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Abstract

There are a number of vaccine candidates under development against a small number of
the most common outbreak filoviruses all employing the virus glycoprotein (GP) as the vac-
cine immunogen. However, antibodies induced by such GP vaccines are typically autolo-
gous and limited to the other members of the same species. In contrast, T-cell vaccines
offer a possibility to design a single pan-filovirus vaccine protecting against all known and
even likely existing, but as yet unencountered members of the family. Here, we used a
cross-filovirus immunogen based on conserved regions of the filovirus nucleoprotein, matrix
and polymerase to construct simian adenovirus- and poxvirus MVA-vectored vaccines, and
in a proof-of-concept study demonstrated a protection of the BALB/c and C57BL/6J mice
against high, lethal challenges with Ebola and Marburg viruses, two distant members of the
family, by vaccine-elicited T cells in the absence of GP antibodies.

Author summary

Development of an effective vaccine against filovirus outbreaks is an important public
health aim. Here, we demonstrate the principle that cellular responses can not only pro-
tect two strains of mice against a high lethal virus challenge of 1000 LDsj in the absence of
glycoprotein antibodies, but a single epigraph T—cell vaccine can do so against distant
members of the filovirus family, EBOV and MARV. This suggests a possibility that this
candidate vaccine also protects against other known as well as yet unencountered viruses
of the filovirus family; it is a pan-filovirus vaccine.
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Introduction

The family Filoviridae includes 5 distinct viruses in the Ebolavirus genus: Zaire Ebola virus
(EBOV), Sudan virus (SUDV), Reston virus (RESTV), Tai Forest virus (TAFV), and Bundibugyo
virus (BDBV); 2 viruses in the Marburg-virus genus: Marburg virus (MARV) and Ravn virus
(RAVV); and 1 virus in the Cuevavirus genus: Lloviu virus (LLOV). The first identified filovirus
disease was caused by MARV and occurred in Europe in 1967. Since then, there have been over
50 recorded zoonotic outbreaks causing hemorrhagic fevers in humans and non-human pri-
mates with 90% fatality rates [1, 2]. There is no vaccine or drug licensed against any member of
the filovirus family. Thus, development of an effective vaccine is of great importance for public
health in Africa, where outbreaks occur periodically, as well as for the rest of the world.

At least seven vaccine platforms vectored by human and simian (chimpanzee) adenoviruses
HAdV-5, HAdV-26, ChAdV-3, vesicular stomatitis virus (VSV), human cytomegalovirus,
modified vaccinia virus Ankara (MVA), plasmid DNA, subunit proteins and virus-like parti-
cles have been tested in nonhuman primates (NHPs) and encouraging results were obtained
with two candidates, replicating VSV-ZEBOV (EBOV) and non-replicating ChAd3-ZEBOV,
showing a single dose efficacy against EBOV challenge [3, 4]. However, before the 2013 epi-
demic, only one vaccine reached phase 1 trial in humans and was abandoned. Facing the 2013
epidemic, the most promising vaccines were moved to clinical trials [5-10] and one, rVSV-ZE-
BOV reported efficacy in a human phase 3 trial [6]. During the 2018 Ebola outbreak in the
Democratic Republic of Congo, death toll was reduced to 29 due to a number of factors; the
rVSV-ZEBOV vaccine was experimentally deployed, but no data indicated its contribution to
the reduced outbreak.

Most of the above efforts focus on EBOV, because this virus is historically the most frequent
cause of filovirus outbreaks, and all employ the virus glycoprotein (GP). While there is a high
degree of conservation in the GP within one species, so that, for example, antibody responses to
EBOV vaccine would likely cross-react with other EBOV outbreak variants, protection against
other filoviruses by the current vaccines will be very low [11]. Indeed, rVSV-ZEBOV induced
50% cross-protection for SUDV [12] and protection against other more distant viruses of the
filovirus family would likely be much lower and require a multi-species vaccine [13].

An ideal vaccine should be effective not only against the currently prioritized outbreak spe-
cies, but across all variants of the 8 distinctive filovirus members and provide a degree of protec-
tion even against the likely existing, but as yet unencountered species. Induction of CD8" T-
cells provides such an opportunity. The FILOcepl&2 vaccines constructed here aim to induce
protective T-cell responses against viruses across the filovirus family. While the four most con-
served regions of the filovirus family were identified and the theoretical corresponding epigraph
regions were computed previously [11], in the present work, we describe construction of the
candidate pan-filovirus T-cell four-component vaccine vectored by simian adenovirus and pox-
virus MVA, demonstrate their broad immunogenicity in the BALB/c and C57BL/6] strains of
mice and report a solid protection of mice by vaccination from highly lethal EBOV and MARV
experimental challenges. This protection was mediated solely by T-cell responses in the absence
of GP-specific antibodies. The possible role of this vaccine in the preparedness for the future
filovirus outbreaks as well as its use for treating residual infection are discussed.

Results
Construction of the FILOcep1&2 vaccines

The FILOcep1&2 vaccines aim to induce protective T-cell responses against viruses across the
filovirus family. This is achieved by targeting the most similar, structurally and functionally
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conserved regions among the virus proteomes, and maximizing the match of the vaccine to
all potential 9-mer T-cell epitopes (PTE) within these regions by computing bi-valent Epi-
graph sequences [11]. Epigraphs are the next generation of the pluri-valent mosaic design
[14] aiming to maximize the coverage of a diverse, variable population of pathogens by bio-
informatics-assisted computed amino acid sequences. The main improvement over mosaic
is that epigraphs “walks” through the protein sequence and ensures that all PTE sequences
used occur in the natural isolates present in the starting database. The rationale of the
immunogen design is as follows. The best match is ensured with the EBOV species, which
historically seeded the most outbreaks. The immunogens still have an excellent match to
the other common outbreak species SUDV and MARYV, and within the conserved regions
maintain a good match to all other known filovirus PTEs [11]. Overall, there is a minimum
of 8/9-amino acid match within a PTE to 80% filovirus isolates. Each of the four regions of
epigraph 1 and epigraph 2 differ in about 10% amino acids, include a span of minimum
100 amino acids, together total 827 amino acids, and ensure broad representation of
human leukocyte antigens (HLAs) for the restricted epitopes. To decrease potential induc-
tion of strong irrelevant CD8" T cells recognizing new and, therefore, irrelevant non-viral
epitopes generated by joining two adjacent regions together, the four conserved filovirus
regions are assembled in two unique orders: 1-2-3-4 in FILOcepl and 4-3-2-1 in FILOcep2
(Fig 1).

The FILOcep1&2 immunogens were delivered to the cells of the immune system
employing non-replicating engineered chimpanzee adenovirus ChAdOx1 and non-repli-
cating poxvirus MVA as vaccine vectors [15]. The combination of these heterologous vec-
tors has been shown to induce robust CD8" T-cell responses in human volunteers for other
indications [5, 16, 17]. Here, synthetic open-reading frames coding for FILOcep1 and
FILOcep2 were inserted into the vector genomes to be administered in a four-component
vaccine regimen, whereby the ChAdOx1.FILOcepl + ChAdOx1.FILOcep2 vaccines were
used together as a prime and MVA.FILOcepl + MVA.FILOcep2 were used together as a
boost (Fig 1).

Optimization and characterization of vaccine-elicited T-cell responses

We optimized and characterized the vaccine-elicited T-cell responses in the BALB/c mice
(H-2%). For each vaccine component individually and two epigraphs together, four escalating
doses were administered intramuscularly. The frequencies of FILOcep1&2-specific T cells
were determined in an IFN-y ELISPOT assay employing 12 pools of variant peptide pairs
derived from the two FILOcep1 and FILOcep2 epigraphs. Thus, doses ranging from 10° to
5x10°® infectious units (IU) were assessed for ChAdOx1.FILOcepl (C1) and ChAdOx1.FILO-
cep2 (C2) individually and for half-doses together as C1C2, and the dose of 1x10® IU was cho-
sen for further vaccinations (Fig 2A). For MVA.FILOcepl (M1), MVA.FILOcep2 (M2) and
two half-doses of M1M2, a range from 1x10° to 1x10” plaque-forming units (PFU) was tested
and 10” PFU was chosen for further experiments (Fig 2B). Broadly specific responses against 8
pools with higher that 50 SFU/10° splenocytes and dominant pools P3 and P12 were induced,
which summed across all 12 pools for the combined C1C2 and M1M2 deliveries to median of
4207 and 1109 SFU/10° splenocytes, respectively. Next, we determined that C1C2 was syner-
gistically boosted with M1M2 totalling median 12495 SFU/10° splenocytes (Fig 3A). The most
potent was a combination of C1C2 delivered into one site and M1M2 into another site over
the mixed C1M1 and C2M2 administration (Fig 3B). Administration of all four vaccine com-
ponents at the same time was much less potent than heterologous C1C2 prime and M1M2
boost separated by 3 weeks (Fig 3C). In the BALB/c mice, we mapped highly stimulatory
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Fig 1. The FILOcep1&2 vaccine design. Conserved regions of the filovirus proteome (red) are the most similar parts
of proteins common across the eight virus species of the filovirus family. These regions were identified by amino acid
alignment of all known filovirus isolates in the database. An algorithm called Epigraph computed bi-valent amino acid
sequences (epigraph 1 and epigraph 2), which complement each other and are used together in a vaccine to optimize
match of potential T-cell epitopes between the vaccine and all input filovirus species [11]. For the FILOcepl and
FILOcep2 epigraphs, the four regions 1, 2, 3 and 4 are 280 (nucleoprotein 131-410), 123 (matrix 71-193), 315 (RNA
polymerase 540-854) and 109 (RNA polymerase 952-1060) amino acid long, respectively, and were arranged into
different orders to minimize potential induction of T cells recognizing irrelevant (non-viral) newly generated epitopes
across the regional junctions. Synthetic ORF coding for these two proteins each 827 amino acid in length were inserted
into engineered replication-deficient simian (chimpanzee) adenovirus ChAdOx1 and replication-deficient poxvirus
MVA to generate four components of the vaccine abbreviated C1, C2, M1 and M2.

https://doi.org/10.1371/journal.ppat.1007564.9001

15-mer peptides (S1 Fig and Fig 3D) and used their pairs, one from each epigraph, to demon-
strate induction of plurifunctional IFN-y, TNF-a, IL-2 and CD107a responses. CD8" T cells
produced mainly IFN-y, TNF-o and degranulated (CD107a) concurring with their cytolytic
capacity, while CD4" T cells produced IFN-y, and IL-2 (Fig 3E). Between 27% to 61% of CD8"
T cells produced 3 functions in parallel, while CD4" T cells were mainly monofunctional. We
narrowed down the two most immunodominant CD8" T-cell responses in peptides 105 and
336 to ASFKQALSNL (AL10) and GYLEGTRTLLAS (GS12), respectively (Fig 3F). The opti-
mal length of these epitopes present in the two vaccine epigraphs were compared to the
sequences across the filovirus family. Epitope variants N/ASFKQALSNL in FILOcepl and
FILOcep2 matched EBOV and MARYV, respectively, and differed for several other filoviruses
with the strongest ASFKQALSNL (MARV and RAVV) yielding 1000 SFU/10° splenocytes and
SSFKAALGSL (SUDV) and LAFKSALEAL (LLOV) not recognized at all. In contrast, GS12
was conserved across the entire family and strongly recognized at 1300 SFU/10° splenocytes
(Fig 3G).
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Fig 2. Dose finding for rMVA and rChAdOx1 vaccines. Groups of the BALB/c mice were administered intramuscularly increasing doses of
1x10°, 1x107, 1x10® and 5x10® infectious units (IU) of individual ChAdOx1.FILOcep1 and ChAdOx1.FIOcep2 vaccines and their half-dose
combinations A), or 1x10°, 1x10°, 5x10° and 1x10” plaque-forming units (PFU) of MVA.FILOcep1 and MV A.FILOEcep2 vaccines and their
combined half-doses B), and the frequencies of the vaccine-elicited filovirus-specific T cells in the spleen were assessed 9 days after vaccination in
an IFN-y ELISPOT assay using 12 pools of FILOcep1&2-derived 15-mer peptides overlapping by 11 amino acids and spanning the full length of
both immunogens. T-cell epitope variant peptide pairs were used together in pools to allow addition of pool-detected frequencies for overall
magnitude of the anti-FILOcep1&2 responses. Data are shown as median (range), n = 3. Kruskal-Wallis test was used to determine the
significance of variation among individual doses/vaccinations for immunodominant peptide pools P3 and P12 and the P values are shown above.

https://doi.org/10.1371/journal.ppat.1007564.9002
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Fig 3. Optimization of the regimen and characterization of FILOcep1&2 vaccine-elicited responses in the BALB/c mice.
Groups of mice were vaccinated A) with either the two adenovirus or two poxvirus components alone and compared to their
C1C2 prime-M1M2 boost combination, B) exploring various vaccine distributions between two anatomical sites (hind legs) and
compared to C1C2-M1M2, C) administering all 4 vaccine components on the same day and assaying at 4 weeks or 1 week later
compared to C1C2-M1M2. The induced T cells were analyzed employing 12 FILOcep1&2 peptide pools in an IFN-y ELISPOT
assay. For A), B) and C), Kruskal-Wallis test was used to determine the significance of variation among regimens for
immunodominant peptide pools P3 and P12 and the P values are shown above. D) Using the most efficient C1C2-M1M2
regimen, all 390 15-mer peptides were tested individually in an IFN-y ELIPSPOT assay (S1 Fig.) and the strongest peptide pairs
from that scan are listed, whereby SFU/M gives the frequencies of responding splenocytes per million. E) The 4 most
immunodominant 15-mer peptide pairs used to characterize the functionality of vaccine-elicited CD8* and CD4" T cells,
whereby the plurifunctionality of cells expressing 1 (black), 2 (light gray) and 3 (dark gray) cytokines/functions simultaneously
are given as pie charts. Data in A), B), C) and E) are shown as median (range), n = 4. F) Two immunodominant CD8" T-cell
epitopes in 15-mers 105 and 336 were narrowed to their optimal length using IFN-y ELISPOT assay with the frequencies of
responding T cells on the right. G) In a separate immunization experiment, optimal-length variant epitopes derived from the 8
members of the filovirus family were assessed for recognition by C1C2-M1M2-induced T cells.

https://doi.org/10.1371/journal.ppat.1007564.9003

Complete protection against highly lethal doses of EBOV and MARY in the
BABL/c mice

Next, we set out to assess the protective efficacy of the vaccine-elicited T cells, in our case in
the absence of any GP-specific antibody, against two distant filoviruses, EBOV and MARV.
Using the best regimen of the 4 vaccine components identified above, groups of 20 BALB/c
mice received either the FILOcepl and FILOcep2 vaccines or control eGFP vaccines, the latter
expressing enhanced green fluorescent protein (eGFP) as an irrelevant protein with no homol-
ogy to the filovirus family (Table 1). Four animals in each group were sacrificed 1 week after
they received rMVA and, employing two different commercial IFN-y ELISPOT Kkits, high fre-
quency T cells specific for the FILOcep1&2 immunogens were detected in animals receiving
the test vaccines, while no FILOcep1&2-specific responses were induced by the control eGFP
vaccines (Fig 4A). This confirmed compatible immunopotency between the Oxford and Win-
nipeg laboratories. Of the remaining 16 animals in each group, 8 were exposed to a lethal chal-
lenge with 1000 LDs, of mouse-adapted EBOV (Mayinga) [18] and 8 with 1000 LDs, of
mouse-adapted MARV (Angola) [19] 4 weeks post vaccination and their body mass was
recorded daily. While all the animals in the control group started losing mass precipitously
and either died or had to be euthanized between days 4 and 6 post challenge, all the FILO-
cepl&2 vaccine recipients maintained normal body mass and survived till the end of the
scheduled protocol on day 29 post challenge (Fig 4B). In the repeat experiment, mice were sac-
rificed 3 and 5 days after challenge and the EBOV and MARV genomes were quantified in the

Table 1. Design of the experimental challenges.

Vaccine

20

animals

Control

20

animals

Day 0 Day 21 Day 28 Day 35 Up to day 64
ChAdOx1.FILOcepl MVA.FILOcepl IEN-y ELISPOT EBOYV challenge1000 LDs,
5x107 TU i.m. 5x10° PFU i.m. assay 8 animals Monitoring
+ + 4 animals
ChAdOx1.FILOcep2 MVA.FILOcep2 MARY challenge1000 LDs,
5x10” IU i.m. 5x10° PFU i.m. 8 animals
EBOV challenge1000 LDs,
ChAdOx1.eGFP MVA.eGFP IFN-y ELISPOT 8 animals Monitoring
1x10° TU i.m. 1x10” PFU i.m. assay
4 animals MARYV challenge1000 LDs,
8 animals

This design was used in two BALB/c and one C57BL/6] experimental challenges.

https://doi.org/10.1371/journal.ppat.1007564.t001
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Fig 4. Complete protection of the BALB/c mice against Ebola and Marburg virus challenges by FILOcep1&2 vaccination. BALB/c mice were immunized
with the candidate FILOcep1&2 vaccines or control vaccines expressing irrelevant eGFP, challenged by Ebola and Marburg viruses as shown in Table 1. A)
Induction of filovirus-specific T cells was confirmed using Mabtech (left) and Cellular Technology Limited (CTL; right) IFN-y ELSIPOT assay kits using two
immunodominant peptide pools P3 and P12 on day 28. Frequencies are shown as median (range), n = 4. B) Eight mice in the FILOcep1&2 (blue) and 8 in the
control eGFP (red) groups were challenged with 1000 LDs of either mouse-adapted EBOV (Mayinga; left) or 1000 LD5, mouse-adapted MARV (Angola;
right) virus on day 35 and the animals were daily measured for their body mass till day 14 post challenge (top) and survival till day 28 post challenge (bottom).
The P values for survival used the Log-rank (Mantel-Cox) Test, n = 8. C) The EBOV and MARV viruses were quantified in various tissues on 3 and 5 days
after the challenge (DPC). Data are shown as median (range), n = 4 per group.

https://doi.org/10.1371/journal.ppat.1007564.g004
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blood, spleen, liver, kidneys and lungs. For EBOV, between 4 and 6 log;, fewer genomes per
mg of tissue were found in FILOcep1&2 vaccinated mice, while for MARV, virus was only
detected in FILOcep1&2 vaccine recipients in the blood at 1000 genomes/mg on day 5 after
challenge (Fig 4C). We conclude that the T-cell responses induced by the ChAdOx1.FILOcepl
+ ChAdOx1.FILOcep2 prime-MVA.FILOcepl + MVA.FILOcep2 boost regimen protected the
BALB/c mice from both the EBOV and MARYV lethal challenges and did so in the absence of
glycoprotein antibodies.

Immunopotency and protection against highly lethal doses of EBOV and
MARY in the C57BL/6] mice

We also assessed the breadth of T-cell responses induced in the C57BL/6] strain of mice (H-
2%). Groups of mice were immunized with either FILOcep1, FILOcep2 or combined half-doses
of both epigraphs and a pattern on immunodominance was observed distinct from that in the
BALB/c mice with the strongest peptide pools P3, P4, P5 and P7 (Fig 5A).

The challenge experiment followed the design in Table 1. Four mice were sacrificed on day
28 of the schedule to confirm induction of FILOcep1&2-specific T-cell responses in the vac-
cine recipients using the four most dominant peptide pools and some variability among ani-
mals in the relative frequencies of T-cells was noticed (Fig 5B). Following experimental
challenge with Ebola and Marburg viruses of 8 animals per group, control animals started to
lose their body mass and all died or were euthanized by day 7 post challenge with the exception
of one MARV-challenged control mice, which regained mass and was still alive on day 28. In
contrast, all mice which received the FILOcep1&2 vaccines kept gaining body mass and stayed
alive till the end of the protocol (Fig 5C). Thus, the FILOcep1&2 vaccines protected against
Ebola and Marburg viruses in both the BALB/c and C57BL/6] strains of mice carrying differ-
ent H-2 molecules and presenting different peptides, and the vaccine-elicited T cells did so in
the absence of challenge virus-specific antibodies (Fig 6).

Discussion

In the present work, the ChAdOx1-MVA/FILOcep1&2 vaccines induced broadly specific,
plurifunctional T-cell responses in mice and proved the concept that a pan-filovirus T-cell vac-
cine alone, in the absence of GP antibodies, can confer a 100% protection against experimental
1000 LDs lethal challenges with filoviruses of two different genera and do so in the BALB/c
and C57BL/6] strains of mice.

In our experience with chimeric T-cell immunogens similar to the FILOcep1&2 proteins
delivered by DNA, recombinant simian adenoviruses and MVA, and administered to mice,
NHPs and humans, induction of transgene product-specific antibodies was extremely rare
[20-22]. Because the intracellularly expressed proteins in the absence of any naturally evolved
folding are unstable and there is no surface GP included, no readily detectable filovirus-spe-
cific antibodies were induced. Therefore, we consider it highly unlikely that anti-FILOcep1&2
antibodies contributed the observed protection.

The strongest 15-mer peptides in the BALB/c mice were mapped in pools P3, P11 and P12.
For a few epigraph variant pairs, the responses were similar, for other pairs, one variant was
poorly or not recognized at all. This may reflect the differences that the bi-valent epigraph has
to cover even for some of the most conserved protein regions; the coverage for variable regions
must be worse. Two most immunodominant epitopes recognized by CD8" T cells were nar-
rowed down to the optimal length. The strongest epitope of the two, GS12, was conserved
across the eight filoviruses. The other epitope AL10 happened to have a perfect match in FILO-
cepl and FILOcep2 to the two challenge viruses EBOV and MARYV, respectively, even though
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Fig 5. Complete protection of the C57BL/6] mice against Ebola and Marburg virus challenges by FILOcep1&2
vaccination. A) A group of the C57BL/6] mice was vaccinated using the C1C2 and M1M2 3 weeks apart and the pattern of
immunodominance for the 12 FILOcep1&2 peptide pools was determined in an IFN-y ELISPOT assay in the Oxford
laboratory 1 week later (n = 4). B) In the Winnipeg laboratory, groups of the C57BL/6] mice were immunized with the
candidate FILOcep1&2 vaccines or control vaccines expressing irrelevant eGFP and challenged by Ebola and Marburg
viruses on day 35 (Table 1). Kruskal-Wallis test was used to determine the significance of variation among regimens for
immunodominant peptide pool P4 and the P value is shown above. B) Four mice were killed and the induction of filovirus-
specific T cells was confirmed in an IFN-y ELSIPOT assay kits using the 4 immunodominant peptide pools P3, P4, P5 and P7.
C) Eight mice in the FILOcep1&2 (blue) and 8 in the control eGFP (red) groups were challenged with 1000 LDs, of either
mouse-adapted EBOV (Mayinga; left) or 1000 LDs, mouse-adapted MARV (Angola; right) virus and animals’ body mass was
measured daily till day 14 post challenge (top) and survival was monitored until day 28 post challenge (bottom). The P values
for survival used the Log-rank (Mantel-Cox) Test, n = 8.

https://doi.org/10.1371/journal.ppat.1007564.9005

the EBOV variant yielded 5-fold lower specific T-cell frequencies and a great depth of recogni-
tion resulting from the bi-valent vaccine immunization was not achieved for this epitope.
Thus, the coverage of epitopes in the filovirus species by the bi-valent vaccine will likely differ
for each individual epitope and the protective effect against viruses will depend on the number
of different epitopes recognized by the vaccine-elicited effector cells. Sometimes one protective
invariant epitope may suffice, while recognition of multiple epitopes provides a better chance
for virus control.
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Fig 6. The FILOcep1&2 vaccine administration did not induce any filovirus-specific antibodies. Proteins in lysates of 8 pg of purified
irradiated EBOV (A) or MARYV (B) preparations were separated by SDS-PAGE and used to assess the induction of filovirus protein-
specific antibodies induced by administration of the FILOcep1&2 vaccines in a Western blot. Sera from 1 week after the MVA.
FILOcep1&2 boost of the BALB/c or C57BL/6] mice were combined for each group, diluted 1:1000 and tested against the Western blotted
virus lysates or PBS as indicated. MAbs specific for the EBOV and MARV NPs served as positive controls, and no serum or sera from the
same time isolated from mice vaccinated with the control eGPF vaccines were used as negative controls. Relative molecular mass markers
are shown.

https://doi.org/10.1371/journal.ppat.1007564.9006

Previously, a protective role of T cells in immunity against EBOV in mice was suggested by
studies in genetically modified mice [23] and by passive transfer of lymphocytes [24, 25]
although in the one of the studies, a role for humoral immunity was also implicated [24]. A
protection by T cells against several heterologous EBOV species was also reported by Hensley
and colleagues [12].

There are a very few known HLA-restricted epitopes derived from filoviruses. The FILO-
cepl&2 regions span amino acids 131-420 in the nucleoprotein, 71-193 in matrix, and 540-
854 and 952-1060 in the RNA polymerase, and of these the nucleoprotein has been the most
studied. Searching the Immune Epitope Database (IEDB; https://www.iedb.org/) for known T-
cell epitopes in filoviruses currently yields 10 well defined human CD8 T-cell epitopes, of
which 7 are contained in the vaccine (Table 2). The number of HLA-restricted PTEs covered
by the FILOcep1&2 vaccines can be estimated by shifting an 8-, 9- and 10-amino acid-long

Table 2. Well defined human CD8" T-cell epitopes in FILOcep1&2*.

Epitope Virus of origin Restriction
FLSFASLFL EBOV HLA-A02
RLMRTNFLI RESTV HLA-A02
AYQGDYKLF EBOV HLA-A23
FPQLSAIAL EBOV HLA-B35
FQQTNAMVTL EBOV HLA-A02
LHVVNYNGLL EBOV HLA-B15
VHAEQGLIQY EBOV HLA-A*30:02

*Immune Epitope Database (https://www.iedb.org/) as of Nov 2018.

https://doi.org/10.1371/journal.ppat.1007564.t002
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window across the 827-amino acid proteins, which gives 820 8-mer, 819 9-mer and 818
10-mer PTEs times two for the two FILOcep1&2 immunogens. Each of these PTEs then needs
to be predicted for binding to major HLA alleles. This analysis would almost certainly yield
more than sufficient number of human epitopes for all major HLAs to induce a broad response
in every individual. Immunodominance will always be established narrowing down the
response specificities. The protective potential of the FILOcep1&2 vaccine-elicited responses
in humans can be only established by exposure of vaccinated individuals.

Our next step is to determine whether or not the efficacy of T cells alone induced by the
ChAdOx1-MVA/FILOcep1&2 vaccines translates to NHPs. If the mouse protection is repli-
cated in NHP, identification of the correlates of protection in NHPs might greatly encourage
testing the immunopotency of these vaccines in human volunteers. In the past, CD8" T cells
induced by HAdV-vectored vaccine conferred protection of NHPs against EBOV infection
[26, 27]. The likely absence of an opportunity to demonstrate a human phase 3 efficacy may
allow an alternative licensure pathway. A successful pan-filovirus vaccine would have multiple
uses such as generation of vaccine stockpiles for containment of future outbreaks, elimination
of the 2013 and 2018 outbreak remnants, elimination of virus reservoirs in survivors, provision
of long-term protection in high risk populations including health workers and may even help
saving highly endangered western gorillas.

Materials and methods
Synthetic genes for FILOcepl and FILOcep2

Two DNA fragments carrying the two FILOcepl and FILOcep2 ORFs were synthesized (Life
Technologies) using humanized codons and were preceded by the consensus Kozak sequence
to -5 nucleotides to maximize protein expression.

Construction of the MVA.FILOcepl and MVA.FILOcep2 vaccines

The parental non-replicating MVA originates directly from Professor Anton Mayr, passage
575 dated 14 December, 1983. The FILOcepl, FILOcep2 or eGFP ORFs were cloned into trans-
fer plasmid p856MVA-GFP-mHS5 under control of the modified H5 promoter. Through
homologous recombination, the expression cassettes were directed into the thymidine kinase
locus on the MVA genome. Recombinant MV As were made as described elsewhere. Briefly,
chicken embryo fibroblast (CEF) cells grown in Dulbeco’s Modified Eagle’s Medium supple-
mented with 10% FBS, penicillin/streptomycin and glutamine (DMEM 10) were infected with
parental MVA at MOI 1 and transfected using Superfectin (Qiagen) with 3 ug of p856 MV A-
GFP-TD-mH5.FILOcepl or p856MVA-GFP-TD-mH5.FILOcep2 DNA. The cell lysate from
this recombination was harvested and used to infect CEF. These cells were MoFlo-single cell
sorted into 96-well plates and these were used to culture recombinant virus upon addition of
fresh CEF. Those wells containing suitably infected cells were harvested and screened by PCR
to confirm identity and test purity. Plaque picking was performed until the culture was free of
parental virus, as determined by PCR. The virus was then bulk-prepared and purified on a
36% sucrose cushion, titred and stored at -80 °C until use.

Construction of the ChAdOx1.FILOcepl and ChAdOx1.FILOcep2 vaccines

The ChAdOx1 vaccine vector is derived from ChAdV isolate Y25 of group E adenoviruses,
and pre-existing antibodies to group E are rare in human populations. Its genome modifica-
tions include removal of the E1, E3 and a substitution of simian region E4 with the HAdV-5
E4 orf4 and orf6/7 genes. For the generation of recombinant ChAdOx1s, the FILOcep1 and
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FILOcep2 ORFs were subcloned under the control of the human cytomegalovirus immediate
early promoter into plasmid pENTR4_Mono and inserted at the E1 locus of the ChAdOx1
genome by GalK recombineering. Recombinant ChAdOx1 vaccines were rescued by transfec-
tion of HEK293A T-Rex cells (Invitrogen/ThermoFisher Scientific) using linearized plasmid.
The presence of the transgene and absence of contaminating empty parental adenovirus were
confirmed by PCR. The virus was titred to determine infectious units (IU) per ml, assayed by
spectrophotometry to quantify the number of virus particles per ml and stored at —80 °C until
use.

Mice, immunizations and preparation of splenocytes

Six-week-old female BALB/c or C57BL/6 mice were purchased from Envigo (UK) and housed
at the Functional Genomics Facility, University of Oxford. Mice were immunized intramuscu-
larly under general anesthesia either with varying amounts of rChAdOx1s and rMVAs. On the
day of sacrifice, spleens were collected and cells isolated by pressing organs individually
through a 70-pm nylon mesh of a sterile cell strainer (Fisher Scientific) using a 5-ml syringe
rubber plunger. Following the removal of red blood cells (RBC) with RBC Lysing Buffer
Hybri-Max (Sigma), splenocytes were washed and resuspended in R10 (RPMI 1640 supple-
mented with 10% FCS, penicillin/streptomycin and B-mercaptoethanol) for ELISPOT and
intracellular cytokine staining (ICS) assays.

Peptides and peptide pools

All peptides were at least 90% pure by mass spectrometry (Ana Spec, San Jose, CA, USA and
Synpeptide Co Ltd, Shanghai, China), were dissolved in DMSO (Sigma-Aldrich) to yield a
stock of 10 mg/ml, and stored at -80°C. Three hundred and ninety FILOcep1&2-derived pep-
tides 15-mer overlapping by 11 amino acids were divided into 12 pools P1-P12 of 34 to 47 indi-
vidual peptides in a way that variant peptides were always present in the same pool for use in
ICS and ELISPOT assays. 17 pairs of stimulatory ‘BALB/c’ peptides were employed as specified
in each figure. The peptides were used at a final concentration of 1.5 pg/ml each.

The IFEN-y ELISPOT assay

The ELISPOT assay was performed using the Mouse IFN-y ELISpot kit (Mabtech, Stockholm,
Sweden) or FluoroSpot kits (Mabtech and Cellular Technology Limited, Cleveland, OH, USA)
according to the manufacturer’s instructions. For the former, immune splenocytes were col-
lected and tested separately from individual mice. Peptides were used at 1.5 pug/ml each and
splenocytes at 5 x 10* cells/well were added to 96-well high protein binding Immobilon-P
membrane plates (Millipore) that had been precoated with 5 pg/ml anti-IFN-y mAb AN18
(Mabtech,). The plates were incubated at 37°C in 5% CO, for 18 hours and washed with PBS
before the addition of 1 pg/ml biotinylated anti-IFN-y mAb (Mabtech) at room temperature
for 2 hours. The plates were then washed with PBS, incubated with 1 pg/ml streptavidin-conju-
gated alkaline phosphatase (Mabtech) at room temperature for 1 hour, washed with PBS, and
individual cytokine-producing units were detected as dark spots after a 10-minute reaction
with 5-bromo-4-chloro-3-idolyl phosphate and nitro blue tetrazolium using an alkaline phos-
phatase-conjugate substrate (Bio-Rad, Richmond, CA, USA). Spot-forming units were
counted using the AID ELISpot Reader System (Autoimmun Diagnostika). The frequencies of
responding cells were expressed as a number of spot-forming units/10° splenocytes.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007564 February 28, 2019 13/17


https://doi.org/10.1371/journal.ppat.1007564

@'PLOS ‘ PATHOGENS

Pan-filovirus T-cell vaccine protects against lethal EBOV and MARV challenges

Intracellular cytokine staining (ICS) assay

Splenocytes or PBMC:s isolated from whole blood were stimulated with peptide at 2 pg/ml,
ionomycin and phorbol myristate acetate (PMA) at 2.0 pg/ml and 0.5 pg/ml, respectively, or
tissue culture media with 1% DMSO as a negative control. The cultures were supplemented
with anti-CD107a PE-conjugated mAb (eBioscience). The cells were incubated at 37 °C, 5%
CO, for 2 hours prior to the addition of Brefeldin A and monensin (BD Biosciences) and then
left in culture overnight. The cells were centrifuged briefly, washed in PBS plus 5% BSA
(Sigma-Aldrich) and the pellet re-suspended in 40 pl of CD16/32 with LIVE/DEAD fixable
aqua stain (Molecular Probes, Invitrogen). Cells were washed, a mastermix of anti-membrane
marker mAbs was prepared containing CD4 APC/Cy?7 (Biolegend), CD3 PerCP-eFluor710
and CD8a eFluor 450 (both from eBioscience) and 40 pl added to each tube. The cells were
incubated at 4 °C for 30 min and then permeabilized using Fix/Perm solution (Becton-Dickin-
son) for 20 min at 4 °C. The cells were washed with Perm Wash buffer (Becton Dickinson)
and a mastermix of anti-intracellular molecule mAbs was prepared containing IFN-y PE-Cy7,
IL-2 APC and TNF-o FITC (all from eBioscience). The cells were incubated at 4 °C for 30
min, washed and resuspended in Perm Wash buffer prior to running on an LSRII flow cytom-
eter (Becton-Dickinson).

Ebola and Marburg virus challenge studies

Groups of eight 6- to 7-week-old BALB/c or C57BL/6] female mice (Charles River) were vacci-
nated intramuscularly under general anesthesia with 1x10° IU total of rChAdOx1s followed by
1x10” PFU total of MVAs. At day 35 of the protocol or day 24 post-vaccination (Table 1), all
the mice received a challenge dose of 1000x the 50% lethal dose (LDs) of either mouse-
adapted EBOV or mouse-adapted MARV in 200 pl of DMEM (pH 7.4) by intraperitoneal
injection. All animals were monitored daily for signs of disease, survival and body-mass
change for 14 days followed by additional 14 days monitoring of survival.

Viral RNA detection by RT-qPCR

FILOcep1&2- and control eGFP-vaccinated mice were challenged with either mouse-adapted
EBOV or MARYV. Blood and tissues (liver, spleen, kidney and lungs) from 4 mice per vacci-
nated group were collected upon euthanasia at day 3 and 5 post-infection to determine viral
RNA levels. RNA of mouse blood and tissues were extracted using QIAamp viral RNA minikit
(Qiagen) and the RNeasy mini Kit (Qiagen) according to the manufacturer’s instructions.
Viral RNA levels were quantified by reverse transcription quantitative PCR (RT-qPCR) target-
ing viral polymerase gene and using the Light Cycler 480 thermal cycler (Roche, Germany).
The primers and probes are shown in Table 3. Cycling conditions were as follows: 63°C for 3
min and 95°C for 30 sec, followed by 45 cycles of 95°C for 15 sec and 60°C for 30 sec.

Western blot analysis of mouse sera

EBOV and MARV concentrates were prepared from virus-infected Vero cell culture superna-
tants by unlracentrifugation and inactivation by y-irradiation. Viruses were lysed in a loading
buffer and an equivalent of 8 pg of virus or PBS were separated on 15% SDS-polyacrylamide
gel and transferred onto a nylon filter (Amersham International), and the filters were blocked
and incubated with mAbs 14E2 (EBOV NP), 7A12 (MARYV NP) or combined mouse sera from
each animal group diluted 1:1000. Bound antibodies were detected using horse radish peroxi-
dase (HRP)-conjugated protein A (Amersham International) followed by enhanced chemilu-
miniscence (ECL; Amersham International).
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Table 3. Primers and probes for determination of virus load.

EBOV Primer-Forward
Primer- Reverse
Probe

MARV Primer 1-Forward

Primer 1- Reverse
Primer 2-Forward
Primer 2- Reverse
Probe

https://doi.org/10.1371/journal.ppat.1007564.t003

5-CAGCCAGCAATTTCTTCCAT-3,
5-TTTCGGTTGCTGTTTCTGTG-3
5-[FAM]-ATCATTGGCGTACTGGAGGAGCAG-[TAMRA]
5'-GCAAAAGCATTCCCTAGTAACATGA-3'
5'-CACCCCTCACTATRGCGTTYTC-3'
5'-GCGAAGGCATTCCCTAGTAATATGA-3
5'-CACCTCTTACTATGGCATTCTC-3'
5'-56-FAM/TGGCACCAY/ZEN/AATTCAGCAAGCATAGG/ 31ABKFQ-3

Statistical analysis

Statistical analyses were performed using Graph Pad Prism version 7. Responses were assumed
to be non-Gaussian in distribution, thus non-parametric tests were used throughout and
medians (range) are shown. Multiple comparisons were performed using the Kruskal-Wallis
test. Groups with the same in vitro restimulations were compared using two-tailed Mann-
Whitney U tests. Two-tailed P values were used and P values of less than 0.05 were considered
statistically significant.

Ethics statement

Chicken embryo fibroblasts were prepared at Poultry Health Services Ltd, Huntingdon, UK
and, in the United Kingdom, there is no need for Ethics permission for killing 7-day-old
chicken embryos.

All mouse procedures and care in Oxford were approved by the local Clinical Medicine
Ethical Review Committee, University of Oxford and conformed strictly to the United King-
dom Home Office Guidelines under the Animals (Scientific Procedures) Act 1986. Experi-
ments were conducted under Project License 30/3387 held by T.H.

All the animal challenge experiments were performed in the biological safety level 4 (BSL-
4) facility at the Canadian Science Centre for Human and Animal Health (CSCHAH) in Win-
nipeg, Canada. All mouse procedures and care at the Canadian Science Center for Human and
Animal Health (CSCHAH) were approved by the local Animal Care Committee and con-
formed strictly to the Canadian Council on Animal Care (CCAC). Experiments were con-
ducted under Animal Use Document H17-007 held by X.Q.
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S1 Fig. Mapping of stimulatory 15-mer peptides in the BALB/c and C57BL/6] strains of
mice. Groups of mice were immunized using the ChAdOx1.FILOcepl + ChAdOx1.FILOcep2
prime and MVA.FILOcepl + MVA FILOcep2 boost regimen and the immune splenocytes
were tested using the IFN-y ELISPOT assay against 390 individual peptides corresponding to
the FILOcepl&2 immunogens.
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