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Abstract

Linear-nonlinear (LN) models and their extensions have proven successful in describing 

transformations from stimuli to spiking responses of neurons in early stages of sensory 

hierarchies. Neural responses at later stages are highly nonlinear, and have generally been better 

characterized in terms of their decoding performance on pre-specified tasks. Here, we develop a 

biologically plausible decoding model for classification tasks, that we refer to as neural Quadratic 

Discriminant Analysis (nQDA). Specifically, we reformulate an optimal quadratic classifier as an 

LN-LN computation, analogous to “subunit” encoding models that have been used to describe 

responses in retina and primary visual cortex. We propose a physiological mechanism by which 

the parameters of the nQDA classifier could be optimized, using a supervised variant of a Hebbian 

learning rule. As an example of its applicability, we show that nQDA provides a better account 

than many comparable alternatives for the transformation between neural representations in two 

high-level brain areas recorded as monkeys performed a visual delayed-match-to-sample task.

Introduction

Sensory “encoding” models, which describe how the inputs to a neuron are converted into its 

responses, have proven effective in a broad array of sensory modalities, brain areas, and 

species (e.g. Eggermont, Aertsen and Johannesma 1983, Jones and Palmer 1987, DiCarlo, 

Johnson and Hsiao 1998). Within vision, classic examples include the center-surround 

receptive field of a retinal ganglion cell (Enroth-Cugell and Robson 1966), the energy model 

of V1 complex cell (Adelson and Bergen 1985), and the divisive normalization model of 

gain control (Heeger 1992); as well as their more contemporary variants (e.g. Keat, 

Reinagel, Reid and Meister 2001, Rust, Schwartz, Movshon and Simoncelli 2005, Sharpee 

et al. 2006, Pillow et al. 2008, Carandini and Heeger 2011). Considerable effort has been 

devoted to developing and refining techniques for fitting these models to data derived from a 

single experiment (reviewed by Ringach and Shapley 2004, Schwartz, Pillow, Rust and 

Simoncelli 2006, Wu, David and Gallant 2006, Sharpee 2013). Successes were originally 

confined to brain areas positioned in early stages of the visual hierarchy, but have since been 
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extended to intermediate stages (David, Hayden and Gallant 2006, Rust, Mante, Simoncelli 

and Movshon 2006, Willmore, Prenger and Gallant 2010, Mineault, Khawaja, Butts and 

Pack 2012, Sharpee, Kouh and Reynolds 2013). However, extending this approach to high-

level brain areas has proven much more difficult.

One obstacle is that the techniques that have been developed to fit encoding models 

generally rely on a quantitative description of the inputs to the cells being fit. For example, 

encoding models of neurons within area MT have been fit based on a simulated population 

of inputs arriving from area V1 (Rust, Mante, Simoncelli and Movshon 2006). Similar 

methods have been applied in V2 (Willmore, Prenger and Gallant 2010), V4 (David, Hayden 

and Gallant 2006, Sharpee, Kouh and Reynolds 2013), and MST (Mineault, Khawaja, Butts 

and Pack 2012). But these approaches can only extend our understanding one stage beyond 

what is already relatively well-understood.

An additional challenge arises from the fact that neural responses at higher stages become 

increasingly affected by behavioral task and context, and models for the “decoding” of task 

performance have generally been more successful than those for the “encoding” of sensory 

stimuli (Hung, Kreiman, Poggio and DiCarlo 2005, DiCarlo and Cox 2007, Churchland et 

al. 2012, Mante, Sussillo, Shenoy and Newsome 2013, Pagan, Urban, Wohl and Rust 2013, 

Rigotti et al. 2013). These decoders have been generally assumed to be linear. And while the 

relative successes of handful of nonlinear (as compared to linear) decoders have been 

evaluated with neural data (Bialek, de Ruyter van Steveninck, Rieke and Warland 1996, Yu 

et al. 2007, Graf, Kohn, Jazayeri and Movshon 2011, Astrand et al. 2014), the neural 

mechanisms underlying nonlinear decoding remain unclear.

Arguably, what is needed to bridge this gap in describing high-level neural computations are 

techniques that 1) allow us to fit and evaluate biologically plausible descriptions of how the 

inputs to a brain area are transformed into its output responses in order to perform a specific 

task, 2) do not depend on a complete, quantitative description of how the inputs are derived 

from stimuli, and 3) can capture nonlinear transformations commonly found in neural 

responses. Here we develop such an approach. We reformulate a quadratic decoder, 

optimized for a pre-specified classification task, as a linear-nonlinear-linear-nonlinear (LN-

LN) cascade model, analogous to models used for describing encoding in early visual areas. 

We show that this computation, which we call neural Quadratic Discriminant Analysis 

(nQDA), can account for the increase in classification performance between high-level 

visual brain areas IT and perirhinal cortex during a target search task. We also introduce a 

biologically plausible supervised learning rule for optimizing the parameters of nQDA.

Results

nQDA, a nonlinear decoder expressed as an LN-LN model

Consider the problem of classifying a set of inputs (e.g., “Is observed input X a member of 

group A or group B?”) based on a population of neural responses. The simplest solution is to 

assume a linear classifier, expressed as:
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f LIN(r) = mTr + k (1)

where r is the N-dimensional population response vector, mTr is the weighted sum (inner 

product) of the responses with N-dimensional vector of weights m, and k is a scalar 

constant. The class assignment (A versus B) is determined by the sign of the output (positive 

versus negative, respectively). The decision boundary corresponds to a hyperplane in the 

population response space, positioned such that it separates the two classes (Fisher 1936, 

Cortes and Vapnik 1995; Fig. 1a, top left). Many algorithms are available for fitting the 

parameters (m,k) (Duda, Hart and Stork 2000) and the “best” choice depends on the 

distribution of the data, noise properties, and the costs of making mistakes. When the 

population responses for each class are Gaussian distributed, with equal covariance, the 

maximum likelihood solution is the Fisher Linear Discriminant (FLD; Fisher 1936). FLD 

parameters may be expressed directly as:

m = ∑−1 · (μ1 − μ2) k = 1
2 · μ2

T · ∑−1 · μ2 − μ1
T · ∑−1 · μ1 (2)

where μi indicates the mean population response vector for the ith class and Σ is the common 

response covariance matrix. If the two covariances differ, this is typically replaced with their 

average, ∑ = 1
2 · (∑1 + ∑2 ), although this is no longer the maximum likelihood solution.

Linear classifiers are considered biologically plausible - a weighted sum of inputs from the 

population in question, followed by a threshold nonlinearity. But linear classifiers are 

limited, relying on differences between the means of the class response distributions. 

Arguably, the simplest nonlinear extension is to include a quadratic term in the classifier:

f QUAD(r) = rTQr + mTr + k (3)

where Q is an N-by-N symmetric matrix. As with the linear classifier, the class assignment 

is determined by the sign of this function. Similar to linear classifiers, multiple methods 

exist for fitting the parameters of a quadratic classifier (e.g. Kendall 1966, Hofmann, 

Schölkopf and Smola 2008). When the population responses are Gaussian-distributed, the 

maximum likelihood solution (known as Quadratic Discriminant Analysis (QDA; Kendall 

1966)) corresponds to:

Q = 1
2 · ∑2

−1 − ∑1
−1 ; m = ∑1

−1 μ1 − ∑2
−1 μ2; (4)

k = − 1
2 log ∑1 − log ∑2 + μ1

T∑1
−1 μ1 − μ2

T∑2
−1 μ2
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The incorporation of the quadratic term creates a more powerful classifier, which exploits 

differences in covariance, generally resulting in curved decision boundaries in the population 

response space (Fig. 1a).

Despite their potential for decoding information embedded in a population, it is not obvious 

how a brain area would implement QDA. Toward this end, and inspired by the successes of 

quadratic encoding models, we have reformulated QDA into a more biologically plausible 

framework. We first expand the quadratic term rTQr (Equation 3) into a set of linear-

nonlinear operations, using the eigendecomposition of Q. Specifically, we write Q = EΛET, 

where E = [e1 e2 ⋯ eN] and Λ =

λ1 0
λ2

⋱
0 λN

. With this expansion, the quadratic term rTQr 

of Equation 3 becomes:

rTQr = rT EΛET r = rTE Λ ETr = ETr TΛ ETr = ∑
i = 1

N
λi · ei

Tr 2
(5)

That is, the term rTQr can be computed as a linear projection of the response vector r onto 

the eigenvectors of Q, followed by a squaring nonlinearity, and a final linear re-combination 

weighted by the eigenvalues of Q. Substituting this back into the expression for QDA 

(Equation 3) yields:

f QUAD = ∑
i = 1

N
λi ei

Tr)2 + mTr + k (6)

This equation, combined with the final thresholding (decision) nonlinearity, specifies an LN-

LN computation, as illustrated in Fig. 1b, which we refer to as neural QDA (nQDA).

Geometrical intuition of nQDA

In this section, we provide an intuitive, geometrical description of how the nQDA 

computation converts the nonlinearly separable population representation of two classes into 

a more linearly separable format. In general, the information available to separate two 

classes can be regarded in terms of discrepancies between the moments of the two class 

distributions (i.e. mean, covariance, skew, …). Consequently, if the two classes are identical 

in all of their moments they cannot be separated. The second term of the nQDA solution 

(Equation 6) corresponds to a linear neuron which gathers the mean differences (i.e. the 

linearly separable information) present in the input population.

In contrast, the first term of Equation 6 is a sum over a set of nonlinear neurons that act to 

transform nonlinearly separable information available in the input population into a linearly 

separable format. In particular, differences in variance are converted into differences in 

mean. To achieve this, the linear weights of this set of nonlinear neurons serve to rotate the 
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input space to a coordinate system that captures the largest/smallest differences in inverse 

covariances (Fig 2, left). Equivalently, since 1
σ1

2 − 1
σ2

2 =
σ2

2 − σ1
2

σ1
2 · σ2

2 , this rotation maximizes the 

normalized variance differences between the projected responses for the two (Fig. 2, 

middle). Squaring these linearly transformed responses acts to convert the variance 

differences into mean differences (Fig. 2, right). These mean differences allow linear 

separation of the response clouds corresponding to the two classes in the output population.

nQDA replicates the transformation between IT and PRh

To determine the degree to which nQDA is useful for modeling neural data, we used it to 

characterize the transformation between responses of inferotemporal cortex (IT) and 

perirhinal cortex (PRh). Specifically, we recorded neural responses from IT and PRh as 

monkeys performed a delayed-match-to-sample sequential visual target search task that 

required them to indicate when different target images appeared within sequences of 

distractors (Fig. 3a).

On each trial, monkeys sequentially viewed images while maintaining fixation and indicated 

when they saw a target image by shifting gaze to a response dot on the screen. Our 

experimental design included four images presented in all possible combinations as a visual 

stimulus, and as an intended target, resulting in 16 experimental conditions. We held the 

target image fixed for short blocks of trials and we presented the same images as both targets 

and distractors in different blocks that were repeated several times. As monkeys performed 

this task, we recorded neural responses in IT or PRh using multichannel probes. To quantify 

the population response on any given trial, we counted spikes in a window starting 50 ms 

after stimulus onset (to allow time for signals to reach these brain areas) and ending at 220 

ms, which always precedes the monkeys’ eye movement responses. Here we present results 

based on population data concatenated across experimental sessions into larger 

“pseudopopulations” of 164 neurons for each brain area, following on our earlier report that 

factors specific to simultaneously recorded populations (i.e. noise correlations) do not affect 

population performance (Pagan, Urban, Wohl and Rust 2013; Supp Fig S2).

This task can be envisioned as two-way classification of the same images presented as 

“target matches” (i.e. looking at and for the same image, for which the monkey is instructed 

to make an eye movement) versus “distractors” (i.e. looking at and for different images, for 

which the monkey is instructed to maintain fixation; Fig 3b). To avoid the possibility that 

population performance could rely on factors other than the “target match” signal, we used 

an equal number of target matches and distractors (i.e. at any one time we selected a subset 

of 4 of 12 possible distractors) and we explored all possible subsets of distractors that 

spanned all visual stimuli and all targets (see Methods).

As reported previously (Pagan, Urban, Wohl and Rust 2013), we found that total information 

for this classification was approximately matched in IT and PRh but that it was more linearly 

separable in PRh. This result is recapitulated in Figure 3c, where trial-level cross-validated 

performance of a linear decoder in PRh (“PRh FLD”) is seen to be similar to the 

performance of a nonlinear maximum likelihood decoder applied to IT (“IT ML”), 
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suggesting that the linearly separable, task-relevant information contained within PRh is also 

largely present in its inputs arriving from IT. However, the performance of a linear classifier 

acting directly on IT responses (“IT FLD”) is significantly worse that the ML performance, 

suggesting that the information is nonlinearly embedded within IT. These results are 

consistent with a feed-forward mechanism in which PRh performs computations to increase 

linear separability of its IT inputs (Pagan, Urban, Wohl and Rust 2013, Pagan and Rust 

2014).

We wondered how well nQDA could “mimic” computations performed by PRh, when 

applied to inputs arriving from IT. We found that a 164-dimensional nQDA-transformed IT 

population (Fig. 3c, “IT nQDA”) performed significantly better than a linear read-out of IT 

(p=0.022), nearly as well as the upper bound imposed by the ML read-out of the same data, 

and comparably to a linear read-out of PRh. These results suggest that nQDA is largely 

successful at capturing the nonlinear transformation of target match information from IT to 

PRh.

We also considered whether a number of alternative LN-LN models could account for PRh 

computation. The structure of each of these alternative LN-LN models mirrored the structure 

of nQDA (Fig. 1b, Equation 6) insofar as each model began by projecting the same inputs 

onto a bank of linear filters, each followed by a scalar nonlinearity, and the resulting output 

values were combined using a final linear decoder. From a geometric perspective, these 

initial linear transformations can be interpreted as projections onto different sets of axes that 

span the original input space (Fig. 2), and our goal was to compare alternative methods for 

selecting these axes (i.e. random, PCA and ICA) with nQDA. For each model, the first axis 

of the linear transformation was chosen to be the same as the first nQDA axis (thus 

preserving the linearly separable information that already existed in IT), while the remaining 

axes were chosen using one of several methods (described below). Whereas nQDA used a 

fixed (squaring) nonlinearity, we allowed each of these alternative models to use a different 

nonlinearity for each axis, chosen as the log likelihood ratio between the projected responses 

to matches and distractors (see Methods, Fig. 8).

For the first alternative model, we chose 164 random, orthogonal axes (equal to the number 

of IT neurons). On average, this transformation did not exhibit better performance than the 

FLD applied to IT data (Fig. 3c). The performance of a random linear transformation can be 

improved by increasing the output dimensionality, but we found that using up to 1,000 

random axes only led to a small improvement (Fig. 4). It is worth noting, however, that a 

random linear transformation with output dimensionality equal to the number of degrees of 

freedom in the linear and quadratic terms in Equation 3 (N + N(N+1)/2; in our case, ~14,000 

axes) can exactly match the performance of nQDA.1

1Specifically, given a matrix P whose columns pk are N(N+1)/2 randomly chosen N-vectors, with probability 1 there exists a diagonal 
matrix W (with diagonal elements wk) such that the quadratic term in Equation 3 can be expressed as 

rTQr = rTPWPTr = ∑k wk(pk
Tr)2. This expression has the same LN-L form as the quadratic term of nQDA (Equation 5). The 

vector of diagonal elements wk can be computed as ((PT P)․2)−1diag(PTQP), where (․)․2 indicates element-wise squaring and diag(․) 
extracts a vector containing the diagonal elements of a matrix.
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We also investigated whether an LN-LN model based on PCA or Independent Component 

Analysis (ICA) linear transformations could match the performance of nQDA. We fit both 

methods to training subsets of IT population response to 4 target match and 4 distractor 

conditions (exploring all possible distractor subsets that spanned the four visual and four 

target dimensions, as described above), and we kept all the resulting dimensions. We found 

that a model using PCA as the initial linear transformation could not replicate the 

transformation from IT to PRh (Fig. 3c, “IT PCA”). Similarly, we found that, despite a 

modest increase in performance over random projections and PCA, ICA also failed to 

replicate the transformation from IT to PRh (Fig. 3c, “IT ICA”). In summary, these results 

show that the optimal quadratic classifier implemented with nQDA provides an efficient (in 

terms of the number of cells) explanation of the transformation between high-level brain 

areas IT and PRh, surpassing other LN-LN models with optimized (non-quadratic) 

nonlinearities.

As an additional assessment of the degree to which nQDA replicated the transformation 

from IT to PRh, we examined the relative amounts of different task-relevant signals 

represented within the two brain areas. Specifically, we decomposed each neuron’s 

responses into three component signals: 1) “visual” modulation (i.e. response modulation by 

changes in the identity of the visual stimulus), 2) “target” modulation (i.e. response 

modulation by changes in the identity of the target) and 3) “target match” modulation (i.e. 

modulation by changing whether a condition is a target match or a distractor), using the 

techniques described by (Pagan and Rust 2014; see Methods). We quantified the strength of 

each of these signals by estimating the proportion of spike count variance they accounted 

for, relative to the total variance across trials. As expected from the population performance 

results, the amount of target match signal increased from IT to PRh and the nQDA model 

replicated this increase (Fig 5, ‘Target match’). Additionally, the amount of visual signal 

(which reflects visual image identity) decreased from IT to PRh, and this decrease was also 

replicated by the nQDA model (Fig 5, ‘Visual’). Although the target match signal is similar 

to what was optimized by nQDA, visual signals were not directly fit by our procedure and 

replication of their decrease from IT to PRh is thus non-trivial. We found no differences in 

the amount of target signal (which reflects target identity) between IT, PRh and the model 

(Fig 5, ‘Target’). These results provide additional support that nQDA captures 

transformations between IT and PRh.

Biologically plausible learning of nQDA parameters

In the previous section, the parameters of an nQDA transformation were optimized by 

estimating the mean and covariance of the IT population responses to each of the classes, 

and inserting these into Equations 4 and 5. We wondered how neural populations could learn 

these parameters, without direct knowledge of the class covariances, and without computing 

the eigendecomposition of the difference of the inverse covariances. While we lack a full 

solution to this problem, we have gained insight into the special case in which the two class 

distributions have matched eigenvectors but different eigenvalues (i.e. two input distributions 

with variance distributed along the same axes but in different amounts, including possible 

differences in rank order). For this case, a supervised extension to a Hebbian learning 
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algorithm converges to nQDA weights and we refer to this algorithm as “Hebbian QDA” 

(hQDA).

We first note that when the eigenvectors of two covariance matrices are matched, the 

eigendecomposition of difference of the inverse covariances (necessary for nQDA, Equation 

4), can be computed via the eigendecomposition of the difference of the covariances. This 

emerges from the well-known fact that the eigenvectors of a matrix are the same as those of 

its inverse. Given this, we show that a simple local learning rule converges to the 

eigenvectors of the difference between class covariances. The hQDA learning rule is an 

extension of previous work by Oja, who revealed that a Hebbian learning algorithm 

converges to the first PCA principal component (Oja 1982). To review that work, we 

consider a simple scenario where a model neuron receives only two inputs, x1 and x2 which 

are weighted by synaptic weights w1 and w2 (Fig. 6a). The model neuron produces the 

output y as the linear combination of the 2-dimensional vectors x and w:

y = xTw (7)

According to Hebbian learning, weights w1 and w2 are increased when the activity of inputs 

and output are correlated, i.e. when the input and the output “fire together”, they “wire 

together”. This is achieved by modifying the weights by a quantity Δw proportional to the 

vector of inputs x, scaled by the output value y, and by a constant coefficient η called the 

learning rate:

Δw = η · x · y (8)

Substituting y from Equation 7 leads to:

Δw = η · x · xTw (9)

Finally, by taking the mean value of Δw, we obtain the following equation:

〈Δw〉 = η · x · xTw = η · x · xT w = η · ∑ · w (10)

where we used angle brackets 〈·〉 to denote averages, and Σ to indicate the covariance of x. 

The solution of this equation (Oja 1982) reveals that Hebbian learning converge to weights 

corresponding to the leading eigenvector of the covariance matrix, i.e. to the first Principal 

Component (Fig. 6a).

The hQDA algorithm is inspired by the Hebbian rule (Equation 10), but it contains the 

modification that the model neuron receives an additional “top-down” supervision signal 

that specifies the class k of the current input (Fig. 6b; e.g., k=1 for target matches and k=2 

for distractors). This top-down input acts to switch the sign of the learning rule between the 

Pagan et al. Page 8

Neural Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two classes: it adopts a Hebbian rule for one class and an anti-Hebbian rule for the other and 

as such, we refer to it as a “contrastive” Hebbian rule:

Δw = η · x · y if   k = 1
Δw = − η · x · y if   k = 2 (11)

If we now substitute Equation 7 into Equation 11 we obtain:

Δw = η · x · x · w if   k = 1
Δw = − η · x · x · w if   k = 2 (12)

Taking the average value of Δw we get:

〈Δw〉 = η · xk = 1 · xk = 1 · w − η · xk = 2 · xk = 2 · w = …
… = η · xk = 1 · xk = 1 · w − η · xk = 2 · xk = 2 · w = η · (∑1 − ∑2 ) · w

(13)

where xk =1 indicates the inputs labeled for class 1, xk =2 indicates those of class 2, Σ1 is the 

covariance for the inputs labeled for class 1, and Σ2 is the covariance for those of class 2. 

Note that this expression is equivalent to Equation 10, with the exception that the covariance 

matrix Σ is now substituted by the covariance difference Σ1 − Σ2. Consequently, the weights 

now converge to the leading eigenvector of the difference of the covariance matrices, i.e. to 

the axis with maximum variance difference, as determined by nQDA (Fig. 6b).

Two additional modifications are required to recover the hQDA weights. First, to avoid an 

unbounded exponential increase of the synaptic weights we implement Oja’s correction (Oja 

1982):

Δw = η · x · y − η · y2 · w if   k = 1
Δw = − η · x · y − η · y2 · w if   k = 2

(14)

Second, an elaboration is required to recover the weights of the neurons beyond the first. 

This can be achieved using Sanger’s rule (Sanger 1989), in which each successive neuron 

forces its weights to be orthogonal to all previously defined neurons:

Δw = η·x·y − η·y2·w − η·y·∑
i

y(i)·w(i) if   k = 1

Δw = − η·x·y − η·y2·w − η·y·∑
i

y(i)·w(i) if   k = 2
(15)

where y(i) is the output of the i-th model neuron, and w(i) are the weights of the i-th model 

neuron.
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hQDA is only guaranteed to converge to the same axes as nQDA when the eigenvalues of 

the two covariance matrices are identical, and we thus wanted to assess how well hQDA 

performs under realistic conditions. Because the IT dataset described above included too few 

conditions to evaluate hQDA, we performed a simulation in which we sampled a large 

number of artificial population responses from two multivariate Gaussian distributions 

matched to the covariances matrices estimated from our data. To simplify the interpretation 

of this simulation, we subtracted the mean of each class-conditioned distribution, so that 

only differences in the covariances carried useful information. Figure 6d shows the 

classification performance of hQDA and other decoders as a function of the size of the 

training set. In this simulation, nQDA (blue) performed near 100% whereas FLD (green) 

performed near chance, as expected due to of the absence of linearly separable information. 

To separately evaluate issues related to the approximation of the difference of the inverse 

covariances (with the difference of covariances) and other issues related to hQDA 

implementation, we began by determining performance when we applied a version of nQDA 

in which the axes were computed as the eigenvectors of the difference of the two covariance 

matrices (see Methods). Performance of this classifier converged to nQDA performance (Fig 

6c, black dashed), suggesting that this is a reasonable approximation under the conditions 

imposed in this data-inspired simulation. Next we recovered these axes using hQDA (see 

Methods) and found that it converged to nQDA performance in ~1000 training trials (Fig 6c, 

black solid). As another measure of hQDA convergence, we computed the absolute value of 

the correlation between the axes retrieved by hQDA and the eigenvectors of the difference of 

the covariance matrices. As shown in Fig. 6d, the average correlation between the hQDA 

axes and the closed-form solutions is > 0.85 after ~500 training trials. Together these results 

suggest that hQDA does indeed converge to the axes predicted by Equation 13, and can do 

so with a reasonable amount of training data.

Unlike Hebbian learning, contrastive Hebbian learning as we have described it requires an 

input that signals the class of the current condition. How might such an input be computed? 

Figure 6e shows a simple model demonstrating how this signal might be generated during 

training via a reinforcement learning algorithm. On each trial, a subject generates a 

behavioral decision (predicting whether each condition belongs to class 1 or 2), and receives 

a reward for correct responses. Class identity can uniquely be determined on each trial based 

on the combination of the predicted class and whether or not a reward was received: the 

presence of a reward confirms that the predicted label was correct whereas the absence of a 

reward indicates that the predicted label was incorrect and that it should thus be switched. 

Our model proposes that information is used to compute the class label (i.e. k=1 for target 

matches or k=2 for distractors) and is then fed-back as an input for contrastive Hebbian 

learning. Inputs that combine decision and reward information to mediate the modification 

of feed-forward weights have been proposed by others (Law and Gold 2009) and could be 

implemented biophysically via dopaminergic inputs, which are potent in PRh (Akil and 

Lewis 1993, Richmond 2006). Under this scenario, dopaminergic inputs could act as a gate 

for turning learning “on” and “off” and would thus prevent learning when it is inappropriate 

for it to occur (e.g., as a result of the cue period responses in our task; Soltani and Wang 

2006, Izhikevich 2007).
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Discussion

Quantitative descriptions of the computations implemented by higher brain areas have been 

difficult to develop. The responses of neurons in these areas are highly nonlinear functions 

of sensory inputs, requiring complex parameterization and large amounts of data. 

Alternatively, fitting simpler models to the computations performed only by the neurons in a 

given area generally relies on a precise description of the inputs to that area. Here we have 

used the structure of low-level encoding models as a basis for constructing decoding models 

to describe computation in higher stages. Our solution, neural Quadratic Discriminant 

Analysis (nQDA), reformulates an optimal quadratic classifier as a linear-nonlinear, linear-

nonlinear (LN-LN) cascade model, in which input arriving from a population of neurons is 

transformed at the first stage by a bank of linear filters, followed by squaring nonlinearities, 

and a final read-out with a second LN stage. The model provides both a means of fitting 

neural data with an optimal classifier, as well as a biologically plausible description of 

neural mechanism.

We arrived at nQDA via our previous attempts to account for the transformation between 

two high-level brain areas, IT and perirhinal cortex (Pagan, Urban, Wohl and Rust 2013). In 

that work we fit a specific LN-LN classifier model (in which pairs of IT cells combined to 

form pairs of perirhinal neurons) via a brute force parameter search. Here we’ve used the 

insight gained from the pairwise model – that increased linear separability can be 

accomplished by converting class variance differences into mean differences via squaring – 

to develop a more general solution. Specifically, we’ve generalized this procedure to 

multiple dimensions by deriving it as a form of QDA, (Equations 3–6), shown that nQDA 

provides a better account of a transformation between two high-level brain areas than a 

number of comparable alternatives (Fig 3–4); and developed a biologically plausible 

learning rule that can be used to estimate nQDA parameters, hQDA (Fig 6).

Similarities between computation in PRh and V1

Although nQDA was designed from a decoding perspective, its structure (Fig. 1b) is 

qualitatively similar to functional models commonly used to describe neural computation in 

V1 (Fig 7). In their simplest form, the response of a V1 simple cell, including selectivity for 

orientation, spatial frequency, and phase is captured by an oriented linear filter followed by a 

threshold (Heeger 1992) and the phase invariance of the V1 complex cell is captured by the 

two oriented linear filters of differing phase whose responses are squared and summed 

(Adelson and Bergen 1985). In previous work, we and others have proposed a more 

elaborate LN-LN “subunit” model to capture the continuum of cells whose response 

properties lie between simple and complex (Rust, Schwartz, Movshon and Simoncelli 2005, 

Touryan, Felsen and Dan 2005, Lochmann, Blanche and Butts 2013). In this model, one 

subunit consists of a linear filter that is halfwave rectified and squared, the other subunits 

consist of linear filters followed by squaring, and all subunit responses are combined via a 

weighted sum, followed by a final response nonlinearity (Fig. 7). This model can be fit to 

neural data using spike-triggered covariance (Rust, Schwartz, Movshon and Simoncelli 

2005, Touryan, Felsen and Dan 2005, Lochmann, Blanche and Butts 2013), or more direct 

maximum likelihood methods (Vintch, Movshon and Simoncelli 2015). The structure of this 
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generalized V1 model bears a remarkable resemblance to the nQDA model framework 

(compare Fig. 1b and Fig. 7): an LN-LN model in which one (linear) subunit combines with 

a bank of nonlinear subunits whose responses are squared.

Despite their structural similarity, the V1 subunit model and the nQDA computation aim to 

describe different phenomena: the V1 model is a single-neuron description of the 

transformation of a visual image into a firing rate response, whereas the nQDA framework is 

a population-level description of the conversion of an input population response into the 

solution for a predefined classification task. Nevertheless, a notable similarity between the 

models is that the parameters recovered by both procedures are not uniquely constrained. 

Consequently, care must be taken in interpreting both the “subunits” of the V1 model and 

the parameters of the nQDA “model neurons” as biological elements. In the case of the V1 

model, this can be observed empirically from the recovery of multi-lobed, physiologically 

implausible linear filters that span the same linear subspace as more plausible, localized, 

shifted subunits (Rust, Schwartz, Movshon and Simoncelli 2005, Lochmann, Blanche and 

Butts 2013, Vintch, Movshon and Simoncelli 2015). In the case of nQDA, the recovered 

“model neurons” are probably best regarded as “meta-neurons” that each represent 

something like a functional pool of individual neurons within the brain area of interest. In 

light of these issues, the advantage of both types of descriptions is that they each provide an 

intuitive, quantitative account of an input/output transformation that can then be used to 

guide future experiments as well as constrain more specific accounts of their biological 

implementation.

Links between nQDA and other proposed transformations

While decoding has become a widely used tool for studying the representational content of 

neural populations, it has seldom been used as a substrate for explicit modeling of neural 

response. Linear classifiers are commonly used to describe decision tasks, and their 

physiological implementation is straightforward (i.e. a weighted sum followed by a 

threshold), but the degree to which the brain implements such decoders is not known, and 

even less is known about nonlinear population decoders. The quadratic nQDA decoder 

developed here has a complexity that is well matched to the computational capabilities of 

one stage of neural processing (e.g, a cortical area). Our results suggest that this type of 

decoder is sufficient to capture the transformation that perirhinal cortex performs on the 

inputs arriving from IT (Fig. 3c). The reformulation of QDA into an LN-LN framework also 

allowed us to arrive at an intuitive geometric description of the neural mechanisms used to 

create linear separability – that is, by finding the input dimensions with maximal variance 

differences and converting those into mean differences with squaring (Fig. 2). Finally, the 

LN-LN reformulation leads to a physiologically plausible contrastive Hebbian learning 

algorithm capable of approximating nQDA parameters (Fig 6).

Our results demonstrate that nQDA provides a better account of the transformation between 

two high-level brain areas, IT and perirhinal cortex, than a number of comparable 

alternatives. Each transformation consisted of a linear transformation of the inputs followed 

by a nonlinearity constrained to operate separately on each of the resulting responses. We 

found that a random linear transformation, using up to 1,000 axes, failed to increase linear 
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separability, suggesting that the randomly connected networks that have been proposed for 

other systems (Sussillo and Abbott 2009, Caron, Ruta, Abbott and Axel 2013) are not a 

good description for these particular brain areas and this particular task. The inability of 

PCA to replicate the transformation (Fig. 3c) is largely explained by the fact that the 

response modulation in IT is primarily visual (Pagan, Urban, Wohl and Rust 2013), and thus 

PCA recovers dimensions along which the distributions to target matches and distractors are 

highly overlapping, whereas increasing linear separability requires finding the dimensions 

along which the distributions of the two classes differ. The fact that ICA performs better that 

PCA can be understood in the context of the success of nQDA: directions along which the 

variance of two classes differ the most will also tend to have large kurtosis (since the 

distribution of inputs is a mixture of two distributions with very different variance), and thus 

are also likely to be found by ICA. However, nQDA did in fact outperform ICA, in part 

because of the additional information provided by the (supervised) class labels.

We evaluated the degree to which nQDA could replicate a two-way discrimination between 

target matches and distractors by assessing trial-level, cross-validated classification 

performance applied to data recorded from IT. While we found robust cross-validated 

performance across trials (Fig 3c), nQDA applied to this data set does not generalize well 

across conditions (not shown). We suspect that this is because the data set is relatively small 

(i.e. 16 total conditions) whereas generalization requires a considerable amount of data to 

accurately sample the covariance. While acquiring large data sets from the brains of awake, 

behaving animals is considerably more challenging than other situations in which 

generalization is typically applied (e.g., raw images or neural responses in animals that are 

passively viewing rapidly presented images, (Cadieu et al. 2014, Yamins et al. 2014)), we 

see expanding these data sets as an important future step of this modeling effort. We also 

note that our results do not guarantee that nQDA will provide an equally good account of 

other high-level transformations, such as the multi-way classifications required for invariant 

object recognition (i.e. Determining which of N possible objects is in view).

How might the brain learn the nQDA transformation?

Above we demonstrate that the parameters of nQDA can be learned by neurons via a local, 

supervised rule, hQDA (Fig. 6). Our learning rule closely resembles classic Hebbian 

descriptions of synaptic plasticity (Oja 1982, Sanger 1989, Hebb 2002), with the addition of 

an extra input that acts to switch the sign of the learning rule. Such an approach is 

reminiscent of the “contrastive Hebbian” (Hinton and Sejnowski 1986) and “contrastive 

divergence” (Hinton 2002) approaches that are generally adopted to train Boltzmann 

Machines. Notably, this learning algorithm is supervised and the best performing 

unsupervised algorithm that we applied (ICA) did not perform well. However, unsupervised 

algorithms have been used successfully in contexts similar to the ones we describe here 

(Wiskott and Sejnowski 2002, Serre, Wolf and Poggio 2005, Cadieu and Olshausen 2008), 

and it remains unclear whether hQDA could be reformulated in an unsupervised context. We 

have also offered speculative suggestions of how hQDA might be implemented in the brain 

(Fig 6e). One difficulty is the incorporation of Sanger’s rule, which forces the nQDA axes to 

be orthogonal (Equation 15). In his original proposal of the rule, Sanger speculated that this 
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might be achieved via lateral or other competitive interactions between neurons (Sanger 

1989).

The value of quantitative descriptions at higher stages

Finally, the importance of techniques for fitting quantitative models to account for high-level 

computation is worth noting. While it is tempting to assume that the types of complex 

response properties exhibited by high-level brain areas result from neural computations that 

are themselves complex, this need not be the case. Rather, the responses of neurons in a 

high-level brain area reflect the net effect of computations up to that point of processing, and 

seemingly complex responses can arise from cascading many stages of simple computation. 

Consequently, determining the computations that a high-level brain area implements requires 

separating the response properties that a brain area inherits from its inputs from the ones that 

are computed de novo. The results we have presented here suggest that, at least for the task 

of visual target identification, the computations implemented by perirhinal cortex bear a 

striking resemblance to the computations implemented at the earliest stage of visual cortical 

processing.

Methods

The experimental procedures involved in collecting that data are described in detail in 

(Pagan, Urban, Wohl and Rust 2013) and are briefly summarized here. All procedures were 

performed in accordance with the guidelines of the University of Pennsylvania Institutional 

Animal Care and Use Committee.

We recorded neural responses in IT and PRh as monkeys performed a delayed-match-to-

sample task that required treating the same images as targets and as distractors on different 

trials (Fig. 3a). Monkeys initiated each trial by fixating a small dot. After a brief delay, a 

sample of the target image for that trial was presented, followed by a sequence of 0–3 

distractors, and then by a target match. Monkeys were trained to maintain fixation during the 

presentation of the distractors and to make a saccade to a dot when the target match 

appeared. The same four images were used during all the experiments, and were presented in 

all possible combinations as a visual stimulus and as a target, thus resulting in a total of 16 

conditions. Target matches that were presented after the maximal number of distractors 

(n=3) occurred with 100% probability and were discarded from the analysis; all other 

conditions were included (e.g., distractors presented at the first, second, or third positions). 

For each condition, we collected at least 20 repeats on correct trials. Spikes were counted in 

a window 50–220 ms following stimulus onset.

Population performance

To measure the amount and format of task-relevant information contained in each neural 

population, we performed a variety of cross-validated classification analyses of whether each 

condition was a target match or a distractor (Pagan, Urban, Wohl and Rust 2013). For all 

analyses, we considered population response vectors of N neurons (where N=164 in IT and 

PRh). The cross-validation procedure involved randomly assigning 18 trials from each 

condition to compute the representation (“training set”), setting aside one trial from each 
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condition to optimize classifier parameters (“parameter set”), and finally using the remaining 

trial from each condition to test the performance of the classifier (“test set”). The number of 

target matches and distractors was matched on each iteration of the procedure (four from 

each class). Moreover, distractors were chosen to span all visual stimuli and all targets, to 

avoid the possibility that classifiers could rely on “visual” or “target” information alone, 

leading to nine valid sets of four distractors. While we note that this changes the ratio of 

target matches and distractors for the classification analysis (4 target matches / 4 distractors) 

as compared to the actual experiment (4 target matches / 12 distractors), the monkeys’ high 

performance on this task (averages of 94% and 92% for each of two monkeys) suggests that 

they were not simply relying on these suboptimal information sources (which would plateau 

at 66% correct) but rather computing the actual target match signal. The performance value 

for each iteration was computed as the mean of the eight test binary values (0 = wrong; 1 = 

correct), averaged across all nine valid choices of the distractor set. Mean and standard error 

were computed as the mean and standard deviation across 2000 iterations of the resampling 

procedure. To compare IT FLD and nQDA performance, we report a P value as an 

evaluation of the probability that differences in the mean performance values that we 

observed were due to chance. We compute this probability as the fraction of 2,000 iterations 

on which the difference was flipped in sign relative to the actual difference between the 

means of the full data set.

Before applying each classifier, the responses of each neuron were normalized to have zero 

mean and unit standard deviation across all training trials to ensure that the classifier 

parameters were assigned based on a combination of response magnitude and trial-by-trial 

variability rather than response magnitude alone. Responses could not be normalized before 

applying the Maximum likelihood classifier, because the classifier assumes inputs are 

Poisson-distributed and non-negative. We tested several types of classifiers (Fig 3c):

FLD linear classifier

The expression for the FLD classifier is presented in Equation 2. To minimize the impact of 

trial variability on our covariance estimates, we began by averaging the responses to each 

condition across the set of training trials, and we then computed the means and covariances 

for the neural population using a regularized estimate equal to a linear combination of the 

sample covariance Σ and the identity matrix I:

∑i = γ·∑i + (1 − γ)·I (16)

On each iteration of resampling procedure, the regularizing parameter γ was optimized 

using the “training set” and the γ that produced the best performance was chosen to compute 

the actual performance using the separately measured “test set”. The final FLD performance 

values were then computed by averaging the performances on the test set across all 

iterations.

Pagan et al. Page 15

Neural Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maximum likelihood classifier

The maximum likelihood classifier is described in detail in (Pagan, Urban, Wohl and Rust 

2013). Briefly, we used the set of training trials to compute the average response ruc of each 

neuron u to each condition c, and (consistent with our data), we modeled the likelihood that 

a test response k was generated from a particular condition as a Poisson-distributed variable:

Lu, c(k) =
ruc

k·e
−ruc

k! (17)

The likelihood that a population response vector was generated in response to each condition 

was then computed as the product of the likelihoods of the individual neurons. Finally, we 

computed the likelihood that a test response vector arose from the category “target match” 

versus the category “distractor” as the mean of the likelihoods for target matches and 

distractors, respectively, and we assigned the classification label to the category with the 

higher likelihood.

nQDA

nQDA parameters were calculated as described in Equations 4–6 using the regularized 

covariances described in Equation 16.

Alternative nonlinear classifiers

We compared nQDA performance with three alternative nonlinear classifiers that (like 

nQDA) began by applying an initial linear transformation of the original IT space. Below we 

describe the computation of 1) the linear weights (axes) for each type of classifier, 2) the 

nonlinearities applied to these linearly transformed responses, and 3) the final linear 

weighting used to combine the transformed responses into the classifier signal (which is then 

thresholded to obtain the classification response).

1. Linear weights: For all three alternative nonlinear classifiers, we computed the 

parameters for one “linear” model neuron in the same manner as nQDA to ensure 

that we preserved the linearly separable information that already existed in IT. 

The computation of random axes (Fig. 3c, “IT random”) involved selecting a 

164-dimensional random rotation matrix (Mezzadri 2006). When larger numbers 

of random axes were considered (Fig. 4), they were generated independently 

from a multivariate Gaussian distribution with zero mean and unitary standard 

deviation. The PCA axes (Fig. 3c, “IT PCA”) were chosen as the eigenvectors of 

the covariance matrix computed from the combined responses to both target 

matches and distractors. The ICA axes (Fig. 3c, “IT ICA”) were chosen as those 

along which the kurtosis of the projected responses was maximal, and they were 

computed using the fastICA package (http://research.ics.aalto.fi/ica/fastica). 

Finally, the nQDA axes (Fig. 3c, “IT nQDA”) were computed as described in the 

Results section.
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2. Nonlinearities: Following the computation of the linear weights, an optimal 

nonlinearity was fit independently for each axis (with the exception of the linear 

axis) using the distribution of the projected responses for target matches and for 

distractors, obtained from the training data (Fig 8). This nonlinearity is optimal 

in the sense that it is designed to maximally separate the output values for 

matches from the output values for distractors in a manner very similar to the 

“ratio of Gaussians” method (Pillow and Simoncelli 2006). To compute the 

optimal nonlinearity for a particular axis, we modeled the distribution of 

responses to each match condition and each distractor condition as a Gaussian 

distribution, having the mean and the variance of the responses after the initial 

linear transformation. We then computed the log likelihood ratio between the 

mixture of Gaussians associated with matches and the mixture of Gaussians 

associated with distractors. This procedure assigned positive values to responses 

that are likely to be matches, and negative values to responses that are likely to 

be distractors.

3. The final linear read-out: For each alternative classifier, the weights of the final 

linear decoer were computed via the regularized FLD described by Equation 16 

(in contrast to pooling via the eigenvalues as described for nQDA, Equation 6). 

As described above, computation of FLD weights included optimizing a single 

regularization parameter γ using the “parameter set”, whereas classifier 

performances were computed using the separately measured “test set”. 

Consequently, computation of both nQDA and each of these alternative nonlinear 

classifiers included the cross-validated optimization of a single, regularization 

parameter.

Quantifying neural signals

To parse neural responses into different types of task-relevant signals, we applied the method 

described by (Pagan and Rust 2014). Briefly, because our experimental design included all 

possible combinations of each of 4 images presented as a target match and as a distractor, we 

can re-express the 16-element vector reflecting the mean spike count of each unit to each 

condition as a weighted sum of 16 task-relevant “signals” by projecting it onto an 

orthonormal basis that we have designed specifically to capture different types of 

modulation (Pagan and Rust 2014; Fig 1d) and then combining components that reflect the 

same type of modulation (e.g., changes in visual identity). Shown in Fig. 5 are modulation 

magnitudes, each which reflect spike count variance (around the grand mean) that result 

from changes in: visual stimulus identity (“visual”), target identity (“target”) and whether 

each condition was a target match or a distractor (“target match”). These variances are 

normalized by each unit’s trial variance, computed as the variance across the 20 repeated 

trials for each condition and then averaged across conditions, to obtain a unitless quantity 

that reflects the ratio of each type of signal relative to the noise.
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Data-inspired simulation

To evaluate how well the hQDA contrastive Hebbian learning algorithm converged to nQDA 

parameters (Fig 7c), we performed a data-inspired simulation that allowed us to generate the 

large number of trials necessary to evaluate convergence. Specifically, we computed the 

covariance matrices of the 167 IT neurons included in our data set across the 4 matches, and 

the covariance matrix across 4 distractors, and we then drew 167-dimensional vectors (up to 

1000 for training and always 1000 for testing) from two multivariate Gaussian distributions 

whose covariances matched those of the data, and whose means were set to 0. This 

procedure was repeated 1000 times for each condition. On each iteration of the simulation, 

the 4 distractors were chosen randomly with the constraint of spanning all four visual stimuli 

and targets. We then used different numbers of training samples to fit the decoders, and we 

evaluated classification performances using the testing data (Fig. 7d).

With the exception of different numbers of training and testing trials, FLD and nQDA were 

implemented as described above. To implement hQDA, the weights were randomly 

initialized (from a standard multivariate normal distribution), and were updated following 

the presentation of each training sample according to the learning rule described by Equation 

15. The learning rate was decreased as the learning proceeded, with the learning rate ηi used 

for the n-th training sample set to:

ηi =
η0

1 + n
N

(18)

where N is the total number of training samples, and the initial learning rate η0 was set to 

0.001. Because our data contained 4 matches and 4 distractors and the mean of each 

distribution was set to 0, the dimensionality of the training data was equal to 6. As a 

consequence, only 6 axes contained meaningful information to aid classification 

performance, and we thus restricted hQDA to learn 6 axes. More specifically, 3 axes were 

learned by adopting a positive Hebbian term for the “match” class, and a negative Hebbian 

term for the “distractor” class (thus retrieving axes where the match variance was larger than 

the distractor variance), and 3 axes were learned using the opposite association (thus 

retrieving the axes where distractor variance was larger than match variance). Because the 

simulated data did not contain any differences between the means of the two distributions, 

hQDA was implemented here without the linear axis (Fig.1b, yellow), thus focusing only on 

the squared axes (Fig.1b, green). Following squaring of the hQDA responses, they were 

combined via a final FLD (trained as described above).

We also implemented a modified version of nQDA in which axes were computed as the 

eigenvectors of the difference of the two covariance matrices, as opposed the difference of 

the inverse covariances (Fig 6c, black dashed). As with hQDA: we only computed the 6 axes 

associated with non-zero eigenvalues, we squared the resulting responses, and we combined 

the responses via a final FLD.
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Figure 1. The nQDA framework
a) Optimal quadratic discrimination boundaries (black lines) for four example pairs of 

population response distributions. Hypothetical class distributions are each multivariate 

Gaussian (indicated by red and gray elliptical regions), with means μ1 and μ2, and 

covariances Σ1 and Σ2. Top left: a scenario in which the means of the two classes differ and 

the covariances are matched. In this special case, the optimal classifier is linear; Top right: a 

scenario in which the means of the two classes are similar and a linear classifier alone is an 

ineffective decision boundary. Instead, the optimal classifier uses a pair of parabolic 

boundaries. Bottom left: an example with differing mean and covariance, yielding a single 

parabolic boundary. Bottom right: an example yielding an elliptical boundary. b) Depiction 

of the nQDA model, which implements the optimal quadratic classifier (Equations 3,4) as an 

LN-LN model (Equation 6). The first LN transformation is achieved with a bank of linear 

filters, with all but the first followed by a squaring nonlinearity. The outputs of these 

individual LN units are combined via a weighted sum, followed by a threshold function 

which determines the class membership.
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Figure 2. Geometrical intuition of nQDA
Left, Response distributions of a hypothetical population to two classes, for which both the 

response mean and variance of each individual neuron are matched, but the class covariances 

differ. Dashed lines indicate nQDA axes (Equation 5). Center, Population responses linearly 

transformed to nQDA axes, along which the responses exhibit large relative variance 

differences between the two classes. Right, The squaring nonlinearity converts these 

variance differences into mean differences, and the resulting class distributions are more 

readily separated by a linear classifier (black line).
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Figure 3. Application of nQDA to recorded neural responses
a) We recorded neural responses in IT and perirhinal cortex (PRh) as monkeys performed a 

delayed-match-to-sample task. On each trial, monkeys were presented with a cue indicating 

the identity of the target (“target sample”), followed by a random number of distractors and 

a target match. Monkeys were required to indicate when the target match appeared. b) 
Response clouds of two hypothetical neurons to target matches (red) and distractors (gray), 

where different shapes indicate different images. As described previously (Pagan, Urban, 

Wohl and Rust 2013), this task can be reformulated as a two-way classification between the 
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set of responses to all the images presented as target matches versus the set of responses to 

the same images presented as distractors. c) Trial-level cross-validated classification 

performance of different decoders applied to IT, along with a linear decoder applied to PRh. 

Plotted are the mean performance values, with error bars indicating bootstrapped estimates 

of standard error. Classifiers include: an FLD decoder applied to IT and PRh (black); LN-

LN decoders that include random, PCA and ICA decompositions applied to IT followed by 

optimized marginal nonlinearities and a final, FLD linear decoder (white); the nonlinear 

nQDA decoder applied to IT (light gray); and a nonlinear, maximum likelihood decoder 

applied to IT (dark gray).
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Figure 4. Performance of an LN-LN model with random axes improves marginally with 
increasing output dimensionality
Classifier performance is shown as a function of number of random axes. In contrast to the 

analysis depicted in Fig 3c “IT random”, which used a randomly chosen, orthogonal set of 

axes (with dimensionality N=164, equal to that of the input space), here each random axis 

was selected independently. These randomly weighted inputs were then passed through a 

nonlinearity optimized for each axis and the responses were combined using a final, linear 

decoder. For comparison the FLD and nQDA decoders applied to IT (i.e. the same values in 

Fig 3c) are also indicated (dashed lines).
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Figure 5. nQDA replicates differences in signal magnitudes between IT and PRh
The responses of each neuron were decomposed into different types of task-relevant signals 

by quantifying, for each neuron, the amount of spike count variance (around the grand mean 

spike count) that could be attributed to changes in experimental conditions, including: 

“Target match” (whether a condition was a target match or distractor); “Visual” (image 

identity); and “Target” (target identity) (see Methods). These signal variances were then 

normalized by each neuron’s trial-by-trial variance, averaged across conditions, to obtain 

unitless quantities that reflect the ratio of each type of signal relative to the noise. Shown are 

the means and standard errors of these signal measures, computed for each population.
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Figure 6. Approximate nQDA parameters can be learned with a supervised, Hebbian rule, hQDA
a) As described previously by Oja (Oja 1982), the Hebbian algorithm recovers the first PCA 

axis. Top, the population response distribution for two hypothetical neurons to two classes of 

stimuli. The first Principal Component axis (dotted line) captures the axis with maximum 

variance, summed across conditions. Bottom, depiction of a neuron that receives inputs from 

the two neurons depicted at the top, and whose weights are modified according to a classic 

Hebbian rule. Application of the Hebbian rule results in the convergence of the input 

weights to the first PCA axis. b) Top, the population response distributions for two 
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hypothetical neurons to two classes of stimuli. The first hQDA axis captures the axis with 

maximum variance difference (dotted). Bottom, depiction of the same neuron as shown in 

panel a but with an additional input that indicates the class label for each condition. The 

contrastive Hebbian rule is implemented in this framework by switching the sign of the 

classic Hebbian term according to this label. c) Cross-validated classification performance of 

a number of decoders applied to a neurally-inspired dataset (see text), plotted as a function 

of the training set size. Classifiers include: FLD (green); nQDA (blue); hQDA (black); and 

nQDA with the use of direct covariances instead of inverse covariances (black, dashed). 

hQDA was set to retrieve 6 axes, i.e. equal to the number of informative dimensions in the 

input space (see Methods). d) Average absolute correlation between the axes obtained by 

applying hQDA to the same simulated data and the corresponding closed-form eigenvectors 

computed via the difference of covariances. Convergence to closed-form axes is shown as 

function of the size of the training set. e) Diagram for model in which the contrastive 

Hebbian rule could be used to learn the hQDA parameters, where the “class label” is 

determined for each condition as a combination of the decision and whether the decision 

was rewarded.
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Figure 7. A generalized encoding description of V1 computation
Shown is the generalized LN-LN subunit model proposed to describe the conversion of 

visual images in to the firing rate responses of individual V1 neurons. In the first LN stage, 

the stimulus is passed through a bank of linear filters followed by squaring, with the 

exception of the first subunit (which is half-squared). These responses are combined via a 

weighted sum, and the result is passed through a final nonlinearity. Note the similarity 

between the structure of this model and nQDA (Fig. 1b).
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Figure 8. Computing the optimal nonlinearity for each alternative nonlinear classifier axis
The distributions of the responses to each condition, projected along each axis, were 

modeled as Gaussian distributions and the responses to the set of target matches and set of 

distractors were each modeled by mixtures of these Gaussian distributions. To compute an 

optimized nonlinearity that maximally separated the means of the target matches and 

distractors, we computed the log likelihood ratio between the mixture of Gaussians for 

matches and the mixture of Gaussians for distractors. This optimized nonlinearity was 

computed using the training data, and was applied to the test data following the application 

of different linear projections to obtain the results in Figure 3c.
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