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Research Letter

SOMEDESIRABLE PROPERTIES OF THE BONFERRONI CORRECTION: IS THE BONFERRONI
CORRECTION REALLY SO BAD?

The Bonferroni correction (1) for multiple testing is sometimes
criticized as being overly conservative. The correction is indeed
conservative, and there are uniformlymore powerful approaches
that preserve type I error of the global null hypothesis (2) (see
Appendix). However, there are considerations concerning the
Bonferroni correction which suggest that its use, and reporting
by its standard—perhaps accompanied by other metrics as well
(3)—may not be entirely undesirable.

First, use of the Bonferroni correction is often motivated by
the desire to preserve the type I error of the global null hypothe-
sis of all tested associations’ being in fact null. By dividing the
nominal significance level of the α test (e.g., α = 0.05) by the
number of tests, one is guaranteed, within a hypothesis-testing
framework, to reject the global null hypothesis of no associa-
tion no more than the proportion α (e.g., α = 5%) of the time
when the global null does in fact hold. While this is often the
motivation presented for use of the Bonferroni correction, the
correction itself does have a much stronger property. Suppose
one were testing some number K of potential associations, and
after Bonferroni correction, J associations were rejected at the
α/K significance level. The standard property of the Bonferro-
ni correction that is often pointed out is (as above) that no
more than 5% of the timewill one incorrectly conclude, “There
is at least 1 true association.”However, with J rejections at an α/
K significance level, one can in fact also consider the much
stronger conclusion that “there are at least J true associations,”
and one will draw this conclusion, when it is false, at most
5% of the time. This is because even if there were in fact only
J − 1 true associations, the probability of rejecting J or more
would still be less than [K − (J − 1)] × α/K < K × α/K = α.
The fact that this much stronger statement, like the rejection of
the global null hypothesis, also has only a 5% error rate gives
the Bonferroni correction a much stronger interpretation when
results surpass this more conservative threshold.

Second, while the Bonferroni correction can impose a fairly
severe penalty when sample sizes are small or when many tests
are being conducted, in settings in which sample sizes are very
large (such as many major epidemiologic cohort studies) and
when only a moderate number of tests are being carried out, use
of the Bonferroni correction will in fact often make relatively lit-
tle difference in the magnitude of effect sizes that can generally
be detected. Suppose one were examining a single exposure and
its associations with a number of subsequent outcomes using
data from a large cohort study, recently referred to as an
outcome-wide epidemiologic study (4).

Consider a recent study setting (5) with sample size n = 3,929
and with K = 24 outcomes, with a mean linear and logistic
regression coefficient standard error of 0.031 across the various
outcomes. In this context, for an outcome with a standard error
of 0.031, an effect estimate above 0.061 would suffice to pass the
nominal α = 0.05 significance level threshold and an effect size

above 0.095 would suffice to pass the Bonferroni-corrected sig-
nificance level threshold, of α = 0.05/24 = 0.0021. There is a rel-
atively modest range of effect sizes, 0.061–0.095, for which the
nominal significance level would be passed but the Bonferroni-
corrected threshold would not be. If variability of the outcomes
were similar but the sample size were n = 10,000, an effect esti-
mate above 0.038 (e.g., an odds ratio of 1.039) would suffice to
pass the nominal α = 0.05 significance level and an effect size
above 0.060 (e.g., an odds ratio of 1.062) would suffice to pass
the Bonferroni-corrected significance level, of α = 0.05/24 =
0.0021. Here the range of effect estimates for which the nominal
significance threshold is passed but the Bonferroni-corrected one
is not is even narrower, and arguably in many cases that effect
size range is sufficiently narrow to often not be of much scientific
or public health importance (e.g., if the odds ratio is not even
1.062, the effect sizemay be too small to be ofmuch importance).
Thus, with large sample sizes, in many settings, if the effect size
estimate is sufficient to surpass the nominal threshold of α= 0.05,
then it will very often be sufficient to pass the Bonferroni-
corrected threshold as well.

Indeed, in the study referred to above, with the actual sam-
ple size of n = 3,929, of the 20 P values that surpassed the
nominal α= 0.05 significance level, 17 of those also surpassed
the Bonferroni-corrected significance level of α = 0.05/24 =
0.0021. Moreover, as per the first point above, one could then
make the statement “There are at least 17 true associations,”
and, under repeated sampling, statements similarly constructed
by reporting the number of Bonferroni-corrected rejections
would be false less than 5% of the time.

Of course, just because the Bonferroni correction does not
impose a severe penalty on the range of effect sizes that can be
detected in some contexts, such as when the sample size is large
and a moderate number of tests are being conducted, it does not
follow from this that the penalty will always be negligible. In
many settings, and perhaps especially in small to medium-sized
randomized trials, the sample sizes are often considerably
smaller and the Bonferroni correction may constitute a much
greater penalty for the relevant effect sizes that can be detected
than is indicated here. This will also especially be the case in
settings in which the study has been powered specifically to
detect an effect for a primary outcome but in which many other
secondary outcomes are examined as well. In other settings, even
if the sample size is reasonably large, if an extremely large set
of tests is being carried out—as is often the case, for example,
with genome-wide association studies—then the Bonferroni cor-
rectionmight also likewise impose an especially severe penalty.

However, again in many epidemiologic contexts, especially
with large longitudinal cohort studies, the penalty of the Bon-
ferroni correction in terms of the potential effect sizes required to
pass various thresholds is often very small and the added advan-
tage of the strength of the conclusions that can be put forward
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might be considerable. These considerations, however, need to
be weighed within the context, and in light of the specific
importance of avoiding false-negative conclusions (6). One
also need not definitively choose between using or not using
the Bonferroni correction. Investigators can report the actual P
values themselves, and can then also indicate the number of
tests and what the Bonferroni-corrected threshold would be.
This allows the reader to assess evidence as compared with
both the conventional nominal threshold and the Bonferroni-
corrected threshold. One can also, in some contexts, compare
the number of tests that pass various P-value thresholds to a
95% confidence interval for the number of such “rejections”
that would be expected under the global null at different signifi-
cance levels α, but while preserving the correlation structure
among the outcomes (3). There is nothing magical about the α
= 0.05 threshold, and these various approaches can also be em-
ployed across a range of significance level thresholds.

Of course, none of these metrics are perfect, and the
hypothesis-testing framework is itself subject to many limita-
tions and abuses (7). Moreover, evidence needs to be evaluated
within studies in light of various biases that might arise, ideally
applying bias analysis (7–10), and also across studies in meta-
analyses (10–12), but reporting several of these measures that
address multiple testing can help in that task of evidence syn-
thesis and evaluation.
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APPENDIX

The controlled Holm procedure (2) controls the familywise
error rate (FWER) and is uniformly more powerful than the
Bonferroni correction. In the text it is noted that when using
the Bonferroni correction, with J rejections at an α/K signifi-
cance level, one can in fact also consider the much stronger
conclusion that “there are at least J true associations,” and one
will draw this conclusion, when it is false, at most 5% of the
time. Such statements are also valid under any other procedure
that strongly controls the FWER, including those that are uni-
formly more powerful than the Bonferroni correction, such as
the Holm procedure. It might therefore be tempting to con-
clude that regardless of whether one wants to make standard
statements about the probability of at least 1 false-positive
rejection, about the number of true associations as above, or
both, the Bonferroni correction is obsolete and should be re-
placed with better FWER control procedures. However, this
characterization is misleading, because the Bonferroni correction
in fact offers a more stringent form of error control than do most
FWER-control alternatives.

Specifically, the Bonferroni correction controls the per-family
error rate (PFER), which is the mean number of false-positive re-
jections divided by the number of tests (13, 14). To illustrate the
distinction, suppose the FWER is controlled via the uniformly
more powerful Holm procedure (2). Then there is less than a 5%
probability of obtaining at least 1 false-positive rejection, but if
there is at least 1 false positive, there is no guarantee of how
many there are; there could be 1 or 100. In contrast, the Bonferroni
procedure guarantees that even if there is at least 1 false-positive
rejection, there are still fewer thanK× α in expectation. Frane (14)
has argued persuasively that in many scientific contexts, every
additional false-positive rejection is detrimental, and thus control-
ling the actual number of false positives (via the PFER) is at least
as important as controlling the presence or absence of any false
positives (via the FWER). The Bonferroni correction may there-
fore be valuable in these contexts, even when one has also used
more powerful FWERcorrections.
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