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Abstract

Purpose: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia
de Lange Syndrome (CdLS). We aim to delineate mutations in known and candidate
cohesinopathy genes from a clinical exome perspective.

Methods: We retrospectively studied patients referred for clinical exome sequencing (CES,
N=10,698). Patients with causative variants in novel or recently described cohesinopathy genes
were enrolled for phenotypic characterization.

Results: Pathogenic or likely pathogenic single nucleotide and insertion/deletion variants (SNVs/
indels) were identified in established disease genes including AV/PBL (N=5), SMC1A (N=14),
SMC3(N=4), RAD21 (N=2) and HDAC8 (N=8). The phenotypes in this genetically defined
cohort skew towards the mild end of CdLS spectrum as compared to phenotype-driven cohorts.
Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in
STAGI (N=3), STAGZ (N=5), PDS5A (N=1) and WAPL (N=1), and one inherited SNV in
PDS5A. We also identified copy number deletions affecting STAGI (two de novo, one of

unknown inheritance) and STAGZ (one of unknown inheritance). Patients with STAGIZ and STAGZ
variants presented with overlapping features yet without characteristic facial features of CdLS.

Conclusion: CES effectively identified disease-causing alleles at the mild end of the

cohensinopathy spectrum and enabled characterization of candidate disease genes.
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INTRODUCTION

The cohesin complex mediates sister chromatid cohesion and ensures accurate chromosome
segregation, recombination-mediated DNA repair, and genomic stability during DNA
replication and cell division. Accumulating evidence suggests that cohesin is also involved
in regulating chromosomal looping/architecture and gene transcriptional regulationl=3.

Cohesin is a multi-subunit protein complex composed of evolutionarily conserved core
components encoded by SMCIA (MIM *300040), SMC3 (MIM *606062), RAD21 (MIM
*606462) and either STAG1 (MIM *604358) or STAGZ2 (MIM *300826) depending on the
chromosomal location. Direct interaction between SMC1A, SMC3 and RAD21 form a
tripartite ring structure that is used to entrap the replicated chromatin during sister chromatid
cohesion (Figure 1A). STAG1/2 are the core structural component of functional cohesin and
critical for the loading of cohesin onto chromatin during mitosis?:2.

In addition to the aforementioned structural components, cohesin also interacts with the
regulatory factors of the cohesion cycle, including proteins encoded by NV/PBL (MIM
*608667), MAUZ (MIM *614560), PDS5A (MIM *613200) or PDS58 (MIM *605333),
WAPL (MIM *610754), HDAC8 (MIM *300269), ESCOI (MIM *609674), and £ESCO2
(MIM *609353), to facilitate cohesin dynamics and function on chromatin (Figure 1A)12.

Precise orchestration of cohesin’s structural components and regulatory factors ensures
faithful progression of the cohesion cycle (Figure 1A). Defects of the structural or regulatory
components of cohesin lead to various multisystem malformation syndromes described as
“cohesinopathies”, a collection of syndromes with shared clinical findings such as
distinctive facial features, growth retardation, developmental delay/intellectual disability
(DD/1D), and limb abnormalities. Clinically, the most distinguishable type of cohesinopathy
is the classic Cornelia de Lange Syndrome (CdLS, MIM# 122470), with the majority of
cases explained by SNVs/indels and exonic deletion copy humber variants (CNVSs) resulting
in loss-of-function (LoF) alleles in M/PBL*-8. The traditional phenotype-driven studies that
included the mild end of the CdLS spectrum led to the discovery of SMC1A, SMC3,
RADZ21 and HDAC8 (MIM# 122470, 300590, 610759, 614701 and 300882) as new
cohesinopathy genes 411 The resultant CdLS phenotype is largely dependent on the genes
being affected and mutation types!2. Although mild forms of CdLS present with less striking
phenotypes and are more clinically challenging to recognize in comparison to the classic
form, they have been found in an increasing number of patients with cohesinopathies.

Here, we used a genotype-driven approach to investigate the allelic series of genes encoding
cohesin components based on a large cohort of patients (N=10,698) with a variety of
unselected clinical presentations who were referred for clinical exome sequencing (CES).
We identified pathogenic or likely pathogenic variants in known CdLS genes (NV/PBL,
SMCIA, SMC3, RADZ21, and HDACS) in patients mostly without a clinical diagnosis of
CdLS, representing a cohort on the mild end of the clinical presentation of cohesinopathies.
By applying the same genotype-first approach in the CES cohort, we further established
STAGI and STAGZ as new cohesinopathy genes with variants that act by a putative LoF
mechanism, corroborating recent reports of patients with developmental disorders carrying
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mutations in these two genes!3-15. Additional studies of patients who had chromosome
microarray analyses (CMA, N=63,127) also identified deletion CNVs affecting S7TAGI and
STAGZ, which further supports the human disease association of these two genes via a LoF
mechanism. We also provide evidence supporting the candidacy of PDS5A and WAPL as
cohesinopathy disease genes. Our findings emphasize the utility of using CES to provide
molecular diagnoses for disorders with extensive genetic and phenotypic heterogeneity,
uncover the potential molecular etiologies of previously undiagnosed patients, and elucidate
novel candidate cohesinopathy disease genes which potentially expand the genotype/
phenotype characterizations of cohesinopathies.

MATERIALS AND METHODS

Samples

The study has been conducted through a collaborative effort between Baylor Genetics (BG)
and Baylor-Hopkins Center for Mendelian Genomics (BHCMG), and has been approved by
the Institutional Review Board of Baylor College of Medicine. Approved consents of
publishing photos have been obtained. Please see Supplemental Appendix for detailed
descriptions of samples in BG and BHCMG. Selected patients with STAG1, STAGZ, or
PDS5A variants were enrolled after obtaining informed consent for further phenotypic
characterization based on clinical notes submitted along with the CES order.

CES and variant interpretation

CES was performed as previously described'6:17. The variant classification and
interpretation were conducted by a clinical standard based on the American College of
Medical Genetics and Genomics variant interpretation guidelines 8. Details of the CES
experimental procedures and sample-wise QC metrics can be found in Table S1. The
possibility of mosaic variants in known CdLS genes® was carefully evaluated. A variant is
considered mosaic only if the variant read versus total read ratio is below 30% and
confirmatory Sanger sequencing demonstrates a comparable mosaic fraction.

The variants identified in this study have been submitted to ClinVar (accession numbers
SCV000747051 - SCV000747093).

Chromosome microarray analysis (CMA)

The experimental design and data analysis of CMA were performed according to previously
described procedures 20.

X-chromosome inactivation (XCI) assay

XCI studies were performed for the patient samples with STAGZ2 variants based on the
protocol described by Allen et a1 with modifications. Please see Supplemental Appendix
for detailed protocol.

Estimation of mutation prevalence in somatic cancer samples

The datasets from the COSMIC (http://cancer.sanger.ac.uk/cosmic/download) and EXAC
(The Exome Aggregation Consortium, http://exac.broadinstitute.org/) 22 databases were
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used for the calculation. The normalized mutation abundance per gene in cancer samples is
determined by the ratio between the mutation frequencies of COSMIC versus the EXAC (y-
axis in Figure 1C). Please see Supplemental Appendix for details.

RESULTS
Variants of established CdLS genes in the CES cohort

Based on a genotype-driven selection approach, we identified 33 patients with pathogenic or
likely pathogenic variants in the well-recognized CdLS genes from the CES cohort. Those
variants include heterozygous or hemizygous SNVs/indels in N/PBL (N=5), SMCI1A
(N=14, X-linked), SMC3 (N=4), RAD21 (N=2) and HDAC8 (N=8, X-linked) (Table 1).
Genic variant distribution was calculated to show the per gene contribution to molecular
diagnosis among the five known CdLS genes (Figure 1B). Of the 33 variants, 29 occurred de
novo in the proband, three were inherited from a parent and one was of unknown inheritance
(not maternally inherited, paternal sample not available, Table 1). Among the inherited
variants, one variant in SMC1A was inherited from a symptomatic mother with a milder
phenotype, demonstrating variable clinical presentation for X-linked dominant disorders;
two variants in RAD21 were inherited from symptomatic parents with milder phenotypes,
documenting variable expressivity of defects in RAD21.

The CdLS patients in this cohort may be enriched for atypical or mild CdLS phenotypes,
because those with classic CdLS presentation are more likely to be referred for specific
single gene or panel testing instead of CES. We retrospectively examined the clinical notes
submitted by the referral clinicians for their differential diagnoses prior to CES. CdLS was
not included in the initial differential diagnoses for 60% of patients with a positive N/PBL
finding, 93% with SMC1A and 75% with SMC3variants, and all those with RAD21 or
HDACS8 variants (Table 1, Figure 1B). These observations support the previous hypotheses
that pathogenic variants in M/PBL have a better correlation with classic CdLS, while
SMCI1A and SMC3 pathogenic variants may contribute to milder CdLS features; the
phenotypes caused by pathogenic variants in RAD21 and HDAC8become more variable and
sometimes present atypical CdLS features!2.

As a comparison to the genic distribution of our CES cohort, we analyzed the data from a
phenotype-driven cohort of CdLS patients!®. Moreover, we re-examined the genic variant
distribution on an independent phenotype-driven CdLS cohort (N=41) from BHCMG, in
which pathogenic or likely pathogenic variants in N/PBL (N=12), SMC1A (N=6), SMC3
(N=2), and HDAC8 (N=1) were identified (Table S2). The genic variant distribution of the
BHCMG CdLS cohort is overall comparable with that calculated from the phenotype-driven
cohort®. However, both of these largely deviated from our CES cohort (Figure 1B). The
proportion of patients with M/PBL pathogenic variants in our cohort was significantly lower
in comparison to the aforementioned two phenotype-driven cohorts (Chi-squared test, both
with p<0.001). The proportion of patients with SMC1A pathogenic variants in our cohort
and the BHCMG were significantly higher than the other CdLS cohorts (Chi-squared test,
both with p < 0.02), indicating mild/atypical CdLS presentations in the BHCMG cohort.
Therefore, the mutational spectrum in known CdLS genes in the CES cohort represent a
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distinct distortion and alternative perspective from phenotype-driven CdLS cohorts, where
patients tend to present with classic phenotypes!?.

Interestingly, 6/33 (18%) of the patients with positive findings from known CdLS genes
carry a secondary diagnosis (Table 1), which is higher than the average observed fraction of
patients with dual diagnoses from positive cases in the entire CES cohort (~5%)23. This is
not unexpected because the predicted extent of multi-locus diagnosis can be as high as 14%
under a Poisson distribution model23. The high representation of dual diagnosis and resultant
blended phenotypes observed in this study may contribute to the complexity of the patients’
phenotypes, further obscuring the underlying molecular causes, making clinical diagnosis
challenging without the assistance from objective molecular testing.

Candidate disease genes in the cohesin structural and regulatory components

STAG1, STAGZ, PDS5A, PDS5B, WAPL and MAUZ encode close interacting factors of
NIPBL, SMC3, SMC1A, RAD21, and HDACS in the cohesin pathway, and thus may
potentially supplement the locus heterogeneity of cohesinopathies. According to the EXAC
database, NIPBL, SMC3, SMC1A and RADZ21 have Probability of LoF Intolerance (pLlI)
scores of 1.00, while HDAC8has a pLI of 0.92. Similarly, STAG1, STAGZ, PDS5A,

PDS5B, WAPL and MAUZall have pLI scores of 1.00, suggesting their intolerance to LoF
variants (Table S3). In our CES cohort, we identified putative LoF (truncating/splicing) or de
novo missense variants in STAGI (3), STAGZ (2), PDS5A (2), and WAPL (1). Through
collaboration with the Deciphering Developmental Disorder (DDD) study and BHCMG,
three additional de novo variants in STAGZ were identified.

De novo heterozygous SNVs/indels in STAGZ (NM_005862.2), including one frameshift (c.
2009 _2012del [p.N6701fs*25]) and one missense (¢.1129C>T [p.R377C]), were identified
in Patients 1 and 2, respectively (Figure 2A). Both patients had common clinical findings
that included DD/ID, hypotonia, seizures, mild dysmorphic features and skeletal
abnormalities (Table 2, Table S4). In addition, one heterozygous de novo missense SNV, c.
253G>A (p.V85I) in STAG1, was identified in Patient 3 (Figure 2A) along with a
heterozygous de novo ¢.1720-2A>G SNV (observed twice in EXAC including one
potentially being mosaic) in ASXL (Bohring-Opitz syndrome; MIM# 605039). Patient 3
presented with global developmental delay, dysmorphic facial features, seizures, optic
atrophy, mild hypotonia, skin hypopigmentation, hirsutism, possible autism spectrum
disorder and structural brain abnormalities (Table 2, Table S4). The concurrent de novo
variants in STAGZ and ASXL1 could possibly contribute to a dual molecular diagnosis of
this patient.

De novo heterozygous/hemizygous SNVs/indels in STAGZ (X-linked, NM_006603.4),
including two stopgains, two missense and one frameshift, were identified in four females
(Patient 7-10; Patient 7, ¢.418C>T [p.Q140*]; Patient 8, c.1605T>A [p.C535*]; Patient 9, c.
1811G>A [p.R604Q]; Patient 10, ¢.1658 1660delinsT[p.K5531fs*6]) and one male (Patient
11 (hemizygous), c.476 A>G [p.Y159C]) (Figure 2B).These patients shared common clinical
findings of DD/ID, hypotonia, microcephaly, dysmorphic features and skeletal abnormalities
(Table 2, Table S4). Skewed X-inactivation (XCI) was observed in Patient 8, whereas XCI
was non-informative for Patient 7 due to homozygosity of the marker being used for the XCI
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study (data not shown). In our study, truncating variants were identified in 3/4 female
patients, but not in males. Although this observation is based on a limited number of
patients, it is consistent with the hypothesis that truncating variants of X-linked genes may
impose more severe pathogenic effect on males than females.

One heterozygous SNV, ¢.2275G>T (p.E759%*), in PDS5A (NM_001100399.1) was
identified in Patient 13 with severe developmental delay, marked hypotonia, failure to thrive,
dysmorphic features, hyperextensible knees, eye anomalies and skeletal abnormalities (Table
2, Table S4). Interestingly, this patient also had a concurrent heterozygous de novo SNV, c.
3325A>T (p.K1109%*), in ASXL3 (Bainbridge-Ropers syndrome, MIM# 615485), which
presumably explains the major phenotypes. This PDS5A variant is predicted to introduce a
premature stop codon in PDS5A in the longer transcript (NM_001100399.1) but does not
affect the shorter transcript (NM_001100400.1), suggesting a potential mild defect caused
by this variant. However, the role of different isoforms of PDS5A in the cohesin complex is
not well-established in the literature. Notably, the father of Patient 12, who shared the
PDS5A p.E759* variant, had speech impediment. Although the pathogenicity of the
p.E759* variant in PDS5A remains to be investigated, it may modulate the patient’s
phenotype and constitute a dual diagnosis together with ASXL3. In addition, one
heterozygous de novo SNV (c.654+5G>C) in PDS5A was identified in another patient with
neurodevelopmental disorders. This intronic PDS5A variant was predicted to affect splicing
of the major mRNA transcript of PDS5A by prediction programs including
SpliceSiteFinder-like and MaxEntScan (http://www.interactive-biosoftware.com/doc/alamut-
visual/2.6/splicing.html).

Finally, one de novo heterozygous SNV in WAPL (NM_015045.3), ¢.2192G>A (p.R731H)
was identified in one patient with neurodevelopmental disorders. This observation
corroborates a previous report in which a partial duplication involving WAPL was identified
in a patient from a phenotype-driven CdLS cohort?4, providing further evidence for WAPL
as a candidate disease gene.

Each of the variants in STAG1, STAGZ, PDS5A and WAPL described above were not
observed in the control population databases including EXAC and ESP5400 (NHLBI Exome
Sequencing Project, http://evs.gs.washington.edu/EVS/). The interpretation of deleterious
effects of the de novo missense SNVs identified in this study was supported by multiple
prediction algorithms (Table S5).

We identified CNV deletions affecting STAGIZ and STAGZin our clinical CMA cohort,
supporting LoF as the presumed disease-contributing mechanism; no putative LoF CNVs of
PDS5A, PDS5B, WAPL or MAUZ2 were identified. In total, we identified three CNV
deletions affecting STAGI (two de novo, one of unknown inheritance) in patients with
developmental disorders (Figure 2C, Table S6). In the literature, six CNV deletions
overlapping STAGI were reported, with the smallest two deletions being intragenic (exons
2-5 and exons 13-18, respectively)!3. Moreover, eight cases with neurodevelopmental
disorders were reported in the DECIPHER database harboring relatively small-sized
deletions (< 5 Mb) affecting STAGI (https://decipher.sanger.ac.uk/)2® (Figure 2C, Table S6).
These STAGI-overlapping deletions identified in affected patients strongly indicate that
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haploinsufficiency is likely to be the disease-contributing mechanism for STAGL. In
addition, a 33.9 Kb CNV deletion with unknown inheritance encompassing exons 15-32 of
STAGZ (predicted to result in an in-frame deletion p.L473_L1198del), was identified in
Patient 12 with dysmorphic features, microcephaly and seizures (Figure 2B, Table S6). This
female patient showed skewed XCI, consistent with the observation in Patient 8.

Patients with STAG1 and STAG2 variants have phenotypes overlapping the CdLS-spectrum

We evaluated the clinical phenotypes for Patient 1-2 (S7TAGI) and Patient 7-11 (STAG2).
Patient 3 (S7TAGI) was excluded from the evaluation since the identification of concurrent
de novo variants in ASXL 1 together with STAGI may largely complicate the STAGI-alone
phenotypes.

Patients described in this paper presented for genetic evaluation due to developmental delay
and/or congenital anomalies but not with classic distinctive facial features or a recognizable
pattern of malformation suggestive for a particular syndrome such as CdLS (Figure 2D). The
most common features among these patients with STAGZ and STAGZ2 variants were DD/ID,
behavioral problems, hypotonia, seizures, microcephaly, failure to thrive, short stature, mild
dysmorphic features, and 2-3 toe syndactyly (Table 2).

Clinical profiling suggested many overlapping features with CdLS, which include DD/ID,
growth failure including short stature and microcephaly, hearing loss, synophrys,
micrognathia, limb anomalies and hypoplastic male genitalia. Some other less common
features of CdLS, such as cutis marmorata, myopia, congenital diaphragmatic hernia (CDH),
and renal anomalies among others, were also observed in several of these patients. A more
detailed characterization is described in Table 2 and Table S4.

Among the distinctive craniofacial features present in over 95% of the patients with a
clinical diagnosis of CdLS!1, our patients collectively had microbrachycephaly, low set ears,
synophrys, long curly eyelashes, broad nasal bridge, anteverted nares, long and smooth
philtrum, thin upper lip and micrognathia; however, these features were not present
concurrently in a single patient. Interestingly while microcephaly is one of the most
characteristic features in CdLS, only 4/7 patients (one STAGI and three STAG2) had
microcephaly. Although the numbers are small, a higher percentage of microcephaly was
observed in patients with a STAGZ variant (3/5) in comparison to S7TAGI (1/2). In contrast
to CdLS, where mild to severe limb anomalies are common and are usually helpful to
establish a clinical diagnosis, the patients in this study had common but more subtle findings
in their extremities, such as fifth finger clinodactyly and syndactyly. Skeletal anomalies
including scoliosis (3/7), vertebral anomalies (3/7) and rib fusion (2/7) were observed in our
patients, all with variants in STAGZ2. Even though these skeletal anomalies can be observed
in patients with classic CdLS, vertebral and rib anomalies would be considered as rare or
atypical features for CdLS.

Comparing patients with STAGZ or STAGZ variants, DD/ID and mild dysmorphic features
have been consistently observed, which is in line with the previous reports!3-15 (Table 2).
Despite the small cohort size, it seems that patients with STAGZ2 variants have more
multisystem congenital anomalies such as CDH, congenital heart disease and vertebral
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anomalies. Growth failure was observed as well, but apparently more in the postnatal period
than prenatally. Patients with a STAGZ variant appear to have more severe growth failure
especially in weight and length parameters compared to those with STAGZ variants.

Although STAGI and STAGZhave been implicated in cancers due to their function in the
cohesin pathway and the observation of chromosomal segregation defects in defective cell
lines (e.g. STAGZas an indicator for myeloid neoplasms), onset of tumors has not been
observed in our study nor in the patients reported in the literature with developmental
disorders caused by constitutional pathogenic variants in STAG and STAGZ23-15,
Moreover, no obvious increased risk of cancer is reported in patients with other
cohesinopathies caused by defects in genes such as M/PBL, SMCIA, and SMC3.
Consistent with this observation, our chromosome analysis of one patient (Patient 7) did not
reveal any evidence for chromosomal segregation defects (data not shown).

DISCUSSION

In this study, we applied a genotype-driven approach to decipher the genetic causes of
cohesinopathy from a CES perspective. We describe a series of disease-contributing variants
in known cohesinopathy genes, and also provide molecular evidence supporting the
candidacy of recently described or new disease genes.

NIPBL defects are underrepresented in this cohort likely due to ascertainment bias
associated with its more clinically recognizable presentations. The scarcity of putative LoF
variants for certain cohesin genes including PDS58 and MAUZ in this cohort indicates that
LoF variants in these genes may exert strong pathogenic effects on early development
leading to incompatibility with life. Alternatively, the lack of evidence supporting the
pathogenicity of variants in PDS58 and MAUZ could reflect limitations of interpreting
missense variants based on proband-only CES. HDAC8and SMCI1A are the only two well-
studied X-linked genes among the cohesin components. They seem to be relatively spared
from the strong selection in human development possibly due to protection of pathogenic
alleles in the gene pool by XClI in females. Consistently, variants in these two genes are
highly represented in the CES cohort as compared to cohorts assembled by phenotypic
characterization (Figure 1B).

Patients harboring STAGI or STAGZ variants seem to share many of the clinical features
seen in the well-described CdLS phenotype. Apparently affected patients in our cohort are
developmentally and intellectually as impaired as those with CdLS. However, their spectrum
of growth, craniofacial and musculoskeletal features are not as severe as the spectrum of
CdLS. Overall, only one patient (Patient 3 [ STAGI]) fulfills the diagnostic criteria for CdLS
by meeting the CdLS characteristic facial features 26. Note that the concurrent de novo
variant in ASXL1 may largely contribute to the differential diagnosis of CdLS for Patient 3
(Table S7). Although the currently available clinical information we had might not be as
sufficient for a diagnosis of CdLS or other cohesinopathies, a “CdLS-like” syndrome started
to emerge. The STAG1/ STAG?-related disorders seem to be at the mild end of the CdLS
spectrum, making the clinical diagnosis for these two genes more challenging for
physicians. Putting together the constellation of clinical features might help to end the
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diagnostic odyssey earlier, and with this series of cases awareness can be extended. Given
the challenges, comprehensive genomic analysis, such as CES, should be offered to
efficiently provide a molecular diagnosis for these cohesinopathy conditions.

Notably, the LoF PDS5A variant (Patient 13) was inherited from a father with speech
impediment. Although the phenotypic consequence of this variant remains unclear (as
discussed in the RESULTYS), its potential contribution cannot be completely ruled out.
Unfortunately, samples from the parental grandparents or other relatives are not available for
testing. Defects in the cohesin complex, as demonstrated in the CdLS genes, are likely to be
detrimental to proper organismal development, milder phenotypic consequences have been
observed!®, With our experience of known CdLS gene variants among 10,698 individuals,
two distinct novel pathogenic variants in RADZ1 as well as one novel pathogenic variant in
SMCI1A (X-linked) were identified in three unrelated patients with neurodevelopmental
disorders, all inherited from affected parents with milder phenotypes (Table 1). Moreover,
transmission of pathogenic variant between generations has been reported in STAGI3.
Therefore, with the reported variable expressivity of the cohesin defects, it is plausible that
the reproductive potential, genetic transmission and severity of phenotype may be dependent
on various factors, including the components being affected, the mutation types, the
inheritance mode (e.g. X-linked or autosomal dominant) and the downstream pathways
disrupted by defects in a particular component. Thus, additional genotype-phenotype
correlation studies are warranted to further delineate the spectrum of cohesinopathies.

The mutational landscape of cohesin genes in somatic cancer may represent an alternative
view to reflect contribution of these genes to biological processes, with minimum selection
as compared to that imposed during early human development. Among cancer samples
deposited to the COSMIC database subjected to genome wide screening, truncating variants
were observed in all cohesin genes. While missense variants did not show any substantive
difference between cohesin genes, putative LoF variants in STAGZ2 were highly represented
in the somatic cancer cohort (Figure 1C). LoF variants in STAGZ have been significantly
associated with several cancers?”:28, suggesting a likely pleiotropic effect of STAGZ,
possibly with strong involvement in tumorigenesis. Interestingly, we have observed a patient
with mosaic STAGZ LoF variant in the CES cohort. The patient does not have
neurodevelopmental problems, but instead presented with hematological malignancy.
Therefore, we considered the STAGZ defect in this patient as not being causal for a
cohesinopathy. Consequently, caution should be taken when interpreting variants in cohesin
genes by considering the possibility that they may arise as somatic changes after the critical
period of early human development.

Accumulating evidence suggest that cohesin contributes to the topological organization of
the genome, regulates DNA replication, and facilitates long-range gene transcription
regulation29:30, |n addition, the interactions between cohesin and other transcription
machinery and chromatin remodeling complexes to recognize specific genomic loci and
regulate gene transcription have aggregated these complexes into the same pathways of
transcription regulation30-33, Notably, genes encoding components of chromosome
remodeling and transcription regulation machineries, such as ANKRD11, AFF4, KMTZA,
TAFIand TAF6, have been associated with phenotypes reminiscent of CdLS319:34-36, Sych
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findings expand the molecular mechanism underlying cohesinopathies into transcriptional
regulation. Interestingly, gene expression studies of patients with elevated dosage of STAG2
reveal a dysregulated transcriptome and pinpoints altered expression levels of
developmentally important genes3’. Therefore, the versatility of cohesin in cohesion and
transcription regulation warrants a further investigation of its downstream effectors.

In summary, the genotype-first approach focusing on a specific pathway enabled us to
investigate patients with non-classic cohesinopathy phenotypes; this approach also allowed
us to discover patients with variants in new or recently reported disease genes, namely
STAGI, STAGZ, and potentially PDS5A and WAPL, which may further expand the genetic
heterogeneity underlying cohesinopathies. Future studies of cellular phenotypes, with regard
to functional studies of DNA repair and transcriptome analysis, are warranted to further
elucidate the mechanistic consequences due to defects in specific cohesin components,
which may shed light on precision medicine efforts targeting distinct molecular pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figurel.
Cohesin complex and its underlying genetic variants. A. Schematic diagram of the cohesin

complex. The components are represented in different color shapes labeled with protein
names. B. Comparison of genic distributions between our clinical exome cohort and two
phenotype-driven cohorts of clinically diagnosed CdLS patients (from ref. 19 and BHCMG,
respectively) 19. Y-axis, proportion of molecular diagnosis provided by variants in each
gene; x-axis, genes; black, patients without CdLS listed as differential diagnosis; dark grey,
patients with CdLS as one of the differential diagnoses; grey, CdLS cohort from ref. 19; light
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grey, CdLS cohort from BHCMG. C. Comparison of genic variant frequencies between
COSMIC and EXAC cohorts. Filled circles represent comparison between frequencies of
putative LoF variants between COSMIC and EXAC; open circles represent comparison
between frequencies of missense variants between COSMIC and EXAC. Y-axis, ratio
bewteen frequencies of genic variants (missense or putative LoF) in COSMIC and EXAC; x-
axis, genes.
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The variants in STAGZ and STAGZ. A. SNVs/indels in STAGL. B. SNVs/indels and one
CNYV deletion in STAGZ. For panels A and B, the white segment represents the full-length
protein, and the black segments represent protein domains; the missense variants are
annotated above the segment, while the putative LoF variants (including the CNVs deletion
in STAG2) are underneath; the variants colored in red are reported in the current study. The
boxed variant (p.A638Vfs*10) in panel B is reported as a research variant. C. Diagram
showing the CNV deletions overlapping STAGI reported in the DECIPHER and current
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study. The red segments represent the deletions, which are divided in two groups of
“DECIPHER” and “Current Study”. The bottom panel shows genes in the region. STAGI is
highlighted in red. D. Photographs showing the front and side facial profiles of Patients 8
and 9 with de novo variant in STAGZ. The patient numbers and variants are listed under the
photograph.
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