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Abstract

To assess whether a battery of performance markers, both individually and as group, would

be sensitive to fatigue, a within group random cross-over design compared multiple vari-

ables during seated control and fatigue (repeated sprint cycling) conditions. Thirty-two phys-

ically active participants completed a neuromuscular fatigue questionnaire, Stroop task,

postural sway, squat jump, countermovement jump, isometric mid-thigh pull and 10 s maxi-

mal sprint cycle (Sprintmax) before and after each condition (15 min, 1 h, 24 h and 48 h). In

comparison to control, larger neuromuscular fatigue questionnaire total score decrements

were observed 15 min (5.20 ± 4.6), 1 h (3.33 ± 3.9) and 24 h (1.83 ± 4.8) after cycling. Simi-

larly, the fatigue condition elicited greater declines than control at 15 min and 1 h post in coun-

termovement jump height (1.67 ± 1.90 cm and 1.04 ± 2.10 cm), flight time-contraction time

ratio (0.03 ± 0.06 and 0.05 ± 0.11), and velocity (0.06 ± 0.07 m�s-1 and 0.04 ± 0.08 m�s-1).

After fatigue, decrements were observed up to 48 h for average Sprintmax cadence (4–6

RPM), up to 24 h in peak Sprintmax cadence (2–5 RPM) and up to 1 h in average and peak

Sprintmax power (45 ± 60 W and 58 ± 71 W). Modelling variables in a stepwise regression

demonstrated that CMJ height explained 53.2% and 51.7% of 24 h and 48 h Sprintmax aver-

age power output. Based upon these data, the fatigue induced by repeated sprint cycling

coincided with changes in the perception of fatigue and markers of performance during coun-

termovement and squat jumps. Furthermore, multiple regression modelling revealed that a

single variable (countermovement jump height) explained average power output.

Introduction

The ability to effectively monitor fatigue is highly sought after by coaches and exercise scien-

tists of elite athletes. Classically, neuromuscular fatigue has been defined as an acute reduction

in task performance which includes both an increased perceived effort to exert force as well as

an eventual inability to produce force [1]. In sport, fatigue would manifest as a reduction in

the ability to perform the desired movement, exercise, or skill and may encompass metabolic

and/or neuromuscular and/or cognitive fatigue. In high performance sport a number of per-

formance markers are often used to assess fatigue such as perceptual questionnaires [2, 3],
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jump tests [2, 4], maximal and submaximal sprints [2], heart rate variables [2, 3], hormone lev-

els [5] and postural sway measurements [4].

The capacity to effectively monitor athlete fatigue provides coaches and scientists with the

ability to better understand resistance training and conditioning periodisation, as well as the

adaptation and tapering response. A deeper understanding of periodisation, adaptation, and

tapering allows improved application to the processes typically employed to optimise training

or improve competition performance. However, despite a wealth of research in the area of ath-

letic fatigue, single performance markers have rarely been definitive in all situations [6–8] sug-

gesting that no one marker is able to truly reflect fatigue status. This is likely due to the nature

of fatigue where the underpinning mechanisms are dependent on the type of task performed

and confounded by participant motivation, psychological status, muscle activation pattern,

intensity, duration, and the continuous or intermittent nature of the task [9]. For this reason

perhaps a new approach to the utilization of performance markers is needed. Though research

has focused on single [10, 11] or multiple markers as a measure of fatigue [4, 8, 12], rarely has

research on multiple performance markers utilised a modelling approach to explain fatigue.

The multifactorial nature of fatigue may suggest that a single all-encompassing test to measure

fatigue may not exist. Therefore, the present investigation sought to assess whether a range of

performance markers would decline in response to a high intensity sprint cycle fatigue proto-

col at a number of time points up to 48 h post fatigue inducement. The second aim of this

research was to assess whether a stepwise regression analysis of performance markers would

explain decrements in 10 s maximal sprint (Sprintmax) cycle performance.

Performance changes in healthy, recreationally active participants were measured before

and after a fatiguing protocol by utilising a variety of independent performance markers reflec-

tive of the multifactorial nature and origin of fatigue. Performance markers aimed to assess

internal perceptions of fatigue using a standard questionnaire, cognitive function through the

Stroop task and aspects of the central nervous systems autonomous control functions through

postural sway tasks. Furthermore lower limb movement capacity, strength and power perfor-

mance was assessed using jump and isometric strength tests. Multiple tasks were chosen based

on a range of body functions reported to be sensitive to fatigue [3, 4, 13] in response to many

forms of exercise with the hypothesis that a broad range of tests would therefore be more likely

to increase sensitivity to a large range of fatigue inducements. After identifying the most

responsive variables to a fatiguing task, their capacity to elucidate the fitness-fatigue relation-

ship was modelled. The outcomes from this work may help to inform coaches and sports sci-

entists on predicting and understanding an athlete’s readiness for the next training stimuli.

Methods

A within group random cross-over design was used to compare the fatigue test battery across

multiple time points and assess the sensitivity of performance markers to a randomly assigned

seated control and repeated sprint cycle exercise condition.

Participants

Thirty-two physically active participants (24 males: 27.8 ± 7.6 years; 81.4 ± 11.1 kg and 8

females: 24.5 ± 3.5 years; 69.0 ± 14.1 kg) were recruited from sport and health science courses

at local institutions. Each participant completed all testing sessions in the study. Participants

were familiar with resistance exercise with a history of at least 6 months general resistance

training. Participants were asked to avoid any strenuous exercise 24 h prior to testing and dur-

ing the 24 h and 48 h follow up assessment period. A period of at least 24 h separated the famil-

iarisation, control and fatigue blocks. Each participant was provided with a standardised meal
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(CHO = 1–1.5 g�kg-1; Protein = 0.3 g�kg-1, Fat = 0.28–0.47 g�kg-1) that was consumed 2 h prior

to all testing sessions and a 600 ml bottle (618 kJ) of Gatorade sports drink (PepsiCo, New

York, USA) during testing sessions. Participants were instructed to avoid consumption of cof-

fee prior to testing sessions and were requested to maintain their current nutrition intake

throughout the study.

Participants attended seven laboratory testing sessions, a familiarisation session and three

sessions each for control and fatigue conditions. Bike setup, isometric mid-thigh pull (IMTP)

height assessment and wrist wrap familiarity were completed during the familiarisation session

to ensure correct testing procedures throughout each of the six sessions.

For both conditions, participants completed baseline performance marker assessments fol-

lowed by the intervention or control. Following this, participants completed performance

marker assessments at multiple time points (15 min, 1 h, 24 h and 48 h) post intervention

(control or fatigue) (Fig 1). The six performance tests were completed by each participant in a

consistent order with the order set as least to most metabolic exertion [14]; neuromuscular

fatigue questionnaire (NFQ), Stroop task, postural sway, squat jump (SJ), counter movement

jump (CMJ), IMTP and 10 s maximal sprint cycle.

The study was approved by the Edith Cowan University Human Research Ethics Commit-

tee (Approval # 16284). Each participant was provided a written outline of the study require-

ments and given verbal instructions on how to perform all testing and exercise tasks. After an

opportunity to answer any specific questions, written informed consent was obtained from all

participants.

Procedures

Fatigue protocol. A previously used repeat sprint protocol [15, 16] was modified (see Fig

1B) and performed on a Wattbike cycle ergometer (Nottingham, UK–Version 2.50.49). The

Baseline 15 min 1 hr 24 hr 48 hr

Familiarisation

Control

Fatigue

Individual Set

Fatigue Protocol

A

B

C

Set 1 Set 2Warmup Set 3 Set 4

Fig 1. Study protocol overview. (A) Fatigue test battery testing (grey squares) with control protocol (circle) and fatigue intervention (triangle). (B) Fatigue intervention

consisting of 4 sprint sets interspersed with 90 s active recovery (dashed square). (C) Sprint set breakdown consisting of 10 x 6 s sprints (crossed rectangle) with 30 s

active recovery (dashed square).

https://doi.org/10.1371/journal.pone.0212870.g001
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modified protocol consisted of 4 sets of 10 x 6 s maximal sprints with a 30 s active recovery

between sprints and an additional 90 s active recovery between sets. With the addition of a 5

min warmup, the protocol duration was 33.5 min with a combined sprint time of 4 min and

24.5 min of active recovery.

Fatigue test battery. A standardised warmup was completed on each testing day consist-

ing of 7 min self-selected intensity cycling, 10 x 3 kg medicine ball squat/shoulder press, 10 x 3

kg medicine ball chest pass, 6 x bodyweight squats and 6 x bodyweight CMJs.

Neuromuscular fatigue questionnaire. An adaptation of the “individualised neuromus-

cular quality of life” questionnaire [17] was used to assess perceptual fatigue and functioning

of participants. The adapted questionnaire (See S2 File. Neuromuscular Fatigue Question-

naire) encompassed four questions answered using a 7-point Likert scale to rate levels of tired-

ness/general fatigue, specific muscular fatigue, pain as a result of muscular fatigue as well as

difficulty performing everyday tasks. The Likert scale utilised a rating from 0 to 6 with 0 being

“not at all” and 6 being “an extreme amount”.

Stroop task. The Stroop task used to assess cognitive status consisted of two sets of 30

PowerPoint (Microsoft, USA) slides (6 colours x 5 slides) displayed in incongruent ink colours.

Participants were required to articulate the ink colour not the written word with an exception

to this rule if the ink was displayed in red [18]. Each slide progressed only after a correct

answer with the total time taken to complete the 30 slides recorded. Chosen sets were assigned

randomly from five sets to prevent potential learning effects.

Postural sway. Participants performed a 30 s barefoot static postural balance task on a

dual force platform (9286BA, Kistler, Winterthur, Switzerland) positioned 0.35 m in front of a

blank white wall to remove visual reference points. All 30 s data collections were completed

using MARS software (2875A, Kistler, Winterthur, Switzerland) and sampled at 1000 Hz. Par-

ticipants were positioned with a base of support of hallux and fifth metatarsal head 0.10 m

apart and performed 3 x 30 s of quiet standing, one in each of the following conditions; head

facing forward with neutral neck position and eyes open, head facing forward neutral neck posi-

tion and eyes closed and eyes closed head back (30˚ in the sagittal plane). A seated rest period of

45 s was given between trials with the trials completed in order of task (postural control) diffi-

culty. Total sway path length, total sway velocity and the area of 100% ellipse were calculated for

each of the three conditions. MARS software defined the total sway path length (mm) as the

combined trajectory of centre of pressure and calculated the sway velocity (mm�s-1) by dividing

the total sway path length by the collection duration. Finally the area of the 100% ellipse (mm2)

was defined as the area of the ellipse fitted over the centre of pressure trajectory so that it con-

tained 100% of the data points.

Squat jump, counter movement jump and isometric mid-thigh pull. Three separate

muscle function tests; concentric-only SJ, CMJ and an IMTP were completed using dual force

platforms (9286BA, Kistler, Winterthur, Switzerland) sampling at 1000 Hz.

Participants completed two sets of three body weight SJ and CMJ with a lightweight (0.4

kg) aluminium bar held across the shoulders. Instructions to jump as high as possible while

“pushing off the ground as hard and as fast as possible” were provided. Between repetitions, 10

s rest was given with 45 s rest periods between each set. For the SJ, participants maintained an

isometric squat with a self-selected 90˚ knee bend for 3 s before jumping vertically. Any trials

with an eccentric force dip >5% were discarded and repeated. The CMJ consisted of a counter

movement before a maximal vertical jump.

The IMTP protocol required participants on a force plate to pull as hard as possible for 3 s

on an immovable bar (25 mm diameter; 460 MPa [min] Tensile Strength; 370 MPa [min]

Yield Stress). The bar was fixed in a customised power rack (Crossrig, Aussie Strength Equip-

ment, Australia). Body positioning was set as described by Haff et al. [19] with the bar height
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recorded and replicated for each testing session. Wrist straps were used to ensure maximal

grip with external focus instructions to “push the ground as hard and as fast as you possibly

can” [20] provided to participants. Two repetitions were performed separated by 2 min rest

with a third performed if a 200 N difference was seen between the peak force of the two efforts.

Recording and calculation of variables were completed using Templo Jump Analysis soft-

ware (Version 2016.1.404 Contemplas GmbH, Kempten, Germany) with SJ and CMJ variables

of peak velocity (m�s-1) and peak jump height (cm) calculated from ground reaction force

traces, and relative forces (N�kg-1) of SJ, CMJ and IMTP calculated using peak ground reaction

force and bodyweight. Flight time to contraction time ratio (FT:CT) was calculated for SJ and

CMJ with the contraction time represented as the time difference between the subject leaving

the force plate and the concentric contraction of SJ or initiation of countermovement in CMJ

[21].

10 s sprint cycle. The Sprintmax was completed on a high moment of inertia flywheel, air-

braked cycle ergometer (AIS, Australia). Power output was recorded at the ergometer cranks

using a scientific version (8 strain-gauge) SRM power meter (Schoberer Rad Meßtechnik, Ger-

many) at a sampling rate of 2 Hz. The SRM power meter was calibrated dynamically prior to

testing. The ergometer seat and handlebar position was positioned individually for each partic-

ipant and consistent across all sessions.

Data analysis

Visual inspection of Q-Q plots was used to assess normality of data. Data were analysed in

SPSS (v 19.0 IBM, New York, NY) using two-way (condition × time) repeated-measures

ANOVA and a one-way repeated-measures ANOVA to analyse simple main effects of condi-

tion and time where an interaction effect was seen. A Greenhouse-Geisser correction was used

where sphericity was violated. Variables used in analysis were total NFQ score, Stroop task

duration, postural sway path, postural sway velocity and postural sway area of 100% ellipse, SJ

and CMJ relative peak force, FT:CT, peak velocity and jump height, IMTP relative peak force,

Sprintmax average cadence, peak cadence, average power and peak power. Multiple trials at

each time point were averaged for Stroop task, SJ, CMJ, IMTP and Sprintmax. Significance was

set at α = 0.05 and the Benjamini-Hochberg procedure was employed to correct for multiple

comparisons and decrease false discovery rates. Two-way interaction results are presented

with p value and Cohen’s effect size (d).

Where two-way interactions were observed, correlation coefficient analysis was completed.

Variables with<0.8 correlation were entered into a stepwise regression model to assess

whether individual or grouped test battery variable changes could explain the change in

Sprintmax average power. Significance for the stepwise regression was set at α = 0.05. Indepen-

dence of residuals was assessed by the Durbin-Watson test and homoscedasticity was assessed

by visual inspection of a plot of studentized residuals versus unstandardized predicted values.

Cohen’s effect sizes for two-way repeated-measures ANOVA and stepwise regression were

calculated from partial eta squared and Cohen’s f2 values to present uniform effect sizes [22].

The magnitude of effect sizes were classified as trivial (<0.19), small (0.2–0.49) medium (0.5–

0.79) large (>0.8).

Results

One participant was removed due to competitive sport participation <24 h before baseline

resulting in 31 participants. Due to equipment malfunction, data for a single subject was not

collected for NFQ (1 time point) and Sprintmax (2 time points). Participants consumed all

meals and consumption of Gatorade was consistent for each participant across sessions. The
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mean power decrement between the first sprint in the fatigue inducement cycle and subse-

quent set averages were 25%, 29% and 29% for set 2, 3 and 4.

No significant two way interactions were observed in SJ height (p = 0.065, d = 0.62), Stroop

task (p = 0.187, d = 0.47), or relative forces for CMJ (p = 0.150, d = 0.50), SJ (p = 0.054,

d = 0.66), and IMTP (p = 0.622, d = 0.29). Postural sway measured in eyes open, eyes closed or

eyes closed head back tasks did not differ significantly with no interaction observed in metrics

of sway path (p = 0.381, d = 0.37; p = 0.171, d = 0.47; p = 0.208, d = 0.44 respectively) velocity

(p = 0.379, d = 0.37; p = 0.186, d = 0.47; p = 0.205, d = 0.45 respectively), and area of 100%

ellipse (p = 0.607, d = 0.28; p = 0.568, d = 0.27; p = 0.114, d = 0.51 respectively). Simple main

effect analysis revealed no significant differences between fatigue and control baseline mea-

surements for any variables.

At baseline, total NFQ score was 1.6 ± 2.2 and 1.2 ± 1.3 for control and fatigue respectively

(Fig 2). A two-way interaction was seen between condition and time for NFQ (p< 0.0005,

d = 1.74). A non-significant peak increase of 50% was seen 1 h post control condition and

remained 28% greater at 48 h post. In comparison the fatigue condition significantly increased

489%, 386%, and 233% at 15 min (p< 0.0005, d = 1.88), 1 h (p< 0.0005, d = 1.43) and 24 h

(p = 0.011, d = 0.87) post intervention respectively. A 100% increase between baseline and 48 h

post intervention in the fatigue condition was not significant despite a medium effect size

(d = 0.57). Significant differences between control and fatigue intervention were observed at

15 min (p< 0.0005, d = 1.58), 1 h (p< 0.0005, d = 0.92) and 24 h (p = 0.034, d = 0.53) time

points.

The SJ velocity at baseline was 2.42 ± 0.27 m�s-1 and 2.42 ± 0.28 m�s-1 in control and fatigue

respectively (Fig 3) with a two way interaction present (p = 0.033, d = 0.67). Control SJ velocity

had a significant decrease of 1% at 15 min (p = 0.004, d = 0.11) post control with a peak

decrease of 2% occurring at 1 h (p = 0.003, d = 0.18) before returning to baseline. In response

Fig 2. Neuromuscular fatigue questionnaire results. The mean (SD) neuromuscular fatigue questionnaire responses

(n = 30) for the control (circles) and fatigue interventions (squares) from immediately prior (Pre) to 48 h post

condition. �Significant (p< 0.05) difference between conditions at the identified time point using a Benjamini-

Hochberg post hoc procedure.

https://doi.org/10.1371/journal.pone.0212870.g002
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to the intervention, the fatigue condition showed a peak decrease of 4% at 15 min (p< 0.0005,

d = 0.36) post intervention with a decrease of 3% seen at 1 h (p = 0.023, d = 0.25) and recovery

by 24 h. Velocity in the fatigue condition was significantly lower than control at 15 min

(p< 0.0005, d = 0.26) and 24 h (p = 0.031, d = 0.08) time points.

Recorded CMJ velocity at baseline was 2.56 ± 0.27 m�s-1 and 2.57 ± 0.26 m�s-1 in control

and fatigue respectively (Fig 4). A two-way interaction was seen between conditions

(p = 0.005, d = 0.77). Control showed a peak decrease of 2% at 15 min (p< 0.0005, d = 0.14)

and 1 h (p = 0.001, d = 0.15) post condition while fatigue had a peak decrease of 4% at 15 min

(p< 0.0005, d = 0.35) and 1 h (p< 0.0005, d = 0.29) post intervention with a return to baseline

by 24 h. CMJ Velocity was significantly lower in the fatigue condition at 15 min (p< 0.0005,

d = 0.21) and 1 h (p = 0.005, d = 0.15) time points.

Fig 3. Squat jump results. The mean (SD) squat jump result (n = 31) for the control (circles) and fatigue interventions

(squares) of (A) flight time to contraction time ratio (FT:CT) and (B) peak propulsive (concentric) velocity. Time

points from immediately prior (Pre) to 48 h post condition. �Significant (p< 0.05) difference between conditions at

the identified time point using a Benjamini-Hochberg post hoc procedure.

https://doi.org/10.1371/journal.pone.0212870.g003
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Baseline CMJ height was 30.63 ± 7.17 cm and 30.80 ± 7.32 cm in control and fatigue respec-

tively. A two way interaction was shown (p = 0.001, d = 0.87) with the control condition signif-

icantly decreased by 3% at 15 min (p< 0.0005, d = 0.13) and 4% at 1 h (p = 0.010, d = 0.15)

time points with a return by 24 h. Similarly, fatigue recorded a peak decrease in CMJ jump

height of 9% at 15 min (p< 0.0005, d = 0.39) post intervention remaining 8% depressed at 1 h

(p< 0.0005, d = 0.32) before returning to baseline at 24 h. A greater decrease in performance

after the fatigue intervention resulted in significantly lower CMJ jump height in the fatigue

condition at 15 min (p< 0.0005, d = 0.25) and 1 h (p = 0.008, d = 0.15) time points.

At baseline the CMJ FT:CT ratio was 0.61 ± 0.10 and 0.61 ± 0.11 for control and fatigue

respectively, with a significant two-way interaction observed (p = 0.045, d = 0.63) over time.

While no significant changes were observed in control over time, significant decreases of 8%

and 11% were recorded at 15 min (p< 0.0005, d = 0.41) and 1 h (p = 0.002, d = 0.57) post

fatigue intervention with a return to baseline at 24 h in the fatigue condition. When compared

to control, fatigue condition results were significantly lower at the 15 min (p = 0.014, d = 0.25)

and 1 h (p = 0.031, d = 0.38) time points.

The baseline control and fatigue condition SJ FT:CT ratios were 1.15 ± 0.24 and 1.21 ± 0.27

respectively. A two-way interaction was seen between condition and time for SJ FT:CT

(p = 0.002, d = 0.77). No significant differences were seen across time in the control condition

while fatigue showed a significant decrease of 6% at 1 h (p = 0.040, d = 0.25) post fatigue inter-

vention with no significant difference at other time points. Additionally no significant differ-

ences between control and fatigue were seen at any time points.

The baseline average cadence observed in Sprintmax was 127 ± 12 RPM and 127±13 RPM in

control and fatigue respectively (Fig 5) and a two-way interaction was observed (p = 0.003,

d = 0.87). No significant differences were observed between baseline and later time points in

the control condition. The fatigue condition resulted in a peak decrement of 5% at 15 min

(p = 0.001, d = 0.45) post intervention with decrements of 4% seen at 1 h (p = 0.001, d = 0.38)

post intervention. Fatigue was significantly lower than control at 15 min (p< 0.0005,

d = 0.46), 1 h (p< 0.0005, d = 0.47), 24 h (p = 0.002, d = 0.34) and 48 h (p < 0.0005, d = 0.34)

time points.

Peak cadence recorded during Sprintmax at baseline was 147 ± 15 RPM and 147 ± 15 RPM

in control and fatigue respectively. A two-way interaction was seen (p< 0.0005, d = 1.22). No

difference was seen in control time points while post intervention changes in the fatigue condi-

tion showed a peak 4% reduction at 15 min (p< 0.0005, d = 0.37) and a 3% decrease at 1 h

(p< 0.0005, d = 0.28). Fatigue was significantly lower than control at 15 min (p< 0.0005,

d = 0.36), 1 h (p< 0.0005, d = 0.27) and 24 h (p = 0.008, d = 0.14) time points.

Baseline Sprintmax peak power was 913 ± 240 W and 909 ± 235 W in control and fatigue

respectively. A two-way interaction was seen in peak power (p = 0.002, d = 0.81). Peak power

was not significantly different at any time points in control. Post intervention changes were

seen in the fatigue condition with a significant decrease of 7% at 15 min (p< 0.0005, d = 0.27)

and 5% at 1 h (p< 0.0005, d = 0.20). Fatigue was significantly lower than control at 15 min

(p< 0.0005, d = 0.26) and 1 h (p = 0.041, d = 0.12) time points.

The average power recorded for Sprintmax at baseline was 669 ± 164 W and 666 ± 158 W

for control and fatigue respectively. A two-way interaction was seen in average power

Fig 4. Counter movement jump results. The mean (SD) countermovement jump result (n = 31) for the control

(circles) and fatigue interventions (squares) of (A) jump height; (B) flight time to contraction time ratio (FT:CT) and

(C) peak propulsive (concentric) velocity. Time points from immediately prior (Pre) to 48 h post condition.
�Significant (p< 0.05) difference between conditions at the identified time point using a Benjamini-Hochberg post

hoc procedure.

https://doi.org/10.1371/journal.pone.0212870.g004
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(p< 0.0005, d = 0.97). No difference was seen in control time points, while the fatigue inter-

vention had a significant decrease of 7% at both 15 min (p = 0.001, d = 0.28) and 1 h

(p< 0.0005, d = 0.32) time points before returning to baseline. Average power in the fatigue

condition was significantly lower than control at 15 min (p< 0.0005, d = 0.28) and 1 h

(p = 0.004, d = 0.20) time points.

Though there was no difference between the control and fatigue Sprintmax average power

output at 24 and 48 h time points, stepwise regressions were run to assess the ability of vari-

ables to explain power output at these time points. After removal of correlated variables the

independent variables of the 24 h regression were 1 h NFQ, 1 h CMJ FT:CT, 1 h CMJ height

and 1 h, SJ FTCT. Independent variables of the 48 h regression were 1 h and 48 h NFQ, 1 h

and 48 h CMJ FT:CT, 1 h CMJ height and 1 h SJ FT:CT. Sprintmax average power output was

used as the dependent variable. Due to the real world impracticality of daily measurement, var-

iables taken at the 24 h time point were excluded from the 48 h stepwise regression. Addition-

ally, where correlations between 15 min and 1 h variables were evident, the 1 h variable was

retained in the regression. This resulted in variables from the 1 h time point analysed in the 24

h stepwise regression and variables from the 1 h and 48 h time points analysed in the 48 h step-

wise regression.

Fig 5. Sprintmax results. The mean (SD) maximal cycling sprint (Sprintmax) result (n = 30) for the control (circles) and fatigue

interventions (squares) of (A) sprint average cadence, (B) sprint peak cadence, (C) sprint average power and (D) sprint peak power

variables. Time points from immediately prior (Pre) to 48 h post condition. �Significant (p < 0.05) difference between interventions at the

identified time point using a Benjamini-Hochberg post hoc procedure.

https://doi.org/10.1371/journal.pone.0212870.g005
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The adjusted R2 for the 48 h model explained 51.7% of the variance (d = 2.22), a large effect

size. CMJ height at 48 h explained 48 h Sprintmax average power output (p< .0005) with a

regression equation of y = 187.618 + (1651.121 x 1 h CMJ height). In the 24 h stepwise regres-

sion the adjusted R2 for the overall model was 53.2% (d = 2.34), a large effect size. CMJ height

at 1 h significantly explained 24 h average power output (p< .0005) with a regression equation

of y = 165.905 + (1696.978 x 1 h CMJ height).

Discussion

Our purpose was to assess whether a range of individual performance tests would be suitably

sensitive to detect changes in Sprintmax performance up to 48 h after a fatigue inducing high

intensity sprint cycle protocol and to assess whether individually or as a battery, these perfor-

mance markers would explain the reduced performance in Sprintmax at these time points. This

analysis was conducted with the intent of possibly creating a simple and practically relevant

tool that could be used to determine when an athlete or a patient was ready to cope with their

next training (exercise) stimulus.

We identified Sprintmax, NFQ, CMJ and SJ as performance tests that changed in response

to a high intensity sprint cycling fatigue protocol. As predicted, Sprintmax variables showed

decrements up to 48 h following fatigue inducement however effect sizes were small. Interest-

ingly the subjective NFQ score was the most sensitive to fatigue with medium to large effect

sizes for changes occurring up to 24 h post fatigue. Although sex differences may play a role in

NFQ responses, similar perceptions of soreness and recovery have been reported between

males and females [23]. While CMJ jump height, velocity and FT:CT responded to fatigue this

was only in the short term (up to 1 h post) with small and trivial effect sizes. In contrast to this

in the SJ variable, only velocity was indicative of fatigue 15 min and 24 h after the high inten-

sity sprint cycle protocol and even then, only with small and trivial effect sizes. Though no

change was observed between fatigue and control power outputs at 24 and 48 h, stepwise

regression analysis suggests that the a single marker, CMJ height, explained 53.2% and 51.7%

of Sprintmax power output at these time points.

Although Sprintmax average power was only reduced 15 min and 1 h following the interven-

tion protocol, average cadence remained lower in the fatigue condition 24 h and 48 h post with

reductions also present in peak cadence 24 h after. The reduced cadence in the absence of

power decrements, should theoretically require a greater force production per pedal stroke to

achieve the given power output. Typically, the requirement of competition is to produce the

highest average power output, making this cadence reduction practically insignificant, how-

ever completing Sprintmax at a non-preferred cadence suggests participants were still feeling

the effects of fatigue which may have manifested in perceptual feeling of fatigue seen in the

NFQ at later time points. The inability to reproduce higher cadences may be a result of reduc-

tions in contraction velocities or slowing of muscle relaxation [24]. A slowed relaxation rate

could affect cycling due to concentric leg contractions occurring before relaxation of the

opposing leg therefore affecting peak pedal rate and optimal pedal cadences [25]. However fur-

ther investigations that record direct pedal forces are required to confirm this hypothesis.

Perceptual questionnaires have previously been used to monitor acute and chronic training

periods [13, 26–28]. Consistent with previous research [13, 26, 27, 29] this neuromuscular

fatigue questionnaire was sensitive to acute fatigue with significant differences between condi-

tions seen up to 24 h post. As reported previously [30], the change in perception of fatigue was

not directly matched to changes in performance with an increase in perceived fatigue at 24 h

despite an absence of power decrements. Reductions in Sprintmax cadence were observed at 24

and 48 h however, and may have been reflected in perceptual fatigue changes at later time
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points. Psychological motivation has been shown to play a role in performance under fatigued

conditions with threefold higher power production recorded in brief cycle sprints immediately

after voluntary exhaustion [31]. The possibility of participant motivation influencing these

observations should not be discounted due to the brief test duration of multiple performance

markers in this research.

The results of the present study are consistent with published research suggesting that verti-

cal jump variables are sensitive to sprint cycling fatigue [6] with CMJ variables significantly

reduced 1 h post intervention and a reduction in SJ peak velocity seen at 15 min and 24 h post

but not 1 h post. However, the degree of sensitivity of CMJ and SJ tests is likely dependent on

the magnitude and type of fatigue inducement with little change seen in jump variables beyond

24 h post intervention. The slight differences observed between CMJ and SJ variables may be

reflective of the different metabolic contractile conditions of the high intensity sprint cycling

exercise bout and/or further evidence of changes in contraction velocities or slowing of muscle

relaxation processes [24]. The complexity of the CMJ movement results in movement mechan-

ics not seen in the SJ. A greater uptake of muscle slack and increased build-up of stimulation

during the countermovement is thought to be a main contributor [32] to the greater amount

of work completed in the CMJ. It is possible that differences in movement mechanics or the

difference in total work of the two jump types may play a role in the sensitivity of the two tests.

The lack of decrements in both jump and Sprintmax power variables at time periods longer

than 24 h suggests that multiple sprint cycling protocols do not produce long lasting changes

in explosive lower body power production. Conversely, an exercise intervention utilising

greater eccentric muscle contraction may have displayed a greater fatigue response due to the

fact that eccentric exercise modalities result in substantial changes to the neuromuscular sys-

tem [33]. Changes such as increased muscle microlesions [33] and resultant increased sore-

ness, is likely to affect perceptual fatigue as well as the ability to perform physical performance

tests like those utilised in this study. This is supported by reported CMJ and SJ decrements

after unaccustomed eccentric cycling that were not observed in concentric cycling [34] as well

as decrements in CMJ and SJ variables for team sports requiring greater eccentric contractions

[35–38] The modality used to induce fatigue in this study may have resulted in less muscle

damage due to the low volume, yet high intensity and lack of eccentric muscle contraction.

Though CMJ and SJ performance differences were seen, changes at 1 h post intervention were

not practically useful for coaches and exercise scientists when considering an investigation

outcome was to provide insight on whether the athlete was ready for their next stimulus.

The fatigue test battery showed no difference between 24 and 48 h variables to explain

power output with 53.2% versus 51.7% respectively. A single variable, CMJ height, explained

Sprintmax average power output at both time points. This was likely affected by auto correla-

tions between potential variables however with only 4 and 6 variables entered in 24 and 48 h

regressions. Interestingly, despite having medium to large effect sizes the NFQ did not explain

power output at any time point. Finally the lack of Sprintmax changes observed at 24 h and 48 h

reduced the ability of the stepwise regression to assess fatigue at these time points.

Of the six performance tests completed, the Stroop task, postural sway and IMTP did not

significantly differ between the control and fatigue conditions. Psychomotor assessments such

as the Stroop task have been proposed as a measure of fatigue [39] however we observed no

significant differences. Differences in participant digestion rates post feeding may have

affected cognitive performance in the Stroop task due to the effect that blood glucose levels

have on cognitive ability [40]. Additionally, the duration of fatigue inducement may have been

too brief with cognitive decrements observed in longer overreaching protocols [13, 41, 42].

Despite reported decrements in postural control after cycling protocols [43–45], none were

seen in the present study. Differing from previous studies [4, 44, 46, 47], this research assessed
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sway >15 min after fatigue inducement as our assessment time frames required relevance to

making practically informative decisions, yet these assessment times potentially affected the

sensitivity of this variable.

Though use of the IMTP as a performance metric exists [2], this study is one of few to utilise

the test as a performance metric after fatigue inducement. Consistent with these studies, no

decrements in IMTP performance were seen after fatigue [48, 49]. The lack of sensitivity of the

IMTP as a gross muscle action task to fatigue implicates the possibility of multiple motor con-

trol strategies that are able to produce near maximal contractions when only short contraction

times are required. We would argue that this notion of multiple near maximal control strategy

is supported by the reports that IMTP maximal force change is a worthwhile training adapta-

tion metric in team sport and individual athletes [50–52].

Though a large number of participants completed this study, a heterogeneous cohort was

tested and may have affected statistical power. Additionally, the post control-intervention

warmup may not have provided sufficient preparation possibly explaining decrements seen at

the 15 min time point after the control intervention. An effort was made to reduce the learning

effect by completion of an extensive familiarisation however consistent with previous research

a learning effect was seen in the Stroop task. Finally the lack of power decrement seen in

Sprintmax at 24 and 48 h reduced the applicability of 24 and 48 h test battery data to assess

fatigue despite the reduction in cadence at these time points suggested fatigue was still present.

Further research is needed on fatigue inducement employing different muscle contractile con-

ditions (i.e. stretch-shortening cycle inclusive) that result in performance decrements at>24

h. This may elucidate whether battery variables respond at these time points. Additionally

more research is needed on the fatigue test battery across an overreaching phase to determine

if sensitivity of variables increases with accumulation of fatigue.

This research reports that NFQ and CMJ jump variables such as height, velocity and FT:CT

are suitable to monitor fatigue at multiple time points after sprint cycling fatigue, while using

CMJ height explains >51% of sprint power output. The results suggest that a maximal inten-

sity sprint cycle protocol consisting of four sets of 10 x 6 s sprints may prove a useful high

intensity low volume training stimulus due to small amounts of fatigue seen at>1 h.
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