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Crump et al. (Biometrika. 2009;96(1):187–199), Stürmer et al. (Am J Epidemiol. 2010;172(7):843–854), and
Walker et al. (Comp Eff Res. 2013;2013(3):11–20) proposed propensity score (PS) trimming methods as a means
to improve efficiency (Crump) or reduce confounding (Stürmer and Walker). We generalized the trimming defini-
tions by considering multinomial PSs, one for each treatment, and proved that these proposed definitions reduce to
the original binary definitions when we have only 2 treatment groups. We then examined the performance of the
proposed multinomial trimming methods in the setting of 3 treatment groups, in which subjects with extreme PSs
more likely had unmeasured confounders. Inverse probability of treatment weights, matching weights, and overlap
weights were used to control for measured confounders. All 3 methods reduced bias regardless of the weighting
methods in most scenarios. Multinomial Stürmer and Walker trimming were more successful in bias reduction
when the 3 treatment groups had very different sizes (10:10:80). Variance reduction, seen in all methods with
inverse probability of treatment weights but not with matching weights or overlap weights, was more successful
with multinomial Crump and Stürmer trimming. In conclusion, our proposed definitions of multinomial PS trimming
methods were beneficial within our simulation settings that focused on the influence of unmeasured confounders.

multinomial treatment; propensity score; propensity score trimming; propensity score weighting

Abbreviations: CER, comparative effectiveness research; IPTW, inverse probability of treatment weights; MW, matching weights;
OW, overlap weights; PS, propensity score.

Epidemiologists use propensity score (PS) methods (1–3)
to evaluate the comparability of subjects in alternative expo-
sure groups and to aid in control of imbalances between
groups. Several authors (4–6) have suggested trimming
the tails of the PS distribution. Crump et al. (4) suggested
trimming to improve imprecision of inverse probability of
treatment weight (IPTW) (7) estimators. Stürmer et al. (5)
developed their trimmingmethod to reduce bias by unmeasured
confounders. Walker et al. (6) proposed a covariate overlap
assessment tool that also serves as a trimming tool. They all
focused on 2-group comparisons.

Many diseases now have 3 or more treatment options
from which patients and physicians must choose. Conduct-
ing head-to-head clinical trials is the ideal way to establish
equivalence or differences of efficacy and safety. However,

it is not generally feasible to compare more than 2 medica-
tions in head-to-head trials. As such, observational compar-
ative effectiveness (or safety) research (CER) studies are
increasingly used for comparing multiple treatment choices.

Multiple-group CER, conducted among 3 or more active
treatment agents, seeks to answer the question: “Given a pop-
ulation of patients requiring treatment and without contraindi-
cations to any of several approved options, which treatment
is most appropriate among a range of available options?”
Although the active comparator design (8) is a useful design
to improve covariate balance, the presence of unmeasured
confounders remains a concern. As reasoned by the authors
above (5, 6), PS trimming has the potential to mitigate the
bias by unmeasured confounders by focusing on a subset
of subjects with better treatment equipoise. However, PS
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trimming strategies, as well as their performance, are not
well established in the context of multiple-group CER. In
this work, we have proposed general strategies for PS trim-
ming for CER involving 3 or more treatment groups, illus-
trating their characteristics in empirical data examples and
evaluating how they perform in simulated scenarios with 3
treatment groups.

METHODS

Existing PS trimmingmethods in the 2-group setting

To our knowledge, there are at least 3 PS trimming strategies
often considered in epidemiologic studies involving PS meth-
ods (4–6) (Figure 1, Table 1, Web Appendix 1, Web Figures 1
and 2, available at https://academic.oup.com/aje). Let I be
the set of indices {1, ..., n} indexing individuals in the entire
study sample of sample size n. Let Ai ∈ {0,1} be the binary
treatment indicator for individual i and ei = P[Ai = 1 | Xi] be
the PS for this individual given the covariate vector status
Xi. Crump’s trimming method is defined as follows (4):

= { ∈ ∈ [α − α ]}I i I e: , 1c i c c

Crump et al. proved that the estimated treatment effect based
on IPTW has the optimal precision for a specific choice of αc.
In practice, they suggested using αc = 0.1 as a rule-of-thumb
threshold that worked in a wide range of PS distributions in
achieving near-optimal precision. At this threshold, the trim-
ming method dictates that everyone who receives an IPTW
of greater than 10 or less than 10/9 be removed.

Using the inverse of the cumulative distribution function
of PS conditional on the treatment group Fei|Ai, Stürmer’s
asymmetric trimming method can be written as follows (5):

= { ∈ ∈ [ (α | ) ( − α | ) ]}|
−

|
−I i I e F F: 1 , 1 0s i e A s e A s

1 1
i i i i

Rather than defining symmetric retention region around
0.5 as in Crump, this definition is based on the distribution of
the PS in 2 treatment groups. The lower bound L is defined
by the 100 × αsth percentile of PS in the treated, and the
upper boundU is defined by the 100 × (1−αs)th percentile of
PS in the untreated. Importantly, once this retention region
[L, U] is constructed, every individual, both treated and
untreated, outside this region is removed from the analytical
data set. This is necessary to avoid artificially introducing PS
nonoverlap. They examined 0.01, 0.025, and 0.05 for αs. The
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Figure 1. Visual explanation of 3 existing 2-group trimming methods, using simulated data. A) Crump method (4), 50% treated; B) Stürmer
method (5), 50% treated; C) Walker method (6), 50% treated; D) Crumpmethod, 25% treated; E) Stürmer method, 25% treated; F) Walker method,
25% treated; G) Crump method, 10% treated; H) Stürmer method, 10% treated; I) Walker method, 10% treated. The hypothetical propensity-score
distribution densities were generated from beta distributions. The dotted line represents the propensity score density in the untreated group,
whereas the solid line represents the propensity score density in the treated group. In each panel, the gray region represents the retention region
that applies to both treated and untreated groups. Individuals outside the retention region are removed regardless of their treatment status. Crump
trimming is the same regardless of the prevalence, whereas the other 2 methods adapt to skewed propensity score distributions due to less fre-
quent treatment. SeeWeb Figures 1 and 2 for further examples.
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rationale for this trimming strategy is to remove those who
received a treatment choice that is contrary to the prediction:
low-PS treated individuals and high-PS untreated individuals.
They argued that these individuals were more likely to have
strong unmeasured risk factors influencing the observed treat-
ment choice.

Another trimming strategy, proposed by Walker et al. (6),
is defined on the scale of the preference score, which is a
monotone transformation of the PS, adjusting for treatment
prevalence p and denoted as πi here:

= { ∈ π ∈ [α − α ]}I i I: , 1w i w w

They used αw = 0.3 although it was not validated. The
rationale for this trimming strategy is to keep patients with PS
close to the mean PS in the trimmed cohort. The mean PS in
the population equals the treatment prevalence. Therefore,
one can argue that those individuals with ei = p are the aver-
age patients most representative of the population of interest.
The preference score transformation re-centers the distribution
around such average patients. As a result, the trimming thresh-
olds on the preference score scale are symmetric around 0.5.

Extension to themultinomial setting

In the 2-group setting of treated versus untreated, we need
to consider only one scalar PS for the probability of being
treated, P[Ai = 1 | Xi]. However, in the multinomial setting
with J + 1 treatment groups, it helps to consider a PS vector
ei = (e0i, e1i, ..., eJi)

T having one probability of assignment
for each one of the J + 1 treatment groups (9) where eji = P
[Ai = j | Xi] for j∈ {0,1,…, J}. The sum of the J + 1 elements
is constrained to 1. We have introduced a corresponding
generalization of the preference score transformation using
the group prevalence pj (see Web Appendix 2).

We can extend the definition of trimming using these gen-
eralized definitions of scores. The proposed definitions for
the setting with J + 1 treatment groups are given in Table 1.

Multinomial Crump trimming retains subjects who have all
PSs above the threshold αJ,c. Multinomial Stürmer trimming
is asymmetrical in that the lower threshold for each PS is dif-
ferent, unlike multinomial Crump trimming. The lower thresh-
old is the 100αJ,cth percentile of each PS in the corresponding
treatment group. Multinomial Walker trimming is similar to
multinomial Crump trimming except for the use of a prefer-
ence score in place of PS. We define only the lower threshold.
Trimming the upper tail is implicit because individuals who
have a very high PS for one treatment have very low PSs for
the other treatments. These definitions reduce to the original
definitions when there are only 2 groups (Web Appendix 2).
These lower thresholds are indexed with J to indicate the need
to adjust for the number of groups J + 1. This adjustment is
required because the threshold values used in the 2-group set-
ting can become too strict as the number of treatment groups
increases. We used tentative values for our 3-group empirical
illustration (Table 2).

Empirical data illustration in the 3-group setting

We have illustrated how the trimming methods worked in
the 3-group setting using observational data sets (10, 11)
(Web Appendix 3) and visualization with ternary plots (12).
A ternary plot is a triangle-shaped 2-dimensional representa-
tion of 3-dimensional data that sum to a constant (Web Fig-
ures 3 and 4). A point distant from a corner, for example, far
from the top corner labeled 0, represents an individual with a
low probability of being in group 0. The midpoint represents
an individual with equal probabilities for all 3 groups. We
also created an interactive web application that emulates a
PS distribution (13).

Web Figure 5 shows the results of the 3 trimming methods
on 3 different observational data sets. All proposed multino-
mial trimming methods resulted in triangular retention re-
gions. Crump trimming resulted in fixed trimming bounds
regardless of the PS distribution. The other 2 methods were
adaptive to the observed PS distribution. In the example of 3

Table 1. Existing Propensity Score TrimmingMethodDefinitions for a Binary Treatment and Proposed Propensity Score TrimmingMethod
Definitions for a Multinomial Treatmenta

First Author, Year (Reference No.) Original Binary Definitionb ProposedMultinomial Definitionc

Crump et al., 2009 (4) = { ∈ ∈ [α − α ]}I i I e: , 1c i c c
d = { ∈ ≥ α ∀ ∈ { … }}I i I e j J: 0, 1, ,J c J ji J c, ,

Stürmer et al., 2010 (5) = { ∈ ∈ [ (α | ) ( − α | ) ]}|
−

|
−I i I e F F: 1 , 1 0s i e A s e A s

1 1 e
i i i i

= { ∈ ≥ (α | ) ∀ ∈ { … }}|
−I i I e F j j J: 0, 1, ,J s J ji e A J s,

1
,ji i

Walker et al., 2013 (6) = { ∈ π ∈ [α − α ]}I i I: , 1w i w w
f = { ∈ π ≥ α ∀ ∈ { … }}I i I j J: 0, 1, ,J w J ji J w, ,

a In all original and proposedmethods, the same retention region is applied to every treatment group. SeeWeb Appendix 2 for equivalence of the
proposedmethods to the original binarymethods and proposed tentative thresholds in the multinomial setting.

b Binary notations are as follows. I = {1, …, n}: set of individual indices; Ix: subset of individual indices retained by method x; Ai ∈ {0,1}: binary
treatment indicator for individual i; ei: propensity score for individual i; F−1

ei|Ai: inverse cumulative distribution function of ei conditional on Ai; πi: pref-
erence score for individual i; αx: trimming threshold bymethod x.

c Multinomial notations are as follows. IJ = {1, …, n}: set of individual indices with J + 1 groups; IJ,x: subset of individual indices retained by
method x;Ai∈ {0,1,…, J}: multinomial treatment indicator for individual I; eji: propensity score for individual i for treatment j; F−1

eji|Ai: inverse cumula-
tive distribution function of eji conditional on Ai; πji: preference score for individual i for treatment j; αJ,x: trimming threshold by method x with J + 1
groups.

d Crump et al.’s rule-of-thumb threshold for αc was 0.1.
e αs were 0.01, 0.025, and 0.05 in Stürmer et al.’s simulation.
f Walker et al.’s rule-of-thumb threshold for αw was 0.3.
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cyclooxygenase-2 selective inhibitors (10), all 3 groups were
of similar sizes (32,684 celecoxib users, 24,124 rofecoxib
users, and 26,582 valdecoxib users) and had comparable
distributions of patient characteristics, resulting in a con-
centrated cluster of all 3 groups on top of each other. Crump
trimming retained all subjects. The other 2 methods retained
most subjects.

We found 23,532 naproxen users, 21,880 ibuprofen users,
and 5,261 diclofenac users in the nonselective nonsteroidal
anti-inflammatory drugs example (10). Users were still simi-
lar across treatment groups as illustrated by their clustering,
but the small size of the diclofenac group resulted in the off-
centered location of the observations and off-centered bounds
for Stürmer and Walker trimming. All 3 methods trimmed
similar proportions in this specific instance.

When the indications were different, as expected in the
diabetes medication example (11), the distribution of PSs
became more visibly separated (distinct colors), leading to
small percentages of subjects remaining after trimming.
This can reduce efficiency, but more importantly, it might
be necessary to narrow cohort eligibility criteria to provide
more comparable groups. We had a disproportionately large
sulfonylurea group (n = 113,429), followed by the insulin (n
= 18,294) and the glucagon-like peptide 1 agonist (n = 14,278)
groups. This imbalance again resulted in off-centered bounds
for Stürmer andWalker trimming.

Simulation setup

We conducted a simulation study to examine the influence
of the proposed multinomial PS trimming methods in combi-
nation with different PS confounding-adjustment methods
on bias and efficiency in the setting of a CER with 3 treat-
ment groups. The reporting follows the recommendations of
Morris et al. (14). The simulation suite was written in R (R
Foundation for Statistical Computing, Vienna, Austria) (15).

Data-generating mechanism. We detailed the formula-
tion of the data-generating models in Web Appendix 4.
Briefly, to introduce unmeasured confounders in the tails of
the PS distribution, we extended the data-generating mecha-
nism developed by Stürmer et al. (5) in the 2-group setting to
the 3-group setting (Web Figures 6 and 7). Covariates X1

through X6 were considered the base variables that were
measured, whereas covariates X7 through X9 were considered
the rare confounders that remained unmeasured. As in Stür-
mer et al. (5), we calculated a tentative PS based on the mea-
sured covariates. The unmeasured binary covariates were

then generated based on the tentative PS such that X7 = 1
was more prevalent in those who had a high tentative pro-
pensity for group 0; X8 = 1 was more prevalent in those
who had a high tentative propensity for group 1; and X9 =
1 was more prevalent in those who had a high tentative
propensity for group 2. After constructing the full set of
covariates both measured and unmeasured, the true PS was
assigned based on coefficients given to all the covariates.
The unmeasured covariates had strong “contraindication
effects.” For example, when X7 was present in an individ-
ual with a high tentative propensity of receiving treatment
0, this treatment assignment became much less likely (X7

serving as a strong contraindication to an otherwise preferred
treatment). Treatment Ai was then generated as a 3-group
multinomial random variable taking on one of {0, 1, 2}. The
outcome Yi was a Poisson count random variable based on a
linear predictor dependent on all the covariates and treat-
ment. A log-link model was chosen to eliminate the problem
of noncollapsibility (16), which complicates the calculation
of true effects (Web Appendix 4).

Methods to be evaluated. We compared the 3 types of
multinomial PS trimming methods defined above in combi-
nation with different confounding-adjustment methods. Each
trimming method was examined at several trimming thresh-
olds to compare alternative cutoffs (Web Appendix 4). We
used the 3-group IPTW (7), matching weights (MW) (17, 18),
and overlap weights (OW) (19–21) as confounding adjust-
ment methods. Consideration of these 3 weighting schemes
permitted evaluation of the sensitivity of any observed benefit
of trimming to this choice.

Estimand of interest. We estimated the alternatively
weighted log rate ratios for contrasts of group 1 versus group
0, group 2 versus group 0, and group 2 versus group 1 in the
overall study population as well as in the PS-trimmed cohort.

Performance measures. The trimmed sample size, bias,
standard error, and mean squared errors were examined.

RESULTS

We examined 9 scenarios of varying data configurations,
each conducted 500 times. Figure 2 shows the sample size
decrease after trimming (methods as the columns of panels) at
different thresholds (x-axis). The strength of unmeasured con-
founding did not affect the proportion of trimmed observa-
tions, because this strength of unmeasured confounding was
manipulated by changing the coefficients for the outcome-
generating model but not the treatment-generating model. The
size of trimmed cohorts after trimming differed according to
the treatment prevalence in the Crump trimming because these
trimming thresholds did not adapt to the skewed distribution
of PS as seen in the empirical examples (Web Figure 5). In the
10:10:80 setting, in particular, the center of the PS distribution
was close to group 2 (right lower corner in the ternary plot), re-
sulting in a larger proportion of the cohort trimmed by this
method. Walker trimming provided most similar numbers of
patients remaining in the cohort regardless of the treatment
prevalence. This is because the Walker trimming region is
around the average PS (i.e., a region where the treatment prev-
alence coincides with the full-sample prevalence).

Table 2. Tentative Threshold Values for Propensity Score Trimming
in the 3-Group Setting in ComparisonWith the Original Threshold
Values for the 2-Group Setting

Study No. of
Groups

Crump
et al.a

Stürmer
et al.b

Walker
et al.c

Original 2 0.100 0.050 0.300

Ours 3 0.067 0.033 0.200

a Propensity score scale (4).
b Group-specific propensity score quantile scale (5).
c Preference score scale (6).
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Web Figure 8 illustrates the bias in the setting of moderate
unmeasured confounding with different treatment preva-
lence, various trimming methods, and trimming thresholds.
The bias in the unadjusted analysis at trimming threshold
zero (no trimming) shows the direction and magnitude of
the total confounding including both measured and unmea-
sured confounding. As expected from the principle of restric-
tion as a measure to control confounding (if variables do not
vary in the analysis cohort, they cannot confound), trimming
reduced the bias in unadjusted analyses until the threshold
where the cohort became too small for outcome analyses. Use
of MW and OW resulted in a reduction of bias even without
trimming. However, a small bias persisted in the other direc-
tion except for the 1-versus-0 contrast. Bias of similar magni-
tude appeared in the other direction with IPTW. Reduction in
residual confounding was seen for all weighting methods.
The only exception was that in the 10:10:80 treatment preva-
lence scenario, the bias increased for 2-versus-0 and 2-versus-
1 contrasts with Crump trimming beyond the 1/60 threshold.
The reason for exacerbated bias seems to be the very skewed
PS distribution. The average PS vector corresponded to the
marginal prevalence (i.e., (0.1, 0.1, 0.8)T). Therefore, group 2
would distribute closer to the left lower corner in the ternary
plot, preferentially trimmed by Crump trimming. Estimation
was less reliable for contrasts involving group 2 as a result.
Stürmer and Walker trimming performed similarly regardless
of the treatment prevalence. Overcorrection occurred with PS
trimming in the 1-versus-0 contrast, in which MW and OW
did not have residual confounding. Further trimming resulted
in a return to less biased estimates. See also Web Figures 9
and 10.

Web Figure 11 illustrates the corresponding simulation
standard error of estimates. IPTW standard error took a con-
vex shape, initially benefiting from trimming but eventually
increasing due to the small sample sizes after trimming. This
IPTW standard-error reduction appeared in all 3 trimming

methods, although only Crump trimming was proposed for
improved precision. Among the thresholds examined in the
simulation, the smallest standard error was attained at around
0.07 for Crump, 0.03 for Stürmer, and 0.1 for Walker trim-
ming, indicating that the rule-of-thumb threshold of 0.2 for
Walker trimming increased standard error in our simulation
scenarios. Neither MW nor OW standard error clearly
benefited from trimming. Stürmer trimming, in particular,
resulted in a quick increase in standard error with MW and
OW. Compared with other methods, Crump trimming seemed
to offer the minimum IPTW standard error in the absence of
unmeasured confounding (Web Figure 12). See Web Fig-
ure 13 for strong unmeasured confounding.

Web Figure 14 illustrates the mean squared errors of the
estimators calculated as variance + bias2, which represents the
variability around the true value of the parameter. The vari-
ance term dominated the bias term with moderate unmeasured
confounding. For IPTW, the minimum mean squared error
was achieved at around 0.07 with Crump trimming, 0.017 for
Stürmer trimming, and 0.05–0.10 for Walker trimming. The re-
sults forMWandOWwere similar although the initial decrease
in mean squared error was seen only in some settings (2-versus-
0 and 2-versus-1 contrasts, particularly with 10:45:45 treatment
prevalence). For the 1-versus-0 contrast, no apparent benefit
was observed with any of the trimming methods or thresholds.
See alsoWeb Figures 15 and 16.

DISCUSSION

Several PS trimming methods have been proposed to im-
prove the validity and efficiency of 2-group observational
studies requiring PS-based confounding control (4–6). We
extended these trimming methods to the multinomial treat-
ment setting and conducted a simulation study in the 3-group
setting. We specifically examined the interplay of bias intro-
duced by confounders present in the tails of PS distribution
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Figure 2. Simulated samples size after trimming at different thresholds, using simulated data. The scales for the thresholds were the propensity
score scale for the Crump method (4) (A), quantiles of propensity score for the Stürmer method (5) (B), and the preference score scale for the
Walker method (6) (C). The vertical broken hairlines are at the tentative thresholds used for the empirical data illustration. The solid line with circles
represents the 33:33:33 treatment prevalence. The dotted line with triangles represents the 10:45:45 treatment prevalence. The broken line with
squares represents the 10:10:80 treatment prevalence. The original sample size was n = 6,000 in all prevalence scenarios. Both Stürmer and
Walker methods trimmed similarly regardless of treatment prevalence given that they accommodated skewed PS distributions. Crump trimming,
on the other hand, trimmed differently at the same trimming threshold across treatment prevalence scenarios.
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and the variance of estimators with increasing trimming. All
methods reduced bias in IPTW, MW, and OW estimators in
most scenarios. However, multinomial Stürmer and Walker
trimming were more successful in bias reduction when the 3
treatment groups had very different sizes (10:10:80), skew-
ing the PS distribution. Trimming a small fraction of obser-
vations in all 3 methods decreased variance for IPTW but not
for MW or OW. At the proposed rule-of-thumb thresholds,
multinomial Crump and Stürmer trimming achieved vari-
ance reduction better in our simulation scenarios.

For the specific purpose of reducing bias by unmeasured
confounders in the tails of multinomial PS distributions,
Stürmer and Walker trimming might be better suited when
the prevalence of treatment groups is quite different. Stürmer
and others have suggested that this type of unmeasured con-
founding bias might be a reason for apparent “treatment
effect heterogeneity” (truly a bias) seen in the tails of binary
PS in the 2-group observational study setting (5, 22). This
bias can also happen in the multinomial setting in the pres-
ence of a strong indication for one of the drugs or a strong
contraindication against one of the drugs that is unmeasured.
Diabetes medications provide an illustrative example. Those
who have severe diabetes and observable clinical indications
for insulin might be found in one of the oral medication
groups. Such patients are more likely to have unobserved
contraindications for insulin such as frailty, which could
strongly influence many outcomes. We simulated this type
of setting and demonstrated that trimming reduced the bias
by strong unmeasured contraindications.

Progressively stricter trimming reduced bias, but this was
at the cost of efficiency once the trimmed sample size became
too small. In the simulation scenarios that we examined, we
found that relatively limited PS trimming gave the best bal-
ance of bias and variance as assessed by mean squared errors.
In our simulation, Walker trimming retained the fewest sub-
jects, although this can vary depending on the PS distribution.

Another critical trade-off is the changing estimand when
treatment effect heterogeneity exists. The target of inference,
the population of individuals for whom we estimate the treat-
ment effects, changes with trimming. Although PS trimming,
a form of restriction, is expected to improve the validity of
inference as long as all groups are trimmed in the same man-
ner (23), the generalizability might be compromised. How-
ever, the type of patients retained after trimming can be
argued to be patients with reasonable chances of being as-
signed to any of the treatment groups (i.e., individuals for
whom CER is most relevant (6)), In practice, one should vary
the trimming threshold to examine the sensitivity of the results
related to progressively stricter trimming thresholds (24).

Our focus was bias by unmeasured risk factors that were
more prevalent in the tails of PS distribution. This focus can
be considered a multinomial equivalent of what Stürmer
et al. examined (5). Importantly, the original intentions of the
methods from Crump et al. (4) and Walker et al. (6) were
somewhat different from those of Stürmer et al. Crump et al.
emphasized the efficiency argument given that the PS model
was correct and unmeasured confounding was absent. Their
method’s strength is the proven minimum variance with
IPTW under some constraints, although multinomial Crump
trimming also reduced residual bias in most settings in our

simulation. Interestingly, multinomial Stürmer and Walker
trimming also reduced the variance of the IPTW estimator,
albeit to a lesser extent. MW (17, 18) and OW (19–21) were
more efficient than IPTW; thus, no trimming methods exam-
ined improved the efficiency of MW or OW estimators. One
might argue that PS trimming is of little benefit for MW and
OW. However, small bias reduction did occur even for MW
and OW. Walker et al. (6) focused primarily on identifying
CER settings where unmeasured confounding might be less
of a concern. The tool’s role as a trimming tool was second-
ary. In our simulation study focusing on reducing unmea-
sured confounding bias in a given data set, we found that
smaller thresholds (0.05 to 0.10 rather than proposed 0.20)
were sufficient to reduce confounding.

Another potential approach to unmeasured confounding
worth mentioning is PS calibration (25, 26). The important
difference here is the requirement for an additional external
validation data set that contains variables that are unmea-
sured confounders in the main data set. Our use of PS trim-
ming to control for unmeasured confounding instead relies
on the assumption that the tails of the PS contain individuals
with unmeasured factors.

Although our definitions of multinomial PS trimming are
natural extensions of the original binary PS trimming, they
are not the only extensions. For example, PS trimming can
be extended by considering all possible pairwise PSs rather
than the single multinomial PS. However, the complexity of
implementation increases more rapidly for the pairwise defi-
nition than for the multinomial definition. Importantly, all
pairwise PSs must be defined for all patients. The pairwise
PS for the A-versus-B contrast is estimated on groups A and
B. However, we must assign this pairwise PS for the A-
versus-B contrast even for those who are in group C. This
counterintuitive approach is necessary to define the same
retention region for all treatment groups and to capture those
who are in equipoise for all treatment options. Otherwise, the
principle of PS methods, assuring similar distribution of co-
variates in all treatment groups, is violated. The multinomial
approach considers all treatment groups simultaneously; thus,
it is not unnatural to assign all J + 1 probabilities of treatment
assignment for each individual. It also has the advantage of
having only one PS model rather than all possible pairwise PS
models, which need to be fitted separately on relevant pairwise
subsets of the entire data set.

Our study assumed that the relevant a priori clinical ques-
tion was the comparison of treatment among subjects who
had some chance of receiving any one of the multiple treat-
ments. This assumption was an important rationale for model-
ing all groups in one multinomial PS model. On the other
hand, we could construct pairwise PS and a pairwise PS-
trimmed cohort for each one of the pairwise contrasts. The
potential problem here is that each pairwise comparisonmight
have a different target population. Having different target po-
pulations could cause nontransitive results, for example, A is
better than B; B is better than C; but A is worse than C (27).
The pairwise approach is more acceptable when we have one
group that is the reference group or the drug-of-interest group.
In this case, only the pairwise contrasts involving this one
group are relevant, making nontransitivity less of a concern.
These 2 approaches might result in similar and transitive effect
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estimates if those who are in pairwise equipoise are also in
equipoise among all groups. If this does not hold, the multino-
mial trimming likely results in a small trimmed cohort as the
separation between groups in the PS space might be greater.
Ideally, investigators should assess the appropriateness of a
multigroup CER question a priori.Whenmultinomial PS trim-
ming results in a much smaller cohort than the original, one
might need to reconsider whether the data and eligibility crite-
ria give sufficient overlap among groups to justify multigroup
CER (6, 28).

The implications of a simulation study should be con-
sidered within the limitations of the data-generation process.
We introduced unmeasured confounding in the tails of PS
distributions similarly to Stürmer et al. (5), which involved a
somewhat specialized 2-step covariate generation. The use
of a count outcome in our simulation was for simplicity and
consistency with the previous study (5). In theory, PS trim-
ming is agnostic of the type of outcome because only PSs are
used. However, difficult settings such as a rare binary out-
come might affect the 3 trimming approaches differently.

In conclusion, we proposed a multinomial extension of the
existing 2-group PS trimming methods and examined their
performance with 3 treatment groups. The extensions of Stür-
mer and Walker’s PS trimming methods reduced bias in 3-
group exposure settings even with highly imbalanced treat-
ment frequencies. In practice, examining how effect estimates
vary at various trimming thresholds can be a useful sensitivity
analysis to assess potential unmeasured confounding in the
tails of a multinomial PS.
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