
Adaptive ensemble simulations of biomolecules

Peter M. Kassona,b and Shantenu Jhac,d

aDepartments of Molecular Physiology and of Biomedical Engineering, University of Virginia, 
Charlottesville VA 22908 United States.

bScience for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 
Uppsala 75146 Sweden.

cDepartment of Electrical and Computer Engineering, Rutgers University, Piscataway NJ 08854 
United States.

dCenter for Data-Driven Discovery, Brookhaven National Laboratory, Upton NY 11793 United 
States.

Abstract

Recent advances in both theory and computational power have created opportunities to simulate 

biomolecular processes more efficiently using adaptive ensemble simulations. Ensemble 

simulations are now widely used to compute a number of individual simulation trajectories and 

analyze statistics across them. Adaptive ensemble simulations offer a further level of 

sophistication and flexibility by enabling high-level algorithms to control simulations based on 

intermediate results. We review some of the adaptive ensemble algorithms and software 

infrastructure currently in use and outline where the complexities of implementing adaptive 

simulation have limited algorithmic innovation to date. We describe an adaptive ensemble API to 

overcome some of these barriers and more flexibly and simply express adaptive simulation 

algorithms to help realize the power of this type of simulation.

Introduction

In recent years, molecular dynamics simulation has been increasingly utilized for 

quantitative prediction of and insight into biophysical problems. Moving beyond 

visualization and qualitative insight, robust statistical estimation of thermodynamic, kinetic, 

or structural properties of biomolecules is now within reach. However, this new horizon 

creates a set of challenges, since statistical estimation of these quantities requires many 

simulated “observations” of the desired process and quantitative insight thus comes at a cost 

of substantial computational requirements. Much like single-molecule experiments, the most 

efficient way to obtain these simulated observations is using collections or ensembles of 

simulations rather than a single extremely long trajectory of single-event observations [1,2]. 

Correspondence may be directed to kasson@virginia.edu or shantenu.jha@rutgers.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

Published in final edited form as:
Curr Opin Struct Biol. 2018 October ; 52: 87–94. doi:10.1016/j.sbi.2018.09.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Such ensemble approaches have also been used to predict effects of mutations at different 

sites on a protein, to estimate transition states and free-energy barriers, and make other 

similar quantitative predictions [3–10].

A further advance in the range of biomolecular processes that can be feasibly simulated 

comes from not only simulating biomolecular ensembles but running these simulations in an 

adaptive manner, where high-level algorithms are used to determine the next round of 

simulations based on the results of the previous one. Such adaptive algorithms can increase 

simulation efficiency by greater than a thousand-fold [11–13] but require a more 

sophisticated software infrastructure to support them. Here, we review some of the 

biophysical insights gained via ensemble simulations, the software needs and current 

capabilities for flexibly and efficiently running such calculations, and a pathway to filling 

some of the unmet needs in this area.

Adaptive ensemble methods for simulating biomolecules

Although frameworks for adaptive ensemble simulation have been developed only recently 

[12,14,15], simpler algorithms for adaptive ensemble simulation have been in use for many 

years. Many algorithms pre-specify the sequence of computational simulations, but the 

results of each set of simulations are used to determine the inputs for the next round. 

Algorithms where not only the simulation parameters but even the type of computational 

operation to perform depends on intermediate results are rarer, due in large part to the higher 

barrier to implementing such algorithms, but these present perhaps the most exciting and 

powerful set of simulation approaches.

Replica exchange molecular dynamics is a long-standing and widely used ensemble method 

where individual simulations within an ensemble exchange coordinates over the course of 

the simulation. Depending on the exchange algorithm, this can be performed in either a non-

adaptive or an adaptive fashion. Replica exchange was originally formulated as temperature 

replica exchange [16–18], where an ensemble of simulations is run at different temperatures 

to facilitate escape from energy minima, exchanging coordinates via a Monte Carlo 

criterion. In a related method, generalized-ensemble simulation, exchange can be performed 

over larger numbers of generalized “coordinates”, including between different Hamiltonians, 

and different exchange algorithms between ensemble members can be employed [19–21]. 

This has permitted exploration of free-energy surfaces that are less accessible to temperature 

replica exchange alone. One example of increased adaptivity in such simulations comes 

from adaptive placement of scaling parameters (“lambda values”) in free-energy 

perturbation and similar calculations to optimize statistical convergence [22–27]. Expanded-

ensemble simulations are related to replica exchange; in terms of parallelization, they can be 

seen as serial adaptive algorithms that can be parallelized whereas replica exchange is an 

ensemble algorithm that can be made adaptive. Adaptivity in these cases has largely been 

supported via explicit implementation in molecular dynamics software packages, and a more 

flexible platform for such adaptive algorithms would potentiate further algorithmic 

development, reuse of existing algorithms by other scientists, and resulting scientific 

progress. Conversely, metadynamics approaches have been implemented primarily in high-

Kasson and Jha Page 2

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



level software such as PLUMED [28,29] that abstracts the adaptivity for algorithms such as 

multiple-walker metadynamics [30] but requires explicit job scheduling.

Adaptive ensemble simulation has been particularly helpful in biomolecular simulation 

algorithms where each individual simulation uses an identical unbiased Hamiltonian but 

where placement of simulations in phase space is optimized to improve estimation of the 

kinetics and thermodynamics of a biomolecular process. In an ensemble formulation, 

placement of unbiased trajectories in phase space involving choosing which trajectories to 

extend or from which already-sampled points in position and velocity space to start new 

trajectories. Some of these unbiased-trajectory algorithms include milestoning, weighted-

ensemble simulation, and related techniques [15,31–34]; each of these has been 

implemented in custom software packages to facilitate the adaptive logic and post-

processing.

Methods to construct Markov State Models from molecular dynamics simulations provide a 

similar set of powerful approaches for analyzing molecular kinetics using unbiased 

individual trajectories [35–38]. The choice of starting points for these trajectories can be 

optimized to reduce the uncertainty of the resulting model: it has been demonstrated 

retrospectively and then prospectively that adaptive sampling with Markov State Models 

increases convergence efficiency by several orders of magnitude. Adaptive sampling 

methods have recently been applied with great success to complex biomolecular processes 

[39]. Another recent study combines biased umbrella sampling simulations with Markov 

State Model-inspired estimators and adaptive sampling, showing how the facile combination 

of methods can potentiate further insight [40]. However, this can be difficult because most 

implementations of such methods have been in special-purpose code. One exception is 

Copernicus [12,27], but that has other limitations as detailed below.

Designing software systems for adaptive ensemble methods

The broad range of adaptive ensemble simulation algorithms impose similarly diverse 

requirements on the underlying software infrastructure. Algorithms differ in the frequency of 

communication between ensemble members, local versus non-local communication, and the 

type of information exchanged. Two adaptive simulation work/data flow diagrams are 

schematized in Figure 1. Adaptive changes can alter the number of tasks being performed 

(how many ensemble members in a simulation), the parameters of those tasks (placement of 

temperature or lambda values in an expanded-ensemble simulation), or even which tasks are 

being performed when (e.g. branching between simulations to converge a bound-complex 

ensemble and free-energy-perturbation simulations to measure binding of a new candidate 

ligand and either accept or reject that ligand for inclusion into the main simulation loop). 

The logic to specify such changes can rely on a single simulation within an ensemble, an 

operation across an ensemble, or even external criteria, such as changes in resource 

availability or new experimental data.

Despite this diversity, a key commonality among adaptive algorithms is that they can be 

expressed at a high level, such that the adaptive logic itself is independent of simulation 

details. This separation of adaptive operations from simulation internals provides a useful 

Kasson and Jha Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and important abstraction for both methods developers and the software system. Adaptive 

operations that are expressed independent of the internal details of tasks facilitate MD 

software package agnosticism and simpler expression of different types of adaptivity and 

responses to adaptivity. This promotes facile development of new methods while facilitating 

optimization and performance engineering that will be needed at large scales.

Expressing adaptive algorithms in this more abstract manner, as computational processes 

separate from but operating on independent ensemble members, creates several 

implementation challenges. These include coordination and consistency across distributed 

execution components, scalable communication between independent simulations and 

efficient stop and restart of simulations. Separating the adaptive logic from underlying 

execution management software allows the complexity to be contained within the internal 

implementation of the software system and not be exposed to the user. This approach also 

enables transparent low-level optimization and adjustment to fluctuations in workload and 

resource availability. We believe sophisticated runtime systems will be necessary to support 

adaptive ensemble algorithms at scale, as similar runtime management has been required for 

efficient execution of even relatively static ensemble workloads at scale [4,41,42] (Figure 2). 

It has been well known that on MapReduce and similar parallel architectures, completion of 

a few “lagging” tasks in an ensemble dominates the overall time to completion [43]. 

Although advanced runtime systems can mitigate this problem, asynchronous analysis tasks 

can algorithmically bypass it.

Steps toward greater adaptivity – State of the art

Several software systems have been used for adaptive ensemble methods [12,27,44,45]. 

Most solutions fall into one of two categories: monolithic general-purpose workflow systems 

that do not have “native” support for adaptive algorithms, or where adaptive algorithms are 

embedded internal to the MD engine/package [46–50]. Relatively few support ensembles of 

tasks or adaptive operations as first-class entities. Most workflow systems support adaptation 

as a response to fault tolerance [51] rather than adaptive logic based on intermediate results. 

Conversely, many biomolecular simulation packages (AMBER, Gromacs, CHARMM, and 

NAMD [46–50]) provide some specific ensemble or adaptive capabilities. However, these 

are tightly coupled to the code of the MD packages, and implemented in a manner such that 

it is not easy for users to add new adaptive algorithms.

A smaller number of “advanced workflow” packages or dataflow programming languages 

offer a greater degree of adaptivity and are usable for molecular simulations. Scalable 

ensemble-based adaptive algorithms require support at multiple levels: programming models 

and APIs, execution models and runtime system etc. In addition to programming and 

execution model choices, there are open questions about the granularity of tasks and suitable 

abstractions to express adaptivity. Swift/T [44,52] and Copernicus [12,27] are prominent 

examples of data-driven task parallelism that support adaptive applications, but they differ 

significantly in their programming model and how they support adaptivity. Swift/T is 

primarily designed to extract parallelism from scripts that express data dependencies 

between instances of existing applications. The Swift script is compiled to run the sequential 

or parallel applications within an MPI application using a sophisticated runtime system to 

Kasson and Jha Page 4

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



support the execution of many tasks. It has to date not been used for adaptive biomolecular 

simulations. Copernicus’ [12,27] data-driven execution model considers individual (MD) 

simulations as the unit of execution (i.e., task) and adaptivity managed by modifying the 

task-graph. In both of these packages, as in our proposed formalism, operations are executed 

when their inputs are satisfied. This greatly simplifies parallelization, as parallel execution 

does not have to be explicitly specified but results naturally from a lack of data 

dependencies.

Fireworks [53] is another ensemble workflow package used primarily in the materials 

simulation community that allows for dynamic changes to the workflow graph but has not 

been utilized for the adaptive simulations we describe here. Another software package, 

Ensemble Toolkit [54], has recently been extended to support some adaptive simulations 

(Markov State Models and expanded-ensemble simulations) [14]; these capabilities have 

also been applied to drug binding-affinity calculations [55]. However, we note that all of 

these packages have primarily been applied to adaptive calculations by the package 

developers or their collaborators, suggesting that flexibility and ease-of-use could be 

improved to facilitate broader uptake.

An Adaptive Ensemble API

In order to more flexibly and simply express adaptive simulation algorithms, we propose an 

Adaptive Ensemble API. This API could either be used directly in user code to specify and 

run adaptive simulations, be utilized by developers of new computational methods in their 

code, or be used for library calls within molecular dynamics software packages to more 

flexibly and powerfully implement ensemble simulations.

The following set of functions should be necessary and sufficient to express the required 

adaptivity for a broad range of ensemble methods in computational biophysics. All the 

functions operate on compute kernels--discrete computational tasks such as running an MD 

simulation. Core adaptive capability is provided by while() and if(). Each of these operations 

enables conditional execution of code paths depending on the results of some compute 

kernel (or API operation). The map and reduce operations provide basic parallel 

functionality similar to MapReduce but with the important difference that reduce() returns a 

variable-dimension output. Briefly, map() applies a compute kernel to an arrayed set of 

inputs in a parallel fashion. Reduce() takes an arrayed set of inputs and applies a compute 

kernel to the array, producing either a single output or an arrayed output. Together, these 

operations can be used to execute a wide variety of ensemble workloads in a parallel fashion. 

The async() and cancel() operations add capabilities for asynchronous tasks that can operate 

on intermediate outputs, for instance analysis processes that monitor simulation outputs and 

return decisions on whether to cancel them and spawn new simulations. Async() is critical to 

efficient ensemble computing because it enables non-blocking parallel operations and can be 

used to avoid waiting for a lagging task. Kernels are specified with inputs, outputs that are 

written once, and intermediate shared variables that can contain intermediate outputs or in-

flight inputs. Figure 3 provides a listing of these operations and their syntax, while Figure 4 

shows how an adaptive ensemble algorithm can be expressed using these API operations.

Kasson and Jha Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Such an API could be interfaced to existing ensemble packages either directly or via a task-

graph manager to optimize execution, depending on the requirements and capabilities of the 

underlying software. In addition to a top-level interface for users and simulation methods 

developers, this API could be used by existing molecular dynamics packages (or APIs such 

as the ensemble APIs for GROMACS[56]) as a set of library calls to manage adaptive 

execution and facilitate the implementation of new adaptive simulation methods.

Conclusions

Adaptive ensemble simulation methods, from the simple to the complex, have already made 

a strong impact on biomolecular simulation and our understanding of biomolecular kinetics 

and thermodynamics. This is despite the relative lack of tools to easily express sophisticated 

adaptive algorithms and run them in a scalable fashion. As molecular simulations are used to 

address questions of increasing biological complexity, the gains in algorithmic sophistication 

and computational efficiency from adaptive ensemble methods will become critical in 

generating quantitative insight into biological problems. It is our hope that the availability of 

APIs such as the adaptive ensemble API we describe here will facilitate the expression of 

new, innovative adaptive algorithms and the implementation and comparison of these 

algorithms for many more simulation packages and many more biological problems of 

interest. Continued development of software infrastructure for adaptive ensemble 

simulations, new adaptive methods, and new applications of these methods to important 

biophysical and structural problems have the potential to greatly increase simulation’s utility 

as a tool for quantitative, rather than only qualitative, biomolecular insight.

Acknowledgements

The authors thank Michael Shirts, Thomas Cheatham, Eric Irrgang, Anubhav Jain, and Daniel Katz for many 
helpful discussions. SJ also thanks Vivek Balasubramanian for prototypes and performance experiments that helped 
develop some of these ideas.

Funding

This work was supported by National Instutites of Health [grant R01 GM115790 to PMK] and National Science 
Foundation [grant 1547580 (Molecular Science Software Insitute) to SJ].

References Cited

1. Galindo-Murillo R, Roe DR, Cheatham TE, 3rd: Convergence and reproducibility in molecular 
dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim Biophys Acta 
2015, 1850:1041–1058. [PubMed: 25219455] 

2. Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS: Ensemble molecular 
dynamics yields sub-millisecond kinetics and intermediates of membrane fusion. . Proc Natl Acad 
Sci U S A 2006, 103:11916–11921. [PubMed: 16880392] 

3. Kasson PM, Lindahl E, Pande VS: Atomic-resolution simulations predict a transition state for 
vesicle fusion defined by contact of a few lipid tails. PLoS Comput Biol 2010, 6:e1000829. 
[PubMed: 20585620] 

4. Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM: Predicting allosteric mutants that 
increase activity of a major antibiotic resistance enzyme. Chem Sci 2017, 8:6484–6492. [PubMed: 
28989673] 

5. Cortina GA, Hays JM, Kasson PM: Conformational Intermediate That Controls KPC-2 Catalysis 
and Beta-Lactam Drug Resistance. ACS Catalysis 2018, 8:2741–2747. [PubMed: 30637173] 

Kasson and Jha Page 6

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Kasson PM, Lindahl E, Pande VS: Water ordering at membrane interfaces controls fusion dynamics. 
J Am Chem Soc 2011, 133:3812–3815. [PubMed: 21351772] 

•7. Pan AC, Sezer D, Roux B: Finding transition pathways using the string method with swarms of 
trajectories. Journal of Physical Chemistry B 2008, 112:3432–3440.

•8. Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR: Constructing the equilibrium ensemble of 
folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci U S A 2009, 
106:19011–19016. [PubMed: 19887634] 

9. Sadiq SK, Wright DW, Kenway OA, Coveney PV: Accurate ensemble molecular dynamics binding 
free energy ranking of multidrug-resistant HIV-1 proteases. J Chem Inf Model 2010, 50:890–905. 
[PubMed: 20384328] 

10. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM: Mapping long-
range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics 
simulations. J Am Chem Soc 2005, 127:476–477. [PubMed: 15643843] 

11. Hinrichs NS, Pande VS: Calculation of the distribution of eigenvalues and eigenvectors in 
Markovian state models for molecular dynamics. J Chem Phys 2007, 126:244101. [PubMed: 
17614531] 

••12. Pronk S, Larsson P, Pouya I, Bowman GR, Haque IS, Beauchamp K, Hess B, Pande VS, Kasson 
PM, Lindahl E: Copernicus: A new paradigm for parallel adaptive molecular dynamics. 
Proceedings of 2011 International Conference for High Performance Computing, Networking, 
Storage and Analysis 2011:60.

13. Bowman GR, Ensign DL, Pande VS: Enhanced Modeling via Network Theory: Adaptive Sampling 
of Markov State Models. Journal of Chemical Theory and Computation 2010, 6:787–794. 
[PubMed: 23626502] 

••14. Balasubramanian V, Jensen T, Turilli M, Kasson P, Shirts M, Jha S: Implementing Adaptive 
Ensemble Biomolecular Applications at Scale. arXiv preprint arXiv:1804.04736 2018.

•15. Zwier MC, Adelman JL, Kaus JW, Pratt AJ, Wong KF, Rego NB, Suarez E, Lettieri S, Wang DW, 
Grabe M, et al.: WESTPA: An Interoperable, Highly Scalable Software Package for Weighted 
Ensemble Simulation and Analysis. Journal of Chemical Theory and Computation 2015, 11:800–
809. [PubMed: 26392815] 

16. Hansmann UHE: Parallel tempering algorithm for conformational studies of biological molecules. 
Chemical Physics Letters 1997, 281:140–150.

17. Hukushima K, Nemoto K: Exchange Monte Carlo method and application to spin glass 
simulations. Journal of the Physical Society of Japan 1996, 65:1604–1608.

18. Swendsen RH, Wang JS: Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986, 
57:2607–2609. [PubMed: 10033814] 

19. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsovvelyaminov PN: New Approach to 
Monte-Carlo Calculation of the Free-Energy - Method of Expanded Ensembles. Journal of 
Chemical Physics 1992, 96:1776–1783.

20. Iba Y: Extended ensemble Monte Carlo. International Journal of Modern Physics C 2001, 12:623–
656.

21. Okamoto Y: Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and 
molecular dynamics simulations. Journal of Molecular Graphics & Modelling 2004, 22:425–439. 
[PubMed: 15099838] 

22. Bartels C, Karplus M: Multidimensional adaptive umbrella sampling: Applications to main chain 
and side chain peptide conformations. Journal of Computational Chemistry 1997, 18:1450–1462.

23. Aberg KM, Lyubartsev AP, Jacobsson SP, Laaksonen A: Determination of solvation free energies 
by adaptive expanded ensemble molecular dynamics. Journal of Chemical Physics 2004, 
120:3770–3776. [PubMed: 15268541] 

24. Babin V, Roland C, Sagui C: Adaptively biased molecular dynamics for free energy calculations. 
Journal of Chemical Physics 2008, 128.

25. Lu ND, Kofke DA, Woolf TB: Improving the efficiency and reliability of free energy perturbation 
calculations using overlap sampling methods. Journal of Computational Chemistry 2004, 25:28–
39. [PubMed: 14634991] 

Kasson and Jha Page 7

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Naden LN, Shirts MR: Rapid Computation of Thermodynamic Properties over Multidimensional 
Nonbonded Parameter Spaces Using Adaptive Multistate Reweighting. J Chem Theory Comput 
2016, 12:1806–1823. [PubMed: 26849009] 

•27. Pronk S, Pouya I, Lundborg M, Rotskoff G, Wesen B, Kasson PM, Lindahl E: Molecular 
simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed 
high-performance computing platform. J Chem Theory Comput 2015, 11:2600–2608. [PubMed: 
26575558] 

28. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, 
Pietrucci F, Broglia RA, et al.: PLUMED: A portable plugin for free-energy calculations with 
molecular dynamics. Computer Physics Communications 2009, 180:1961–1972.

•29. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G: PLUMED 2: New feathers for an 
old bird. Computer Physics Communications 2014, 185:604–613.

30. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M: Efficient reconstruction of complex 
free energy landscapes by multiple walkers metadynamics. Journal of Physical Chemistry B 2006, 
110:3533–3539.

31. Faradjian AK, Elber R: Computing time scales from reaction coordinates by milestoning. Journal 
of Chemical Physics 2004, 120:10880–10889. [PubMed: 15268118] 

32. Vanden-Eijnden E, Venturoli M: Markovian milestoning with Voronoi tessellations. Journal of 
Chemical Physics 2009, 130.

•33. Perez D, Uberuaga BP, Voter AF: The parallel replica dynamics method - Coming of age. 
Computational Materials Science 2015, 100:90–103.

34. Ahn SH, Grate JW, Darve EF: Efficiently sampling conformations and pathways using the 
concurrent adaptive sampling (CAS) algorithm. Journal of Chemical Physics 2017, 147.

35. Huisinga W, Schutte C, Stuart AM: Extracting macroscopic stochastic dynamics: Model problems. 
Communications on Pure and Applied Mathematics 2003, 56:234–269.

36. Swope W: Markov modelling of peptide folding with dynamical parameters. Abstracts of Papers of 
the American Chemical Society 2004, 227:U336–U336.

37. Chodera JD, Swope WC, Pitera JW, Dill KA: Long-time protein folding dynamics from short-time 
molecular dynamics simulations. Multiscale Modeling & Simulation 2006, 5:1214–1226.

38. Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera JD, Schutte C, Noe F: Markov 
models of molecular kinetics: Generation and validation. Journal of Chemical Physics 2011, 134.

••39. Plattner N, Doerr S, De Fabritiis G, Noe F: Complete protein-protein association kinetics in 
atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem 
2017, 9:1005–1011. [PubMed: 28937668] 

•40. Jo S, Suh D, He Z, Chipot C, Roux B: Leveraging the Information from Markov State Models To 
Improve the Convergence of Umbrella Sampling Simulations. J Phys Chem B 2016, 120:8733–
8742. [PubMed: 27409349] 

41. Shirts M, Pande VS: Computing - Screen savers of the world unite! Science 2000, 290:1903–1904. 
[PubMed: 17742054] 

42. Hellerstein JL, Kohlhoff KJ, Konerding DE: Science in the cloud: accelerating discovery in the 
21st century. IEEE Internet Computing 2012, 16:64–68.

43. Dean J, Ghemawat S: MapReduce: simplified data processing on large clusters. Communications 
of the ACM 2008, 51:107–113.

44. Zhao Y, Hategan M, Clifford B, Foster I, Von Laszewski G, Nefedova V, Raicu I, Stef-Praun T, 
Wilde M: Swift: Fast, reliable, loosely coupled parallel computation 2007: IEEE:199–206.

45. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, 
Nenadic A, Fisher P, et al.: The Taverna workflow suite: designing and executing workflows of 
Web Services on the desktop, web or in the cloud. Nucleic Acids Research 2013, 41:W557–W561. 
[PubMed: 23640334] 

46. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang 
B, Woods RJ: The Amber biomolecular simulation programs. Journal of Computational Chemistry 
2005, 26:1668–1688. [PubMed: 16200636] 

Kasson and Jha Page 8

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, 
Schulten K: Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005, 
26:1781–1802. [PubMed: 16222654] 

48. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, 
Bartels C, Boresch S, et al.: CHARMM: The Biomolecular Simulation Program. Journal of 
Computational Chemistry 2009, 30:1545–1614. [PubMed: 19444816] 

49. Hess B, Kutzner C, van der Spoel D, Lindahl E: GROMACS 4: Algorithms for highly efficient, 
load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation 
2008, 4:435–447. [PubMed: 26620784] 

50. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, 
van der Spoel D, et al.: GROMACS 4.5: a high-throughput and highly parallel open source 
molecular simulation toolkit. Bioinformatics 2013, 29:845–854. [PubMed: 23407358] 

51. Mattoso M, Dias J, Ocana KACS, Ogasawara E, Costa F, Horta F, Silva V, de Oliveira D: Dynamic 
steering of HPC scientific workflows: A survey. Future Generation Computer Systems-the 
International Journal of Escience 2015, 46:100–113.

•52. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I: Swift: A language for 
distributed parallel scripting. Parallel Computing 2011, 37:633–652.

•53. Jain A, Ong SP, Chen W, Medasani B, Qu XH, Kocher M, Brafman M, Petretto G, Rignanese 
GM, Hautier G, et al.: FireWorks: a dynamic workflow system designed for high-throughput 
applications. Concurrency and Computation-Practice & Experience 2015, 27:5037–5059.

•54. Balasubramanian V, Treikalis A, Weidner O, Jha S: Ensemble Toolkit: Scalable and Flexible 
Execution of Ensembles of Tasks. Proceedings 45th International Conference on Parallel 
Processing - Icpp 2016 2016:458–463.

55. Dakka J, Turilli M, Wright DW, Zasada SJ, Balasubramanian V, Wan S, Coveney PV, Jha S: High-
throughput binding affinity calculations at extreme scales. arXiv preprint arXiv:1712.09168 2017.

•56. Irrgang ME, Hays JM, Kasson PM: gmxapi: a high-level interface for advanced control and 
extension of molecular dynamics simulations. Bioinformatics 2018.

Kasson and Jha Page 9

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Adaptive ensemble simulations are high-level algorithms for biomolecular 

processes

• Adaptivity can greatly improve the computational efficiency of simulations

• Existing software solutions are powerful yet incomplete

• An Adaptive Ensemble API permits powerful, flexible formulation of 

adaptivity

Kasson and Jha Page 10

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Adaptive ensemble work diagrams.
Panel a schematizes an asynchronous replica exchange loop. Ensemble members are run 

asynchronously, so there is no global barrier before exchange or analysis. This is not per se 
an adaptive concern but is required for many efficient adaptive algorithms. An ensemble 

analysis then tests for convergence and either re-triggers the loop (perhaps with altered 

parameters) or writes a final output. Panel b schematizes more complex adaptive logic, 

where an initial simulation ensemble of protein-ligand interaction asynchronously triggers 

an analysis calculation (which could be clustering and Markov State Model construction). 

This analysis calculation either adaptively reseeds the ensemble simulation run or, if the run 

is converged, starts an ensemble free-energy-perturbation (FEP) calculation on a new ligand 

(lower branch). Depending on the result of this FEP calculation, it is either “accepted” and a 

new Markov State Model calculation started with the new ligand, or it is “rejected” and a 

Kasson and Jha Page 11

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



new ligand tested. In all schemas, dark gray rectangles indicate ensemble simulations and 

light gray rectangles indicate analyses.

Kasson and Jha Page 12

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Need for sophisticated runtime systems to manage adaptive ensemble simulations.
Survival curves of number of ensemble members versus simulation time reached are plotted 

for simulations run on Folding@Home (a) and Google Exacycle (b). Due to stochastic 

factors, large ensemble calculations show a near-exponential decay in number of ensemble 

members reaching a given simulation length. This is somewhat mitigated by ensemble 

management algorithms. This decay causes a “long tail” in simulation completion times, 

which can result in substantial inefficiencies if a global barrier exists such that all 

simulations must complete prior to analysis. This can be partially mitigated by advanced 

runtime systems, but asynchronous analyses that do not require all simulations to complete 

can algorithmically overcome this issue. Simulation data plotted from [4].

Kasson and Jha Page 13

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Operations comprising the Adaptive Ensemble API. We denote kernels as f, g, and h, and 

each kernel takes inputs, possibly arrayed, denoted inp. In the illustrative schemas, gray 

boxes indicate kernels being executed, solid lines with errors indicate inputs, dotted lines 

indicate logical flow, and question marks indicate branch points.

Kasson and Jha Page 14

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Pseudocode implementing adaptive Markov State Models using Adaptive Ensemble API. 

For demonstration purposes, we have shown an implementation using gmxapi [56]; the 

approach should easily generalize to other Python frontends for molecular simulation 

programs.

Kasson and Jha Page 15

Curr Opin Struct Biol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Adaptive ensemble methods for simulating biomolecules
	Designing software systems for adaptive ensemble methods
	Steps toward greater adaptivity – State of the art
	An Adaptive Ensemble API
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

