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Abstract
Objective  Dosing schedules for oral levodopa in advanced stages of Parkinson’s disease (PD) require careful tailoring to 
fit the needs of each patient. This study proposes a dosing algorithm for oral administration of levodopa and evaluates its 
integration into a sensor-based dosing system (SBDS).
Materials and methods  In collaboration with two movement disorder experts a knowledge-driven, simulation based algorithm 
was designed and integrated into a SBDS. The SBDS uses data from wearable sensors to fit individual patient models, which 
are then used as input to the dosing algorithm. To access the feasibility of using the SBDS in clinical practice its perfor-
mance was evaluated during a clinical experiment where dosing optimization of oral levodopa was explored. The supervis-
ing neurologist made dosing adjustments based on data from the Parkinson’s KinetiGraph™ (PKG) that the patients wore 
for a week in a free living setting. The dosing suggestions of the SBDS were compared with the PKG-guided adjustments.
Results  The SBDS maintenance and morning dosing suggestions had a Pearson’s correlation of 0.80 and 0.95 (with mean 
relative errors of 21% and 12.5%), to the PKG-guided dosing adjustments. Paired t test indicated no statistical differences 
between the algorithmic suggestions and the clinician’s adjustments.
Conclusion  This study shows that it is possible to use algorithmic sensor-based dosing adjustments to optimize treatment 
with oral medication for PD patients.

Keywords  Levodopa · Parkinson’s disease · Algorithmic suggestions · Sensor data · Oral medication

Introduction

Parkinson’s disease (PD) is a movement disorder that is char-
acterized by the cardinal symptoms: bradykinesia, tremor, 
rigidity and postural instability [1]. There is currently no 

cure for PD and the reasons for the disease’s onset are 
not known. What is available to PD patients are treatment 
options (with the most effective treatment being levodopa 
intake) that limit the disease’s symptom manifestations and 
to some extent restore motor functions.

The process of titrating the dosing schedule for PD 
patients can be vaguely categorized into three stages, along 
with disease progression. In the first stage, physicians pre-
scribe oral administration of levodopa using a generic dos-
ing schedule but as the disease progresses the patients start 
experiencing shortening of medication effect, wearing-off 
fluctuations, and sometimes dyskinesia (manifestation of 
involuntary movements—attributed to overmedication) [2, 
3]. In those cases, individually tailored dosing routines are 
given, as a more advanced dosing strategy (second stage). 
Those dosing schedules may include a morning dose (the 
first dose of the day) and subsequent maintenance doses (of 
a set amount), throughout the day, at specific time points. 
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The need for morning dose is patient-specific, because of the 
sleep benefit phenomenon [4], where there is less immediate 
need for levodopa in the morning for some patients.

Individualizing the dosing routines, however, presents dif-
ficulties. Patient diaries [5] and limited information during 
clinical visits will often not provide the physician with the 
information necessary to optimize dosing routines appro-
priately. It is not unusual for the patients on individualized 
treatment to experience either hour-long periods of “off”, 
i.e. no effect from medication, or “dyskinesia”, because of 
ill-adjusted dosing schedules. This can become problematic 
for the patients, who then might require advanced non-oral 
therapies [6, 7] (third stage).

Before that becomes necessary, the best option for 
patients that can be managed with oral medication (or for 
patients that cannot receive advanced non-oral therapy), 
would be to further adjust the dosing routines to minimize 
the periods of sub-optimal treatment. This requires well-
informed dosing adjustments. To that end, sensor-based sys-
tems that allow for objective measurements of the patients’ 
motor status have been developed and become increasingly 
popular. Over the past years studies about symptom moni-
toring through wearable sensors have been published [8, 9] 
and commercial products continue to become available, such 
as the Kinesia™ systems [10] and the Parkinson’s Kineti-
Graph™ (PKG) [11] that produces scores for bradykinesia, 
tremor, dyskinesia and motor fluctuations. PKG is an accel-
erometry based system which generates continuous move-
ment patterns, indicating both dyskinesia and bradykinesia, 
and allows the clinicians to assess motor fluctuations and 
evaluate treatment efficacy. Furthermore, new formulations 
that allow for precise dosing have been developed, such as 
the microtablets of levodopa/carbidopa (Flexilev®), which 
are specifically designed for optimization of levodopa dos-
age [12], in steps of 5 mg levodopa. Even though steps 
have been taken in the direction of precise medicine, there 
is a lack of dose optimization algorithms designed for oral 
administration of levodopa. The main aim of this paper is 
to propose and describe such a dosing algorithm used for 
a novel dosing system design. This system uses objective 
measurements as input to a simulation algorithm that pro-
vides individually tailored dosing schedules. To the best of 
the authors’ knowledge, this is the first attempt at developing 
this type of medical decision support for oral treatment in 
Parkinson’s disease.

Materials and methods

Patient‑specific dosing algorithm

In Thomas et al. [13] a dosing algorithm that determines 
individual dosing suggestions for continuous infusion of 

levodopa was described. In that algorithm the dosing sug-
gestions were limited to an optimized infusion rate for a 
carbidopa–levodopa infusion device. As the treatment 
strategies for oral and continuous levodopa dosing have dif-
ferent requirements, mainly the need for dosing schedules, 
an advanced algorithm was designed specifically for oral 
administration of levodopa. This dosing algorithm is knowl-
edge-driven and was developed in collaboration with two 
movement disorder expert neurologists, FB and DN, aim-
ing to imitate informed clinical practice dosing decisions. It 
derives dosing schedules for a 16-h day and suggests a morn-
ing dose and maintenance doses at specific time points. The 
maintenance doses are the same within each dosing schedule 
but the morning dose might be different, usually higher than 
the maintenance doses, to more rapidly reach pharmaco-
logic steady-state, as in clinical practice. For each patient the 
algorithm examines different dosing frequencies (the time 
between two successive doses) via a simulation study.

The aim of the process is to find the combination of 
morning and maintenance dose that minimizes the period 
of “off” and “dyskinesia” (maximizing the time of optimal 
motor functions) for each dosing frequency. The simulations 
are run on the treatment response scale (TRS), which ranges 
from − 3 to + 3, with negative values indicating to “off”, 
positive values to dyskinesia, and values close to 0 to the 
optimal status [14]. This scale provides a holistic way to 
monitor the disease as all three states are represented and 
it is possible to observe the transition into different states 
in a continuous fashion, which facilitates the simulations. 
The input to the algorithm are individual patient models (a 
detailed description of how individual models are built is 
given in “Sensor-based dosing system”). For every patient 
the specific model derived dose–effect curves are produced 
for different combinations of morning and maintenance dose 
and at different dosing frequencies.

Before initiating the above simulation process the dosing 
frequencies to be examined are selected together with the 
target state (a value between − 3 and + 3) for each patient. 
Setting a positive value close to 0 as target is usually pre-
ferred to avoid fluctuation between two does. To avoid over-
medication and keep the dose at acceptable levels, a target 
range is set around the target value which ensures that there 
is some reduction in effect before the next dose is taken, thus 
balancing the dose to a value that is sufficiently large but 
also low enough. For every dosing frequency a combination 
of maintenance doses and morning doses are simulated, the 
dose–effect curve values are stored for each combination, 
and the best one is selected. The best combination of morn-
ing and maintenance doses is defined as the one that mini-
mizes the time the simulated dose–effect curve is outside 
the target-range (Fig. 1). Furthermore, there is a fluctuation 
criterion, which determines when a dose is acceptable or 
not. When the simulated effect reaches a maximum in a time 
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point between two doses, it is not allowed to drop below a 
specific threshold before the next dose is taken. That ensures 
that the dose is large enough and the patients do not experi-
ence substantial fluctuations in a normal day, which is the 
goal with dose optimization of oral administration of levo-
dopa in standard clinical practice. The best combination is, 
therefore, the one that produces the minimum area outside 
the target-range and also meets the fluctuation criterion.

A graphical illustration of a dose optimization example 
can be seen in Fig. 1, where, the simulated dose–effect of 
an individual model is displayed in response to morning 
and maintenance doses. In this example the target was set 
at 0.5, the target-range was between 0.7 and 0.4, and the 
threshold was at 0.3, meaning the patient’s status was not 
allowed to drop below that value. In this simulation the dose 
frequency is 90 min, and as shown in the figure a dose is 
simulated every 90 min. The algorithm was evaluated during 
a clinical experiment as part of sensor-based dosing system 
(SBDS), and more details about its implementation are given 
in “Application of the SBDS”. A detailed description of the 
SBDS and the individual model fitting process is given in 
the next section.

Sensor‑based dosing system

As mentioned earlier, the input to the dosing algorithm are 
individual patient models. In Thomas at al [13]. a method 
to fit individual dose–effect models for levodopa infusion in 
PD was developed based on a pharmacokinetic–pharmaco-
dynamics (PKPD) model [15]. The PKPD model is a system 

of mathematical equations that describe the process from 
dose intake to absorption and distribution until manifestation 
of an effect, in response to the dose, on the TRS. The PKPD 
model is described in the following equations:

The parameter description of the PKPD model is given 
in Table 1.

The individual models were fitted by altering a subset 
of the parameter values of the population PKPD model, 
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Fig. 1   Dose optimization strategy of the algorithm for an example 
patient. The target range is indicated by the red lines

Table 1   Parameter description of Eqs. (1)–(5)

+, estimated thought the equations, given the parameter values; X, 
patient-specific values
a Population parameter values as seen in Westin et al. [11]

Inf Intestinal levodopa infusion rate (mg/min) +

a0 Amount in first compartment (mg) +
a1 Amount in second compartment (mg) +
a2 Amount in third compartment (mg) +
ka Absorption rate (1/min) 1/TABSa

TABS 1/ka , absorption time constant (min) 28.5a

kEO Effect rate (1/min) 1/TKEOa

TKEO 1/kEO , effect time constant (min) 21a

BIO Bioavailability 0.88a

Q Intercompartmental clearance (L/min) 0.58a

V1 Volume in first compartment (L) 11a

V2 Volume in second compartment (L) 27a

CL Clearance rate (L/min) 0.52a

Rsyn Endogenous levodopa synthesis rate (mg/min) 0.01a

Ce Concentration in the effect compartment (mg/L) +
EC50 Concentration at 50% effect (mg/L) 1.55a

gamma Sigmoidicity factor 11.6a

BASE Baseline effect X
Emax Change from baseline effect X
E Effect ranging from − 3 to + 3 +
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using the dosing information and fitting patient-specific 
dose–effect curve to a series of clinical observations, 
through least squares optimization [13]. The parameters 
altered are: V1, CL, TKEO, EC50, gamma. Furthermore, 
BASE and Emax are fixed respectively to the lowest and 
highest TRS values observed during an observation period 
for a specific patient. An illustration of the process using 
either clinical or objective ratings is shown in Fig. 2. What 
characterizes an individual patient model are the specific 
PKPD parameters that are estimated during the optimiza-
tion process. More details of the individual model fitting 
process are found in [13].

As the model-fitting process requires individual ratings, 
the use of wearable sensors to extract the necessary informa-
tion was explored. This was done to investigate whether this 
algorithm could be embedded into a sensor-based system. 
It is also possible to use this algorithm with clinical ratings 
as input. However, these are not usually available in real 
time and their acquisition requires the presence of an expert 
neurologist. Embedding the algorithm into a SBDS presents 
the opportunity of making dosing suggestions directly from 
patient-derived sensor data without the need for interpreta-
tion by a clinician.

In Thomas et al. [16], the use of a hand pronation supi-
nation test for automated objective scoring of Parkinson’s 
disease symptoms was described. The patients wore com-
mercial 6-degrees of freedom sensors on both wrists (Shim-
mer3 sensors) during the test, which was performed for a 
20 s period for each hand. Spatiotemporal features from the 
sensor readings were extracted (88 features) and principal 
component analysis was performed on the features. Finally, 
six principal component were used as predictors in a support 
vector machine (SVM) model that was trained for regres-
sion, predicting the patients’ motor status on the TRS [16]. 
The SVM model’s predictions had good clinimetric proper-
ties and high correlation (0.82 in a tenfold cross-validation 
setting) to clinical ratings. More details about the signal pro-
cessing and the data mining methods applied can be found 
in [16].

The extracted objective ratings on TRS [16] were used to 
fit individual patient models [13], which were then used as 
inputs to the dosing algorithm. A graphical illustration of 
the SBDS can be seen in Fig. 3.

Clinical study description

The feasibility of using the dosing algorithm as part of the 
SBDS was evaluated during a clinical observational study. 
In Johansson et al. [17], a clinical study for dose optimiza-
tion of oral administration of levodopa was described. In 
that study, which was a follow-up to the one described in 
Senek et al. [18], 31 patients participated in a single-center 

Fig. 2   Schematic illustration 
of the individual model fitting 
process

Fig. 3   System flow-chart. The inputs to the model builder are ratings 
from sensor ratings and individual dosing information (Step 1). The 
model builder uses the dosing
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longitudinal observational clinical study at Sahlgrenska Uni-
versity Hospital in Gothenburg, Sweden, between August 
2016 and February 2017. The study design was approved by 
the regional ethics review board in Gothenburg and the par-
ticipants had given written consent to the study, in accord-
ance with the Helsinki declaration. The patients recruited 
were in need of frequent dose administration (dosing fre-
quency less than 4 h). The study consisted of three patient 
visits to the clinic, with a 2-week period between each visit.

During the first visit the patients’ old dosing schedules 
were converted to the microtablet equivalent [19] and the 
patients were given a PKG device that they wore for a 6 day 
period before the second visit to the clinic. During the sec-
ond visit FB evaluated the PKG readings from the previous 
week and adjusted the dosing schedule of the patients. The 
effect of the dosing adjustments were evaluated 2 weeks later 
at the last visit.

Of the 28 (there were 3 screening failures) patients that 
completed the first visit, 25 completed the first two visits 
and 24 completed all three visits. In Table 2 the population 
characteristics of the 25 patients that completed the single 
dose experiments can be seen. Detailed information about 
the study design, dosing optimization, and outcomes can be 
found in [17].

Application of the SBDS

The SBDS was applied during the patients’ second visit to 
the clinic. At that time the patients put on the Shimmer3 sen-
sors and performed pronation-supination tests at a pre-deter-
mined time schedule as in [18]. The tests were performed 
before and following a single dose of levodopa/carbidopa 
(120% of the normal morning dose), after a 12 h wash-out 
period during the night. A single dose allowed the patients’ 
status to go from a baseline value to a peak effect back to the 
baseline value (impulse response), making the identification 
of individual patient models possible [20].

The individual models (the estimated patient-specific 
parameters of the PKPD dose–effect model) were used as 
input to the dosing algorithm which had two settings for 
the target-range on the test day, depending on the maximum 

TRS the patients demonstrated. If it was higher than 0, the 
target-range would be set as a percentage value of their 
maximum TRS. For the patients where the maximum TRS 
was lower than 0.05, or negative, the target-range was set 
in absolute terms, since the percentage approach calcula-
tion was not suitable in those two cases. In the first case a 
percentage value of a score close to 0 would also be 0, thus 
not allowing for any wear off in effect (leading to overmedi-
cation). In the second case, a percentage value of negative 
scores would only allow for the fluctuations to get larger 
for the lower effect values. This adjustment to the design 
was necessary since the sensor-based TRS ratings would not 
produce positive values for some patients. The fluctuation 
criterion value was set as 0.5 points of the TRS.

The dosing frequencies examined by the SBDS were per 
90 min (although in some patients the dosing frequencies 
would be even shorter) to per 240 min (as 4 h was the maxi-
mum dosing frequency according to inclusion criteria) and 
there was a 10 min increment between every simulation. 
The algorithm performed the simulations for each dosing 
frequency, starting from a minimum dose of 0 mg of levo-
dopa (no dose) to a maximum dose that was patient-specific, 
depending on the dose they received during the test day (the 
maximum was 300 mg of levodopa for maintenance doses 
and 400 mg for morning dose). This procedure was per-
formed for all dosing frequencies and the algorithm would 
only suggest one dosing combination (morning and mainte-
nance dose) for each, the one with the minimum area outside 
the target-range that satisfied the fluctuation criterion. For a 
90–240 min dosing frequency selection with 10 min incre-
ments there would be 16 dosing frequencies investigated 
and for each of them there would be a single combination of 
morning and maintenance dose derived. In this example, 16 
different dosing schedules for each patient would be derived 
and about 120,000 (301 × 401) dosing combinations would 
be simulated for every dosing schedule.

The suggestions of the SBDS were compared to the PKG-
aided dosing adjustments of the second visit, for the same 
dosing frequency. For example, if a schedule that required 
dosing every 100 min was selected by FB based on the PKG 
recordings, those dosing adjustments would be compared 
to the dosing adjustments suggestions of the SBDS for the 
100 min frequency (which is the equivalent of running the 
simulation for only one dosing frequency and producing one 
dosing schedule).

Results

In total, sensor readings for all 25 patients were obtained, 
but appropriate individual models could only be fitted for 
19 patients. One patient could not perform the hand rotation 
task, one patient had limited response to levodopa during the 

Table 2   characteristics of the PD participants in the single-dose 
experiments

Sex Median 
age in 
years 
(range)

Mean 
BMI as 
kg/m2 
(range)

Median 
years 
from 
diagnosis 
(range)

Median 
years with 
motor 
fluctuations 
(range)

Patients 15 males
10 

females

68 
(58–82)

25.2 
(20.8–
35.4)

10 (4–30) 4 (1–20)
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test day, and for four patients the algorithm predictions mis-
represented the dose–effect behavior at the day of the trial. 
For those four patients, the series of sensor index scores 
did not represent a “normal” dose–response curve, i.e the 
values did not go from baseline to a peak effect and then 
back to baseline. Results from the remaining 19 patients 
are presented here, for nine of which one test occasion was 
removed as outlier in the model fitting process and for one 
patient two test occasions were removed as outliers. Outli-
ers were identified as scores that had either a sudden drop in 
value after the onset of effect, or displayed a sudden spike 
in effect after wearing off started to demonstrate. Sudden 
motor fluctuations do happen, but cannot be accommodated 
by the current PKPD models. That is why these values were 
selected as outliers, even though they might not be in clini-
cal practice. The outliers were removed based on a visual 
inspection of the TRS scores.

The Pearson’s correlation of the maintenance dosing sug-
gestions with the PKG-guided prescriptions, for the same 
frequency, was 0.80, and the mean relative error of the pre-
dictions was 21%. For the morning dose the Pearson’s cor-
relation was higher (0.95) with a lower mean relative error, 
12.5%. The results for the maintenance dose are influenced 
by three values that have high relative error. In Fig. 4 a vis-
ual comparison of the suggestions, for the frequency of the 
PKG-guided choice, is presented.

To test the similarity of the algorithmic suggestions to the 
PKG-guided choices, a paired sample t test was performed 
to check if there were significant statistical differences. The 
test was conducted with the null hypothesis that the dosing 
values were not significantly different (mean difference is 0). 
The results of the t test had a p value of 0.61 for the morn-
ing dose and 0.79 for the maintenance dose, meaning that 
the null hypothesis could not be rejected in any case. Based 
on these results, there was no evidence in the data that the 
algorithmic dosing suggestions were different from PKG-
guided adjustments. These dosing adjustments improved the 
patients’ motor functions [17]. Since the suggestions of the 
algorithm were mostly similar, there is reason to suggest that 

had the patients received the SBDS suggestions, they would 
have demonstrated similar improvement.

Discussion and conclusions

The necessity of a SBDS emerges from a continuous dis-
cussion raised also by Espay et al. [9] and Titova et al. [21]. 
Espay et al. argue that wearable sensors should be used for 
precision medicine, and that algorithms could be developed 
to generate specific recommendations. The recommenda-
tions of the proposed SBDS in this study are symptom spe-
cific, since individually derived sensor index values are used 
[16].

The algorithm can be described as one that follows a 
dose-fractionation principle, allowing about 5–15 doses per 
day [22] and is designed specifically for patients that experi-
ence levodopa-induced dyskinesia (LID). The SBDS does 
not consider combinations of different medications but is 
restricted to oral levodopa/carbidopa. Since about a third of 
the patients will experience LID after about 7 years with the 
disease, the proposed SBDS is relevant to the PD commu-
nity. To the authors’ best knowledge, similar patient-specific 
dose suggestion algorithms are not available, and the intro-
duction of one in this study could inspire a more focused 
effort to develop such applications.

This algorithm mimics well-informed clinical decision-
making. Such a design was chosen as a first attempt to inves-
tigate the feasibility of algorithmic dosing suggestions, and 
different designs, such as pattern recognition algorithms or 
mathematical optimization algorithms, could and actually 
should be explored in the future. The feasibility of using the 
method was tested during a clinical study where it was found 
that the suggestions of the method had high correlation to 
the supervising physician’s prescriptions, which were not 
subjective but PKG-guided. At the next stages, the algorithm 
could be integrated into an interactive platform such as the 
one in [23], so that the suggested method could be used in a 
home environment setting by the patients between or before 
clinical visits.

However, there were limitations, mainly the need to man-
ually remove outliers before the model fitting process. At 
least one sensor rating was removed for ten patients, out of 
19 reported in this study. It should also be pointed out that 
FB had input on the design of the algorithm (setting targets 
and ranges) as well as the patients’ dosing adjustments and 
the generalizability of the results might, therefore, be some-
what limited. This is why it is important to consider that the 
PKG readings were the basis of the adjustment decisions 
and FB was merely the facilitator between patient and PKG-
recording. Since the algorithm was designed to mimic dos-
ing optimization as it is performed in clinical practice, the 

0 100 200 300

0
10

0
20

0
30

0

Maintenance dose

Neurologist’s prescriptions (mg)

A
lg

or
ith

m
ic

 s
ug

ge
st

io
ns

 (
m

g)

0 200 400

0
10

0
30

0

Morning dose

Neurologist’s prescriptions (mg)

A
lg

or
ith

m
ic

 s
ug

ge
st

io
ns

 (
m

g)

Fig. 4   Visual comparison of the algorithms suggestions compared to 
the physician’s choices for the same dosing frequency



657Journal of Neurology (2019) 266:651–658	

1 3

similarity of the algorithm output and the clinician’s dose 
suggestions is a positive outcome.

It can be concluded that given a high enough dose to 
produce a dose–effect and the ability of the patients to per-
form motor tasks the SBDS is quite robust when producing 
dosing suggestions. There were certainly occasions where 
individual models would fail to provide useful information. 
In these cases, however, the limitation of the method is also 
attributed to the inability to make accurate predictions with 
the SVM model [16], therefore, this study evaluates not just 
the performance of a dosing algorithm, but of the SBDS. 
The results are quite promising when appraising the reality 
that the neurologist had continuous sensor recordings for a 
6 day period from the PKG, whereas the algorithm evalu-
ated only 8–12 test occasions, during a 4 h period, to make 
the dosing suggestions. In should be noted, however, that 
for patients where the dose effect profile is misrepresented 
the dosing suggestions could be unsuitable, worsening the 
quality of life of patients. This is why, at the current stage, 
an intermediate step to confirm the model fit is deemed 
necessary.

The future work will focus on addressing the limitations 
of the current version of the SBDS and automate the model 
fitting process including algorithmic exclusion of outliers. 
The current comparison with clinical decisions was made 
to provide proof of concept, but future development should 
have the broader aim of optimizing patient outcome instead.
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