
taken to maintain a class balance of reconstruction kernels in 
both the training and test set (Table E1 [online]). Further-
more, trained classifier (n = 145) was independently validated 
to assess CT manufacturer, section thickness, and type of CT 
image (diagnostic or screening). Table 4 lists the AUC values 
for these parameters. The classifier yielded an AUC of 0.82 
(95% CI: 0.64, 0.99) and 0.72 (95% CI: 0.43, 0.99) with 
Siemens (n = 85) and Philips (n = 58) scanners, respectively. 
The highest AUC of 0.75 (95% CI: 0.56, 0.93) was obtained 
on diagnostic images with smaller section thickness (3 
mm). Last, it was found that the top-performing radiomic 
features are largely resilient to variations as a result of reader 
segmentations (section 4 of Appendix E1 and Fig E2 [both 
online]).

Figure 5:  Images show intranodular and perinodular radiomics of granuloma in a 55-year-old man at noncontrast CT (axial view). A, Higher 
spatial resolution image of benign nodule. B, Top row represents lower expression of Laws energy (E5 W5) inside tumor; E5W5 implies that Laws 
energy-based textural patterns of edges (or E ) in horizontal direction and waves (or W ) in vertical direction by using five-pixel by five-pixel two-
dimensional convolution filter. Further information on Laws energy features can be found in Table E2 (online). Bottom row shows representative 
hematoxylin and eosin (H&E) stain of granuloma (original magnification, 3100), where it consists of admixed lymphocytes, plasma cells, and 
histiocytes. There are also areas of fibrosis, necrosis, and calcification. C, Top row represents radiomic heat map of low-frequency Gabor feature, 
which has low expression in granulomas in peritumoral region, and bottom row is H&E stain of adenocarcinoma (original magnification, 3100), 
where giant cells are observed at interface between nodule and normal lung. D, Shape of entire benign nodule. 

Table 2: AUC Values Obtained on the Training and Independent Test Set by  
Using Different Classifiers to Distinguish Adenocarcinomas from Granulomas on 
CT Images

Perinodular Classifier Combined Classifier

Parameter Training AUC Test AUC Training AUC Test AUC
LDA 0.70 (0.53, 0.87) 0.75 (0.60, 0.91) 0.73 (0.57, 0.90) 0.76 (0.61, 0.92)
SVM-linear 0.72 (0.54, 0.87) 0.75 (0.59, 0.91) 0.76 (0.60, 0.91) 0.80 (0.66, 0.94)
SVM-RBF 0.71 (0.54, 0.88) 0.72 (0.55, 0.88) 0.74 (0.58, 0.90) 0.74 (0.58, 0.90)
RF 0.67 (0.50, 0.85) 0.69 (0.52, 0.86) 0.74 (0.58, 0.90) 0.77 (0.62, 0.92)
QDA 0.68 (0.51, 0.86) 0.67 (0.50, 0.85) 0.77 (0.62, 0.93) 0.80 (0.66, 0.95)

Note.— Combined classifier includes intranodular, perinodular, and shape features. Data in pa-
rentheses are 95% confidence intervals. Best performance on the independent test set was obtained 
by using the combined features from the nodule and its immediate parenchyma within a radial 
distance of 5 mm. Support vector machine (SVM) classifier with a linear kernel obtained a test area 
under the curve (AUC) of 80.02. LDA = linear discriminant analysis, RBF = radial basis function, 
RF = random forest, QDA = quadratic discriminant analysis.
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Figure 6:  A, Graph shows unsupervised hierarchal clustering of intranodular and perinodular radiomic features. The x-axis represents top 12 
features where (P) denotes a perinodular feature; y-axis represents independent test set of patients (n = 145). Dendrogram highlighted in red 
represents prominent cluster of adenocarcinomas. B, First row shows noncontrast baseline lung CT scans (axial view) of granuloma nodule in an 
81-year-old man from independent test set, which was diagnosed as “mostly malignant” by both expert readers (score of 4). Radiomic heat map 
represents Laws energy feature inside nodule and also low expression of high-frequency Gabor response captured in perinodular region of 0–5 
mm outside nodule. Second row shows noncontrast baseline lung CT scans (axial view) from independent test set of adenocarcinoma nodule in 
a 63-year-old woman from independent test set, which was diagnosed as a “mostly benign” granuloma by expert reader 1 (score of 2) and “not 
sure” by expert reader 2 (score of 3). Radiomic heat map represents Laws energy feature inside nodule and also high expression of low-frequency 
Gabor response (f = 8) captured in perinodular region of 0–5 mm outside nodule. These cases were correctly classified by linear support vector 
machine classifier that was trained.

Table 3: Statistical Significance Testing between Patients’ Parameters and Disease Outcome for Both Training and 
Test Cohorts

Training Set (n = 145) Independent Test Set (n = 145)

Parameter Adenocarcinoma Granuloma P Value Adenocarcinoma Granuloma P Value
Subpopulation 73 72 … 72 73 …
Mean IN-950(%) 0.13 0.14 … 0.10 0.08 …
Nodule size (mm)* 13.33 6 6.65 11.15 6 4.45 .42 11.91 6 4.36 12.19 6 6.48 .01
Sex .38 .43
  Male 27 31 30 36
  Female 46 41 37
Overall age (y)*† 73.87 6 10.34 (43–90) 62.85 6 14.2 (21–87) ,.01 72.08 6 10.7 (40–92) 61.31 6 12.54 (18–87) ,.01
  Male 73.8 6 12.35 (47–90) 61.1 6 15.07 (21–82) 72.76 6 10.41 (48–89) 60.9 6 12.1 (18–87)
  Female 73.8 6 9.11 (43–88) 15.8 (39–87) 71.5 6 11.06 (40–92) 61.09 6 13.66 (33–85)
Smoking status ,.01 .04
  Yes 53 17 43 25
  Mean pack-years 39.6 28.2 35.5 24.2
  No 2 19 8 13
  Unavailable 18 36 21 35
Ethnicity .97 .54
  White 41 37 43 51
  African American 12 13 12 20
  Other 20 22 17 2

Note.—Unless otherwise specified, data are the number of patients. Smoking status and age were the only patient factors that were found 
to be significantly different between the two nodule classes. P values were computed by using Student t test for continuous variable and 
Fisher exact test for categorical data. IN

2950 = percentage of lung less than 950 HU, SD = standard deviation.
* Data are means 6 standard deviation.
† Data in parentheses are ranges.
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of tumor-infiltrating lymphocytes. At the interface of granu-
loma and normal lung, histiocytes and macrophages formed gi-
ant cells that had elongated or spindle-shaped nuclei that were 
roughly parallel to each other. At a macroscopic level on CT 
images, this scattered appearance of giant cells could possibly 
explain the higher expression of midfrequency Gabor features. 
On evaluating the intranodular region, we found low-frequency 
Gabor features that were expressed higher in adenocarcinomas, 
potentially reflecting high nucleus-to-cytoplasm ratio. Similarly, 
low nucleus-to-cytoplasm ratio in granulomas might explain the 
more diffuse edges and blurry spotlike patterns that are captured 
by high-frequency Gabor features. Our findings are in consensus 
with Braman et al (26), who reported that the peritumoral mi-
croenvironment immediately surrounding a breast malignancy 
is related to disease aggressiveness and can be predictive of treat-
ment response.

The majority of radiomic ap-
proaches used in lung cancer have 
focused solely on malignant lung 
nodule texture analysis and shape 
features from noncontrast CT 
examinations (13,21,27–30). To 
specifically distinguish adenocar-
cinoma from granulomatous, a 
study (13) used an intranodular 
radiomics-based approach with 
only Haralick features to obtain 
sensitivity of 88%. However, 
the data set consisted of only 55 
nodules from a single site and 
their model was not validated 
on an independent set. Alilou et 
al (16) showed that shape-based 
features (such as roughness, con-
vexity, and sphericity) were able 
to distinguish adenocarcinomas 
from granulomas with an AUC 
of 0.72 on an independent test 
set of 67 patients. Unlike previ-
ously reported methods (16,18), 
our feature selection method did 
not choose shape-based features 
over the intranodular and peri-
nodular texture features, indi-
cating that computer-extracted 
perinodular texture features are 
more predictive of malignancy 
than the shape attributes of any 
given nodule.

The majority of CNN ap-
proaches outperform the tra-
ditional radiomic-based ap-
proaches (11,12), but these 
algorithms are limited in their 
explanatory capacity of the deep 
features with neither a set of di-
agnostic rules nor an insight into 

the results (31). Our CNN result was comparable to the machine 
learning algorithm developed with intra- and perinodular features 
combined. However, despite the hyperparameter optimization, 
the results of the CNN might be affected by the training sample 
size.

The retrospective design of our cohort was restricted to 
only adenocarcinomas and granulomas and currently mim-
ics the high possibility of a real clinical dilemma, especially 
in the Ohio River Valley or the upper Midwest region of 
the United States (32,33). Further work is needed to fo-
cus on incorporating other benign and malignant nodules 
into the classifier and validating it on a larger multisite data  
set. Multiple groups have reported the inclusion of qualitative se-
mantic features such as nodule location, cavitation, and calcifi-
cation (5,34,35). Hence, additional work is required to integrate 
these radiologist-crafted features to analyze their importance in 

Table 4: Effect of Vendor, Section Thickness, and Type of CT Image in Distinguishing  
Adenocarcinomas from Granulomas

Criteria
No. of  
Studies Reconstruction Kernels Used AUC*

Vendor
  Siemens 85 B20f, B30f/s, B31f/s, B35f, B40f,  

  B41f/s, B50f, B60f, B70s, T20s
0.82 (0.64,0.99)

  Philips 58 A, B, C, D, E, L, YA, YB 0.72 (0.43,0.99)
ST (mm)
  ST 1 10 For Siemens: B31f/s, B60f, T20s 

For Philips: B
0.70 (20.16,1.66)

  1 , ST 2 94 For Siemens: B20f, B30f, B31f, B40f,  
 � B41s, B50f, B60f, B70s
For Philips: A, B, C, D E, L, YA

0.75 (0.56,0.93)

  2 , ST 3 17 For Siemens: B31f, B35f 
For Philips: C 
For GE: Standard 
For Toshiba: FC08

0.69 (0.11, 1.26)

  3 , ST 6.5 24 For Siemens: B30f, B31s, B40f  
For Philips: A, B, C, D, L, YB

0.66 (0.20, 1.11)

Type of CT image†

  Diagnostic CT 121 For Siemens: B20f, B30f/s, B31f/s,  
 � B35f, B40f/s, B41f/s, B50f, B60f, B70s
For Philips: A, B, C, D, E, L, YA 
For GE: Standard 
For Toshiba: FC08

0.73 (0.53, 0.93)

  Screening CT 24 For Siemens: B30f, B31s, B40f 
For Philips: A, B, C, D, L, YB 
For Toshiba: FC08

0.66 (0.20, 1.11)

Note.—The classifier was trained on the training set (n = 145) by using intranodular and perinodu-
lar features together and tested (n = 145) on the various subsets of the test set based on the vendor, 
section thickness criteria, and type of CT image. Increasing section thickness (ST) was accompanied 
by a decrease in area under the curve (AUC) for the discrimination of benign (granulomas) from 
malignant (adenocarcinomas) lung nodules at noncontrast CT chest examinations, and additionally 
it was found that diagnostic images were more accurate in distinguishing adenocarcinomas from 
granulomas. Large variation in confidence intervals (CIs) can be attributed to the effect of various 
other image acquisition parameters (eg, reconstruction kernel and manufacturer) when controlled 
for one (eg, section thickness). 
* Data in parentheses are 95% CIs.
† Diagnostic scans were defined as CT images with section thickness less than or equal to 3 mm and 
screening scans were defined as CT images with section thickness greater than 3 mm.
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our cohort. Additionally, our study extracted only two-dimen-
sional texture features from the largest representative slice, but we 
plan to incorporate three-dimensional texture features. Future di-
rections also include a more comprehensive analysis of differences 
in training model as a function of image acquisition parameters to 
determine if the intranodular and perinodular features will change 
with varying section thickness and reconstruction kernels.

Furthermore, our study included screening as well as diagnos-
tic images. To deploy a computer-assisted lung cancer screening 
tool, we must explicitly develop a machine learning model that is 
trained on only screening CT images. Last, clinical translation as a 
cancer screening tool will require careful planning to integrate the 
human and machine interpretations together in decision support 
mode.

In conclusion, we introduced a machine learning approach 
that demonstrates the utility of combining texture features of a 
nodule and its immediate surrounding lung parenchyma at non-
contrast chest CT imaging to discriminate malignant and benign 
nodules. Incorporation of perinodular texture features with intra-
nodular texture improved the predictive ability of the classifier to 
distinguish adenocarcinomas from granulomas.
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