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The biosynthetic machinery responsible for the production of bacterial specialised metabo-

lites is encoded by physically clustered group of genes called biosynthetic gene clusters

(BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of

subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in

different genetic contexts. We developed an unsupervised statistical method able to suc-

cessfully detect a large number of modules (putative functional subclusters) within an

extensive set of predicted BGCs in a systematic and automated manner. Multiple already

known subclusters were confirmed by our method, proving its efficiency and sensitivity. In

addition, the resulting large collection of newly defined modules provides new insights into

the prevalence and putative biosynthetic role of these modular genetic entities. The auto-

mated and unbiased identification of hundreds of co-evolving group of genes is an essential

breakthrough for the discovery and biosynthetic engineering of high-value compounds.
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M icrobial specialised metabolism is a rich source of high-
value and biochemically active compounds of immense
biotechnological and biomedical potential1,2. The

enzymatic pathways responsible for the biosynthesis of such
compounds are encoded by physically clustered groups of genes
called biosynthetic gene clusters (BGCs). These sometimes very
large3 genomic regions have a high modular structure at the
genetic level4,5. For instance, it has been previously observed that
certain classes of BGC share co-evolving multi-gene subclusters,
which work together as a unit for the implementation of a specific
biosynthetic function4,5. Numerous examples of such genetic
entities have been described6–19. BGCs often harbour more than
one subcluster, and can be composed almost exclusively of these
genetic building blocks, as is the case for aminocoumarins: the
groups of genes responsible for the biosynthesis of the deoxysugar
ring moiety, the aminocoumarin core and the pyrrole ring moi-
eties each form a discrete subcluster20,21. These subclusters are
not constrained to the aminocoumarins, however: the pyrrole
ring subcluster used in the biosynthesis of at least four different
end compounds20–25. All these subclusters have been detected
through the experimental characterisation of numerous BGCs
and provide a very useful benchmark when developing a method
able to automatically detect similar genetic entities. The decon-
struction of BGCs into subclusters encoding discrete chemical
moieties has been used to generate novel compounds by combi-
natorial biosynthesis26; therefore, their discovery and character-
isation is potentially a great help to synthetic biology approaches
to BGC reconstruction de novo, providing an extremely useful
tool for the biotechnology research community aiming at
exploiting the full commercial and clinical potential of microbial
metabolism. The relevance and the (evolutionary) exchange of
these modules across microbial species are still under study,
however4. Recent advances in computational biology have
allowed the identification of millions of putative BGCs27 by the
systematic analysis of DNA sequence28 using, e.g., freely available
BGC-mining tools, such as antiSMASH29, BAGEL30, PRISM31,
and ClusterFinder4. Here, we take this approach one step further:
with the intent of elucidating the relevance and exchange of
biosynthetic subclusters in the evolution of BGCs, we developed a
statistical method for the detection of subclusters. This algorithm
successfully detected 185,718 statistically significant putative
subclusters (hereafter, called modules) in 12,842 predicted BGCs
in microbial sequences from GenBank in a systematic and
automated manner. Although accurately detecting already known
subclusters, our method is able to rigorously define numerous
novel modules and provide new insights into the prevalence of
putative functional subclusters and their role in specialised
metabolite biosynthesis. The resulting library of statistically
defined modules is a rich resource for the specialised metabolite
research community. In fact, these modules could be used for the
design of BGCs that are likely to encode the biosynthesis of
molecules with novel combinations of known chemical moieties.
Moreover, these results yield an unprecedented insight into the
degree of modular organisation of the specialised biosynthetic
machinery across the entire microbial kingdom, and significantly
reduce the role played by serendipity in the initial identification of
individual modules by guiding the selection of statistically sup-
ported promising candidates through a comprehensive and
unbiased automated approach. In addition, the method described
here is able to identify strongly supported modules with currently
unknown functions. Such modules are potentially responsible for
the biosynthesis of novel chemical (sub)structures and represent
valuable guides for the targeted mining of microbial genomes for
new drug candidates. This work will also be a great asset for
cluster prediction tools such as antiSMASH29, as it can be used to
annotate predicted BGCs by suggesting which genes in a BGC

function together as discrete units in a complex biosynthetic
pathway; in addition, this module-based annotation can also help
in cluster boundary prediction.

Results
Module detection algorithm. After generating a collection of
predicted BGCs through antiSMASH29, the method relied on the
orthoMCL package v 1.432 for the annotation of specialised
metabolite Clusters of Orthologous Genes (smCOG). All the
detected smCOGs were next organised into a network where two
smCOG are connected if they share a statistically significant
number of adjacency or colocalization interactions (the evalua-
tion of the statistical significance of the number of interactions is
described in the Methods). Finally, all the fully connected sub-
graphs (i.e., cliques) found in the network were considered as
putative biosynthetic modules, this is a statistically very con-
servative approach, as it requires that all individual interactions
between module members to be highly significant. This algorithm
successfully detected 185,718 statistically significant putative
subclusters (hereafter, called modules) in 12,842 predicted BGCs
in microbial sequences from GenBank in a systematic and
automated manner. Although this is a rather large number when
compared with the number of BGCs present in our data set, it is
important to consider that the numbers appear somewhat inflated
by the common appearance of groups of nested modules, where
smaller (less specific, but statistically highly significant) modules
are contained within larger (more specific) modules in various
combinations; examples of this biologically important (and
expected) phenomenon are discussed below. More importantly,
this statistically strongly supported subset is only a tiny fraction of
the > 1034 possible modules. The method is briefly summarised in
Fig. 1, whereas a more detailed description is available in the
Methods. Given the large number of statistically significant
putative modules detected by our algorithm, a method for
ranking the 185,718 putative modules would strongly benefit
the exploration of our database. This has been achieved through
the Module Interest Benchmarking (MIB) score. After ranking
the modules according to different metrics (number of BGCs
containing the module, number of BGCs containing the module
and present in the MIBiG database, module size, strictest p-value
threshold, number of different compound classes and their
Shannon entropy, and the percentage of smCOGs members of a
specific category), the MIB score is simply computed as a
weighted sum of all ranks obtained for each module. Subse-
quently, the obtained values are rescaled over the range from 1
(least interesting) to 100 (more interesting). The default values of
the weights used are: 2 for the length of the modules (longer, and
thus more specific, being better), 15 for the Shannon entropy, 10
for the number of BGCs containing the module, 5 for the max-
imum p-value threshold, 10 for the percentage of tailoring
smCOGs, and 0 for all the remaining criteria. However, all the
weights can be adjusted by the user to increase or decrease the
contribution of each criterion in the prioritisation. A more
detailed description of the prioritisation procedure can be found
in the Methods. In order to evaluate the biological and evolu-
tionary relevance of the detected modules, we first checked for the
appearance of well-characterised and previously reported mod-
ules in our database, starting with the previously described ami-
nocoumarin subclusters20,21.

Aminocoumarin, deoxysugar, and pyrrole ring. Canonical
aminocoumarin-specialised metabolites are highly modular in
structure and comprise an aminocoumarin core moiety, which is
often decorated with deoxysugars and pyrrole rings (Fig. 2). Each
of these distinct chemical moieties is encoded by a discrete suite
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of genes, a subcluster, which appear to mix-and-match in Nature
to produce chemically diverse end compounds. Previously,
experimentally validated subclusters encoding the biosynthesis of
all three chemical moieties were detected by our bioinformatics
analysis. Figure 2 shows 3 modules that perfectly cover three well-
known subclusters that are all found both in the clorobiocin and
the coumermycin BGCs. Specifically, module M142052 (MIB
score= 60.22, number of BGCs covered= 4) covers the group of
genes responsible of the biosynthesis the deoxysugar ring present
in clorobiocin (cloM, P, T, U, V, W), novobiocin (novM, P, T, U,
V, W), and coumermycin (couM, P, T, U, V, W)20. Module
M2466 (MIB score= 68.32, BGCs= 6) targets the genes encoding
the aminocoumarin group in the clorobiocin BGC (cloI-L)
novobiocin (novI-L) and simocyclinone (simI, J1, J2, K, L)20,21.
Module M113610 (MIB score= 95.36, BGCs= 33) covers the
three-gene subcluster responsible for the biosynthesis of the
pyrrole ring in a number of different BGCs: clorobiocin (cloN3-
N5)20, prodigiosin (rphW, M, O)22, coumermycin (couN3-N5)20,
calcimycin (schN1-N3)23, indanomycin (idmI- K)24, and pyo-
luteorin (pltE-L)25.

ACP-linked PKS extender modules (hierarchy of modularity).
The previously described five-gene subcluster responsible for the
formation of methoxymalonyl-ACP, another classical example of
a functional pathway module, is covered by module M130554
(MIB score= 96.62; containing smCOG10382, smCOG10393,
smCOG10031, smCOG10236, and smCOG10154). This module
is found in a total of 28 BGCs, 12 of which are fully characterised
BGCs found in the MiBiG database33: galbonolides6,
tautomycin7,8, oxazolomycin9,10, FK52011,12, macbecin13,14,
ansatomycin13,15, geldamycin13,16, herbimycin13,16, con-
canamycin17, bafilomycin18, apoptolidin19, and nocathiacin34.
Interestingly, the group of genes noc-5–noc-9 from the noca-
thiacin BGC are unlikely to play a role in the biosynthesis of this
ribosomally synthesised and post translationally modified pep-
tide. Instead, it is more likely that, in this genetic context, module
M130554 forms part of an additional, flanking BGC within the
corresponding genome (which is yet to be completely sequenced).
Module M130554 encompasses a smaller related module,

M112949. This reduced module lacks the O-methyltransferase
(O-MT) responsible for methylation of the α-carbon hydroxyl
group (smCOG10382) and is found in a total of 73 BGCs, 15 of
which have been fully characterised, and shows a higher MIB
score than module M130554 (99.09). Interestingly, module
M112949 appears to comprise a minimal complement of genes
from which an array of unusual acyl-ACP extender units are
derived, e.g., aminomalonyl-ACP (zwittermycin A)35, alternative
routes to methoxymalonyl-ACP (chondrochloren)36 and an
unusual glycolate containing-ACP substrate (pellasoren)37. In the
case of the chondrochloren BGC, the module M112949 coop-
erates in the synthesis of methoxymalonyl-ACP despite the lack
of a discrete gene encoding an O-MT, instead the O-MT function
complemented by an enzymatic domain within the polyketide
synthase subunit cndE36 (smCOG10053). The cndE O-MT is not
part of the module as defined here, as cndE is not annotated as a
methyltransferase. This indicates how the statistically defined
modules can be used for a targeted search of missing enzymes,
redundancy within BGCs and functional gene homologues: the
observed O-MT domain fusion (smCOG10053) is common,
however, and forms part of its own module (M152817, MIB
score= 92.83) comprising module M112949 with the addition
of smCOG10053, highlighting two convergent routes to
methoxymalonyl-ACP formation. The combinatorial complex-
ities of acyl-ACPs do not stop here, however. Module M112949
covers 4 out of the 5 genes responsible for the biosynthesis of a
glycolate type extender unit in the pellasoren BGC37. All five
genes are covered by module M118907, which contains an
additional acetyltransferase, ACP and O-MT multifunctional
gene product (PelG, smCOG11537) predicted to be responsible
for the loading, tethering, and methylation of 1,3 bispho-
sphoglycerate37. Furthermore, the zwittermycin A BGC contains
a nine-gene subcluster encoding the biosynthesis of two different
acyl-ACP PKS extender units: (2S)-aminomalonyl-ACP and
(2R)-hydroxymalonyl-ACP38. This big subcluster is completely
covered by M118911 (MIB score= 87.47), which is composed of
module M112949 plus smCOG13061 (zmaJ). Deconstruction of
this subcluster shows module M112949 to comprise two ACP
genes (zmaD and zmaH, smCOG10236) and two acyl-CoA
dehydrogenase genes (zmaE and zmaI, smCOG10031) which are
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Fig. 1 Module detection algorithm. By processing the entire collection of microbial genomes considered in this study, antiSMASH predicted tens of
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orthogonal for (2R)-hydroxymalonyl- and (2S)-aminomalonyl-
ACP formation correspondingly (Fig. 3, yellow and green ORFs
respectively), a single smCOG10154 acyl-ACP dehydrogenase
predicted to be promiscous for both acyl-intermediates, and a
glyceryl-S-ZmaD synthase (smCOG10393), zmaN, specific for
(2R)-hydroxymalonyl-ACP formation. The biosynthesis of the
(2S)-aminomalonyl-ACP necessitates a dedicated seryl-AMP
synthetase, zmaJ, to load L-serine onto ZmaH. This enzymatic
domain is annotated by an alternative smCOG, therefore falling
outside of the module M112949, instead being completely cov-
ered by module M118912 (MIB score= 92.61), composed of
smCOG10031, smCOG10154, smCOG10236, and smCOG13061,
and eluding to a common small subcluster comprising
smCOG10031, smCOG10154, and smCOG10236 (M176566,
MIB score= 99.06, BGCs= 99). Figure 3 shows this representa-
tive example of the hierarchical organisation of subclusters. Sev-
eral additional known subclusters have been identified by our
method. For example, the biosynthesis of 4-methyl-3-
hydroxyanthranilic acid has been associated to module
M108999 (Supplementary Fig. 1), whereas the biosynthesis of 2,3-
dihydroxy-benzoic acid (DBHA) has been associated to module
M21869 (Supplementary Fig. 2). Moreover, the two overlapping
modules M103444 and M131293 have been associated to the
biosynthesis of 9- and 10-membered enediyne rings (Supple-
mentary Fig. 3). Finally, module M107196 and module M11279
have been associated with the biosynthesis of β-carotene and
ectoine, respectively (Supplementary Note 1).

Exploring the full collection of detected modules. As previously
mentioned, the MIB score allows us to prioritise the detected
modules by considering different criteria with different weights at
the same time. Supplementary Data 1 show a selection of the
available metrics for the modules previously discussed. It is
noteworthy that these modules show a significantly high MIB
score, demonstrating that experimentally verified modules are
strongly favoured by this prioritisation method. All the previously
mentioned modules are in the top 25% when considering their
MIB scores. According to the Fisher’s exact test, the probability of
observing this situation simply by chance is equal to p-value=
5.809 × 10−10. This increases our confidence that previously
unreported modules with comparably high MIB scores are also
biochemically interesting evolutionary units. When selecting the
examples for the discussion below, we considered only modules
with at least one hit in the MIBiG database33, thus focusing on
examples where at least some chemical information is available to
validate our interpretation, and we iteratively filtered out all the
modules containing at least one smCOG found in the modules
previously discussed (so that at each step we only consider
modules that are clearly different from modules already exam-
ined) we then selected the module showing the highest MIB score.
With the first iteration we identified the four-smCOG module
M63477 (MIB score= 100), composed of smCOG10029,
smCOG10228, smCOG10252, and smCOG10310. This fairly
common module (found in 77 different BGCs) is found in the
streptomycin BGC of Streptomyces griseus covering four genes:
argD SG7F10.54, argB SG7F10.53, argC SG7F10.51, and
argJ SG7F10.52. These four genes are encoding the enzymes
involved in the biosynthesis of L-ornithine from L-glutamate,
and are therefore undoubtedly a functionally and evolutionarily
coherent unit. In the case of the streptomycin gene cluster,
however, Module M63477 is most a likely part of a neighbouring
biosynthetic gene cluster, merged as a result of the greedy nature
of the antiSMASH detection algorithm. The wide distribution
of this module suggests that the ornithine precursor is more
widely used than previously appreciated, possibly as a precursor

to diaminopropionate biosynthesis (from ornithine and serine),
as has been suggested for the formation of stenothricin39.

The second iteration selected the module M100203 (MIB
score= 99.55, BGCs= 47), which contains three smCOGs:
smCOG10555, smCOG10642, and smCOG11025. Two of the
BGCs targeted by this module are present in the MIBiG database,
encoding the biosynthesis of A-503083 A and A-500359 A,
respectively. In both of these clusters, the module covers three
genes that are predicted to encode three subunits of a functional
carbon monoxide dehydrogenase complex with an unclear role in
biosynthesis40,41. The inclusion of this three-gene module across
a wide variety of biosynthetic pathways (Shannon’s entropy=
2.26) pinpoints these poorly characterised genes to either play a
fundamental, and not yet understood, role in specialised
metabolism, or alternatively to result from greedy BGC prediction
in a similar fashion to module M63477. In either case this group
of genes deserves closer experimental evaluation.

The third iteration highlighted the module M80260 (MIB
score= 99.47) as an interesting candidate. This module contains
smCOG10066, smCOG10118, and smCOG10495 and is found in
58 BGCs. This module targets three genes in three fully
characterised modules: R1128 (zhuF, D, E), polyketomycin
(pokAC1, AC2, AC3), and xantholipin (xanB3, B1, B2). This
three-gene module appears to be encoding the biosynthesis of
malonyl-CoA14,42,43. Surprisingly, this module has a rather high
Shannon entropy (1.96), and not all of the BGCs are predicted to
be involved in polyketide biosynthesis. For example, the module
is found in clusters putatively responsible for the biosynthesis of
non-ribosomal peptides, terpenes, ectoines, and bacteriocins.

Module M105700 (MIB score= 99.01, BGCs= 47) is the next
module selected with this procedure. This module targets only
one BGC present in the MIBiG database, which encodes the
biosynthesis of the polyketide tetronasin44. The module contains
three smCOGs: smCOG10139 (covering the tsn3 gene),
smCOG10264 (tsn1/tsn2), and smCOG10631 (tsn4), which
encode enzymes similar to the components of pyruvate
dehydrogenase and related multi-enzyme complexes; whether
these have a role in boosting the supply of acetyl-CoA precursors
for specialised metabolite biosynthesis has not been demon-
strated, but seems plausible.

The next module selected by our procedure is module
M156303 (MIB score= 98.67, BGCs= 31). Interestingly, this
novel three-smCOG module (smCOG10062, smCOG10123, and
smCOG10687) is found in 15 clusters present in the MIBiG
database: landomycin (lanT, Q, S)45, granaticin (gra-orf23, orf26,
orf27)46, sch47554/sch47555 (schS1, S3, S2)47, rubradirin (rubN3,
K, L, N4)48,49, spinosad (spnN, R, Q, O)50, lactonamycin (lct44,
45, 46)51, kijanimicin (kijD10, D2, D7, D1)52, tetrocarcin A
(ACB37729.1, ACB37732.1, ACB37737.1 and ACB37754.1)53,
polyketomycin (pokS4, S5, S3)42,54, streptolydigin (slgS4, S6, S3)
55, pristinamycin (cpp28, hpaA, cpp32)56, nocathiacin (nocS4, S6,
S5)34, BE-7585A (bexQ, T, V)57, and amicetin (amiD, N, C)58. In
all cases, this module appears to be involved in sugar
modification/biosynthesis. The biochemical details of their
function have not been fully elucidated in any of these cases,
but the modularity analysis will facilitate a comparative approach
to understanding their action. Module M156303 is just one
example of a large number of sugar-related modules of high
statistical support, highlighting the pervasive modularity of sugar
decorations in specialised metabolite biosynthesis, which could be
the target of a more detailed evolutionary and biochemical
evaluation in the future.

Finally, our procedure selected module M134122 (MIB score=
97.33, BGCs= 20) for further discussion. This module, which is
composed of smCOG10818, smCOG11294, smCOG12468,
and smCOG12628, targets two BGCs present in the MIBiG
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database: kanamycin (BAE95427.1, BAE95426.1, BAE95429.1,
and BAE95428.1)59,60 and tallysomycin (orf35–37)61. The genes
covered by module M134122 code for the subunits of nitrate
reductase (α, β, γ, and δ chain) and have no known role in the
biosynthesis of specialised metabolites. They represent a true
(functional) module, but play their role in primary, rather than
specialised metabolism. Nevertheless, the fact that this module is
found with such high statistical support in the close neighbour-
hood of many BGCs might provide relevant information about
the genetic context in which these BGCs are situated, and
potentially the physiological context in which they are activated62.
Importantly, this example also illustrates that our module

detection method could be of more general value beyond
specialised metabolism.

The first six modules prioritised using our iterative procedure
are summarised in Supplementary Data 2. It should be
emphasised that the biological roles suggested for these modules
are purely based on plausibility arguments, but experimental
validation will be required in each case to establish their precise
functional relevance. Exploring the whole collection of putative
functional biosynthetic modules detected by the method
presented here will take a community effort and is beyond the
aims of this work. The modules described above illustrate the
power of the statistical detection and definition of putative
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biosynthetic modules, and the database provided will be a helpful
resource for the whole community to explore further.

Discussion
In this work, we present a statistical method to automatically
detect putative functional (and evolutionary) modules in BGCs.
The fact that the method is unsupervised makes it powerful in
associating genes that may have not been associated before by
looking at individual gene clusters. For the future, a key next step
will entail correcting for phylogenetic bias in the input data (i.e.,
having many similar gene clusters from closely related genomes),
which currently can lead to the detection of artificial modules
(although the Shannon entropy score (see Methods) can be used
to down-rank such artefacts). This could be done either by per-
forming additional redundancy filtering on the input data, or by
correcting for phylogenetic structure in the statistical tests (which
would of course increase the computational demands even more).
Nonetheless, the obtained library of automatically predicted
modules allows the efficient definition of BGCs that are likely to
encode the biosynthesis of molecules with novel combinations of
known chemical moieties. Moreover, strongly supported modules
with currently unknown functions can be identified in our data,
which potentially are responsible for the biosynthesis of discrete
and novel chemical (sub)structures. In addition, the whole col-
lection of automatically detected modules will help understand
the degree of modularity in the organisation of microbial BGCs,
and it will provide useful tools to be used in conjunction with
other screening modalities for drug discovery by genome mining.
For example, this work will also be a great asset for cluster pre-
diction tools such as antiSMASH29, as it can be used to annotate
BGCs by predicting, which genes in a BGC function together as
discrete units in a complex biosynthetic pathway, i.e., the ene-
diynes (see Supplementary Note 1), and can also help in cluster
boundary prediction. In the future, we intend to integrate the
module library with public web services such as antiSMASH29,
antiSMASH database63,64, and MIBiG33. In this context, it is
noteworthy that the MIBiG database already allows users to
upload chemically characterised subclusters.

Methods
Data acquisition. All the available bacterial and fungal genomic sequences were
obtained from GenBank (access date 08 October 2012). We used antiSMASH
version 1.065 to detect all BGCs in this set of genomes, resulting in a collection of
482,040 genes in 14,869 BGCs.

Cluster trimming. The boundaries of BGCs reported by antiSMASH65 are
expanded to include genes neighbouring the actual biosynthetic cluster in order to
assure that the complete genomic entity is extracted. This greedy approach is a
rational choice for molecular biology purposes, but would result in extra compu-
tational burden in our downstream analysis. To minimise this problem, we ana-
lysed the data set with ClusterFinder4 to obtain the most probable cluster borders,
based on each cluster’s constituent PFAM domains. We shortlisted PFAM domains
that are important for specialised metabolites (Supplementary Data 3) and trim-
med genes from the extremes of each of the clusters if their probability of having a
PFAM domain from the list was lower than 0.1. The threshold value was selected
based on the observation that increasing the threshold up to 0.1 resulted in more
genes being trimmed out, whereas any further increase (up to 0.5) had hardly any
effect. Trimming removed 135,298 genes from the set. The trimmed data set
consisted of 346,742 genes in 14,809 BGCs.

Clusters of orthologous genes. A set of smCOGs was constructed from all genes
in the set of BGCs using the orthoMCL v 1.4 package32 with standard settings.
OrthoMCL analysis resulted in 19,292 smCOGs. From this set, we removed
smCOGs having fewer than three genes, resulting in 12,756 smCOGs. We also
removed 45,906 genes that did not belong to any of the remaining smCOGs. This
left us with 211 BGCs that were empty (i.e., did not include any gene belonging to
any smCOG), further narrowing the data set down to 300,612 genes in 14,598
BGCs. In order to reduce redundancy, if two or more clusters showed the same
smCOG composition (regardless the order), we only kept the shortest one, nar-
rowing the data set down to 12,842 non-redundant BGCs. Subsequently, we

annotated the smCOGs based on the annotation of the genes they contain. For this
purpose, we divided the annotations of individual genes into five major categories:
core biosynthesis, regulator, tailoring, transport, and other. This taxonomy is
described in more detail in Supplementary Data 4. Each smCOG was annotated:
(1) if > 60% of genes from a smCOG share the same annotation category, this
category was used a main annotation of the smCOG with exception of (2) if the
most common category is other but the second most frequent one occurs in > 40%
of genes, the second category was used; (3) if the most common category is present
in < 60% of genes but first and second most common categories are together
present in > 75% of the genes the smCOG was annotated with a double category
(e.g., tailoring/core); (4) otherwise, the smCOG was annotated as mixed. Exact
descriptions of all smCOG annotations are available in the Supplementary Data 5.

Interactions between smCOGs. A putative module is defined as a set of smCOGs
of any size found in more BGCs than expected by chance. Considering all the
12,842 different smCOGs present in our data set, the number of possible modules
is enormous, even if the size of a module is constrained to be between three and ten
genes:

X10
n¼3

12842

n

� �
ffi 3:35 ´ 1034 ð1Þ

Handling such an enormous number of potential modules represents a very
complex computational challenge. To address this issue, we focused on the pairwise
interactions between different smCOGs, i.e., the detection of smCOGs that co-
occur surprisingly often within the same BGCs. In practice, we distinguished
between two types of interactions: adjacency, when two smCOGs appear side-by-
side in a BGC, and colocalization, when they are found together within the same
cluster independently of their relative position. Adjacency and colocalization
interactions were counted for each possible pair of smCOGs. Genes in the BGCs
that did not belong to any of the smCOGs did not contribute to the number of
interactions, but their positions were not skipped; i.e., a smCOG neighbouring two
genes that did not belong to any smCOG would be counted as having no adjacency
interactions in this cluster.

Assessment of statistical significance of interactions. Considering two
smCOGs sharing N adjacency or colocalization interactions, one can assess the
statistical significance of such interactions by computing the probability of
observing at least N interactions between the two COGs, if they were randomly
distributed among the clusters present in our data set. Although easy to state, this
calculation is far from trivial computationally, and tackling it with a permutation-
based approach would be too computationally demanding. However, for both
kinds of interactions, it is relatively easy to compute the probability of observing at
least N interactions, keeping fixed the positions of one of the two smCOGs in our
data set. Using this approach, it is possible to obtain two (different) p-values per
each pair of smCOGs, depending on which of them is considered as fixed. Aiming
for the most conservative approach, we considered only the larger of the two p-
values when determining the statistical significance of an smCOG interaction in the
subsequent analysis.

Adjacency interactions. Consider a pair of smCOGs (called COG A and COG B)
that occur adjacently at least once. If we keep all genes annotated as belonging to
COG A in their original positions, one could divide all the remaining positions in
the BGCs into three classes: (a) positions that are not adjacent to any COG A gene;
(b) positions adjacent to one COG A gene; and (c) positions adjacent to two COG
A genes. Na, Nb, and Nc represent the number of available positions in each of these
three classes. The total number of adjacency interactions between the two COGs is:

iorig ¼ Bb þ 2 � Bc ð2Þ

where Bb represent the number of COG B genes occupying a position adjacent with
one COG A genes and Bc represent the number of COG B gene occupying a
position adjacent with two COG A genes. The number of COG B genes occupying
a position not adjacent to any COG A gene is indicated as Ba. It should be noticed
that the same number of interactions can be observed with more than one dis-
tribution of the COG B. The probability of observing one specific distribution d
(i.e., a specific set of values for Ba, Bb, and Bc) when the COG A genes are fixed and
the COG B genes are randomly distributed among all the available positions is
expressed by the following hypergeometric equation:

PD ¼
Na

Bb

� �
Nb

Bb

� �
Nc

Bc

� �
Ntot

Btot

� � ð3Þ

where Btot and Ntot represent the total number of COG B genes present in the data
set and the total number of available positions. The probability of observing at least
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iorig adjacency interactions (i.e., the p-value) can be easily computed as:

p ¼ Pi�iorig
¼ 1� Pi<iorig ¼ 1�

X
D

Pd ð4Þ

where D represent the set of all the possible combinations of Ba, Bb, and Bc, leading
to a number of interactions lower than the observed one.

Colocalization interactions. The calculations for the colocalization interactions
are analogous to those described for the adjacency interactions. However, the
number of gene classes is not limited to three, but to the maximum number of
occurrences of COG A genes in a single cluster (nmax):

PD ¼

Na

Ba

� �
Nb

Bb

� �
� � � Nnmax

Bnmax

 !

Ntot

Btot

� � ð5Þ

This creates a computational problem whenever nmax is large. In order to avoid this
problem, we removed such redundant smCOGs for the colocalization calculations:
when genes from the same smCOG are found more than once in a cluster, they are
substituted by an empty position and the genes from the affected smCOG are attached
at the end of the cluster separated by an empty position from the rest of the cluster.
Althoughthis approach deletes some adjacency interactions and slightly changes the
topology of some clusters, it leads to conservative p-value estimates and, most
importantly, makes the p-value computations easier, as equation 5 simplifies to:

PD ¼
Na

Ba

� �
Nb

Bb

� �
Ntot

Ntot

� � ð6Þ

All the p-values computed for both kinds of interactions were corrected for
multiple testing using the Benjamini–Yekutieli method66 for controlling the false-
discovery rate under dependency.

Module detection. The obtained multiple-testing corrected p-values were used for
detecting putative modules. By selecting an initial arbitrary p-value threshold for
significant interactions, it is possible to compute a binary matrix M of dimension
(C × C), where C is the total number of smCOGs present in our data set, and themi,j

element of the matrix is equal to 1 if either the adjacency or the colocalization p-
value is lower or equal to the chosen threshold. This matrix represents an undir-
ected graph, where two smCOGs (nodes) are connected by an edge if they share a
statistically significant number of adjacency or colocalization interactions. All the
maximal cliques found in this graph and containing at least three elements are
detected and added to our list of putative modules. A maximal clique is a fully
connected sub-graph, where connections are based on either significant adjacency
or significant colocalization, which is not a subset of any other fully connected sub-
graph. All p-values occurring in the data set smaller or equal to 0.1 are iteratively
considered as the arbitrary p-value threshold. The graph analysis and the maximal
clique detection was performed using the igraph package67. Using this approach, we
ended up with a total of 197,564 putative modules. It is important to remember that
each three-member module is supported by three individually significant interac-
tions, and that depending on the intended use case, stricter p-value thresholds can
easily be applied to reduce the number of modules for further analysis. Although a
rigorous estimation of the false discovery rate associated with our module detection
method is not provided, we considered all the modules found together in less than
two BGCs as false positives. Such modules represent ~ 6% of all the detected
modules and they have been removed from our database.

Modules prioritisation and trimming. A number of different metrics were
computed for each detected module in order to prioritise and filter them according
to user-defined criteria:

● Number of BGCs containing the module. As the modules are defined on the
basis of individual pairwise interactions between smCOGs, it is possible that all
pairwise interactions between members of a module are significant, even when
the complete module never occurs together in the same BGC. To remove such
spurious modules, we removed ~ 6% of the detected modules that were found
together in less than two of the BGCs, resulting on a total of 185,718 modules.

● Number of BGCs containing the module and present in the MIBiG data set. The
MIBiG data set of experimentally characterised BGCs33 was queried in order to
identify which of the BGCs present in our data set have been associated with
experimental data. For these clusters, the enzymatic pathway is at least partially
defined and the chemical structures of the end compound known.

● Module size. The size of the detected modules (i.e., the number of smCOGs)
ranges from 3 (minimum value allowed by the module detection algorithm) to

a maximum of 42 (the largest maximal clique using the most lenient
interaction threshold). In total, 80% of modules are smaller than 16 smCOGs,
the median size is 9, and the most likely value is 3. Very large modules are in
fact typically entire BGCs, rather than biosynthetic modules (subclusters), and
are therefore usually not of interest for the subsequent analysis (although they
obviously are modules in the sense of being coherent evolutionary entities, the
detection of which confirms the validity of the module detection algorithm).

● Strictest p-value threshold. While detecting the modules, a different p-value
threshold is chosen at each iteration. For each module, it is possible to identify
the strictest p-value threshold that can be used to detect it. This value can be
considered as a measure of the overall statistical significance of the module.

● Number of different compound classes and their Shannon entropy. While
looking for putative BGCs, antiSMASH is also predicting the chemical class of
the end compound. Using this information, we can focus specifically on
modules that occur in clusters responsible for the most diverse set of predicted
compound classes—these are the most likely to be responsible for carrying out
well-defined chemical functions and to act as independent evolutionary units.
To accurately estimate the diversity of compound classes covered by the BGCs
containing a specific module, we used Shannon’s informational Entropy (SE),
which is computed as follows:XI

i¼1

fi � logðfiÞ ð7Þ

where fi is the ratio between the number of times the module is
involved in the biosynthesis of the ith compound class and the
total number of BGCs containing the module, and I is the total
number of different putative end compound classes produced by
these BGCs. The higher the SE, the larger is the number of
targeted compound classes, and the lower the bias toward one or
more compound classes.

● Percentage of smCOGs members of a specific category. As mentioned above,
all smCOGs were annotated according to functional categories (e.g., transport,
tailoring, core biosynthesis etc.). For each module, we computed the
percentage of each functional category. Using this information, we can, for
example, focus on modules composed only or mostly of tailoring smCOGs
(again, these are most likely to represent evolutionary units of interest).

For the overall prioritisation, we used a weighted combination of all of these
metrics, the MIB score. This score is simply computed as a weighted sum of all the
ranks obtained considering each metric individually. Subsequently, the MIB scores
obtained are rescaled over the range from 1 (least interesting) to 100 (most
interesting). Depending on the user particular interest, the weights can be adjusted
to increase the contribution of individual criteria to the overall prioritisation. The
default values of the weights used in the subsequent discussion are: 2 for the length
of the module (longer, and thus more specific, being better), 15 for the Shannon
entropy, 10 for the number of BGCs containing the module, 5 for the maximum p-
value threshold, 10 for the percentage of tailoring smCOGs, and 0 for all remaining
criteria.

Code availability. The code used for the p-value evaluation, module detection, and
metrics computation was written in R68 with the use of the igraph67 and Rmpfr69

packages, and it is available at https://github.com/francescodc87/Modules_Detection
together with a detailed documentation.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete data set is available at https://github.com/francescodc87/Modules-explorer
together with a Shiny-based70 web application, which provides users with a simple
graphical interface to explore the data set containing all the detected modules. A detailed
documentation is present the github pages. In addition, all the supplementary material
mentioned in the manuscript can be also found at https://github.com/francescodc87/
Modules_Detection/tree/master/Supplemetary_Files.
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