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Quantitative analysis of plant ER architecture
and dynamics
Charlotte Pain 1, Verena Kriechbaumer 1, Maike Kittelmann 1, Chris Hawes 1 & Mark Fricker 2

The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed

of interconnected tubules and sheets (cisternae) that forms the first compartment in the

secretory pathway involved in protein translocation, folding, glycosylation, quality control,

lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this

plethora of biosynthetic, metabolic and physiological processes, there is little quantitative

information on ER structure, morphology or dynamics. Here we describe a software package

(AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional

fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and

dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics.

We validate the method against manually-traced ground-truth networks, and calibrate

the sub-resolution width estimates against ER profiles identified in serial block-face SEM

images. We apply the approach to quantify the effects on ER morphology of drug treatments,

abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
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Much of our understanding of the structure, function
and dynamics of the endoplasmic reticulum (ER) in
plants has come from live-cell imaging of the ER in

epidermal cells using video-enhanced microscopy or after label-
ling with fluorescent dyes1–3, or expression of transgenic repor-
ters, such as GFP-HDEL4–7. Typically labelled ER is visualised
in paradermal optical sections using confocal microscopy
where the ER is constrained to an almost planar structure by the
thin layer of cortical cytoplasm underlying the periclinal cell
wall5. In general, the cortical ER forms a complex dynamic
polygonal network of membrane-bounded tubules and flattened
sheet-like cisternae that ramify throughout the cytoplasm8–10.
However, the morphology of the tubules, the size and shape of
the cisternae, and the proportion of tubules to cisternae varies
during development6,10–12, and under different experimental
treatments7,13. For example, over-expression of members of
the reticulon ER-shaping protein family14–18, causes constrictions
along the length of the tubules, and can convert cisternae to
tubules16. Likewise, the morphology of the cisternae is affected by
proteins, such as Lunapark 1 and 2, that can induce cisterna
formation19, and drug treatments, such as Brefeldin A (BFA)13,
which can vary the size and abundance of cisternae. The cisternae
may not be simple uniform compartments. Thus, early in plant
development the cisternae form large sheets punctuated by
fenestrations6,20, while in animal cells the distribution of ER
lumen and tubule markers across cisternae fluctuates during
live cell imaging, suggesting that cisternae may result from
local appression of multiple tubules, resulting in a sub-resolution
tubular matrix with internal spaces that can only be resolved with
super-resolution techniques21.

Quantitative measurements are further complicated in plants,
as the ER network is highly dynamic, with rapid bulk streaming
along actin cables, localised tubule extension, shrinkage, sliding
and breakage, and expansion, contraction, reshaping and
movement of cisternae3,8,10,22. While the velocity of discrete
structures, such as the plant Golgi, can be readily quantified by
tracking algorithms22,23, alternative approaches based on
optical flow24, are required to estimate velocities for the ER. For
example, local cross-correlation of small image patches was
used to estimate ER movement between frames25, and reported
the maximum velocity around 1–2 µm s−1. The maximum speeds
in the thicker cytoplasmic strands running deeper into the
cell range from 4 to 10 µm s−1 3,26, similar to the maximum
speeds for other organelles22. Motility of the ER is also dependent
on cell type and developmental stage, and typically increases
during cell expansion20.

In addition to the highly dynamic movement, the plant ER
network also has a subset of static elements, such as ER-plasma
membrane contact sites (EPCS), that act as fixed anchors to
stabilise the polygonal network27. These features are visible at
the electron microscopy (EM) level28 and have been characterised
with nanometre resolution using TEM and electron tomo-
graphy12. They have been identified in living cells using persis-
tency analysis5,29–34, and following manipulation using optical
tweezers22,29,35. Increasing the expression of certain proteins,
such as VAP27 and SYT1, modulate the number and size of
EPCS, and also affect the stability of the ER network27,33,34.

Overall it is clear that, a complete description of the ER should
include metrics quantifying morphology, persistency and
dynamics. However, previous quantitative morphological mea-
surements of relative volumes of cisternae and tubules in plants
have been made in fixed tissue using stereological analyses of
EM images36,37. More recently, EM tomography and 3-D
reconstruction have been used to analyse ER structure in yeast
cells38, and in cultured mammalian cells using fluorescence and
serial block face SEM39. However, measurements of dynamics

require living tissues, and live cell imaging techniques. This
presents a further challenge as the width of the ER tubules is
expected to be 30–50 nm[9], which is below the resolution of
standard confocal microscopes. Super-resolution techniques,
such as stimulated emission depletion microscopy (STED), have
been used to resolve structures on this scale, but are not yet
routinely available nor compatible with dynamic imaging of
ER movement40. Nevertheless, the width of the ER can be
estimated from the labelling intensity, assuming the relevant
marker is evenly distributed within the lumen, there is a linear
relationship between fluorescence intensity and volume, and the
tubule is fully contained within the point-spread-function (psf)
of the microscope41,42.

In addition to metric-based morphological measurements,
topological measures of the ER network structure have been
made from a graph representation of the network, where nodes
represent junctions or free ends, and edges represent the inter-
connecting tubules14,30,32,42,43. Unlike morphological measure-
ments, graph–theoretic measures reflect the connectivity of the
ER, rather than the physical size of the components. They are
therefore insensitive to errors in tubule width, but are critically
dependent on extraction of a correctly connected network43.

Given the wealth of information needed to characterise
the structure and dynamics of the ER, and how these change
with experimental treatments, we sought to develop an inte-
grated analysis platform that combined existing measurement
approaches into a coherent framework to provide complete
quantitative information suitable for statistical evaluation. It
is also important to enable rapid, medium throughput analysis
to handle sufficient numbers of images to describe the variability
present even within wild-type ER measurements. Here, we
use a Zeiss 880 AiryScan confocal microscope to provide semi-
high-resolution imaging of dynamic ER structures. The Analy-
zER program then automatically quantifies (i) the length, width,
morphology and protein distribution along ER tubules; (ii) the
degree and branch angles at junctions (nodes) in the tubular
network; (iii) the size, shape, and protein distribution in cis-
ternae and around the perimeter of the cisternae; (iv) the
topological organisation of the tubular and cisternal network
determined using graph–theoretic metrics; (v) the distribution
of immobile nodes, tubules and cisternae using persistency
mapping; (vi) the local speed, direction, coherence, divergence
and curl of movement of tubules and cisternae using optical
flow; and (vii) the size and shape of the polygonal regions
enclosed by the network.

The AnalyzER package is implemented in MatLab® (www.
Mathworks.com) and available as a MatLab® app, or as a stan-
dalone package. It incorporates our previous tubule morphology
analysis program42, that was used to quantify tubule to analyse
constrictions in the ER network caused by reticulon over-
expression14, but extends the analysis to quantitation of all
aspects of ER structure and dynamics for multi-channel 4D time-
series. The software package, manual, tutorial and test data sets are
available from the Oxford Research Archive (ORA) (https://ora.
ox.ac.uk/objects/uuid:cb0e2845-2a9c-495a-84f0-4dd2c5164463).

Results
Segmentation of tubules and cisternae. All aspects of the ana-
lyses are handled through a single graphical user interface (GUI)
to provide an integrated platform (Supplementary Fig. 1). The
analysis approach is illustrated for transient expression of the ER
lumenal-marker GFP-HDEL in leaf epidermal cells of Nicotiana
tabacum (Fig. 1a). The ER is typically segmented from confocal
optical sections using an intensity-based threshold to give a
binary image, often using Otsu’s method43–45. However, a global
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threshold excludes dimmer structures if it is set too high, or
expands and fuses adjacent bright regions if it is set too low43.
This is particularly problematic when the width, and hence
intensity, of the tubules varies, for example, when analysing the
effects of ER shaping proteins14,42. Segmentation of other biolo-
gical network structures, including blood vessels46, leaf veins47,
neurons48, and fungal mycelia49 use filters to highlight tubular

structures based on local image gradients. However, these
approaches tend to fail at junctions and also retain a significant
component of the original image intensity, making subsequent
thresholding challenging. Thus, we have used intensity-
independent phase-congruency analysis over a range of scales
and orientations to provide additional tubule enhancement and
subsequent robust segmentation50–52.
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Tubule enhancement using the local weighted mean phase
angle from phase-congruency analysis highlighted ridge-like
elements, such as tubules, independent of their intensity (Fig. 1b),
and ensured robust segmentation, even of tubules with low
fluorescence, using subsequent hysteresis thresholding and
thinning to give a single-pixel-wide skeleton (Fig. 1c). Sheet-like
cisternae, regions of closely appressed tubules21, or tubule/
cisternal aggregates in moving streams were segmented indepen-
dently using morphological opening (erosion followed by
dilation) to remove the tubules5. The cisternal boundary was
refined using active-contours to shrink the segmented region
back onto the cisternal perimeter (Fig. 1c). The resulting objects
were filtered to be above 0.3 µm2, chosen to match the size of
persistent puncta that are associated with immobile scaffold
sites5. These puncta, although larger than the average junction
in the network, were not considered as cisternae, but were
included in the tubular network analysis as nodes. The other
classes of non-tubular objects were not distinguished by
morphology at this stage, but were classified using a combination
of other features, such as speed and texture (see later). Completely
enclosed polygonal regions within the ER network were also
segmented from the complement of the combined tubule skeleton
and cisternae (Fig. 1d).

We tested the accuracy of the automated segmentation against
a set of manually-determined ground-truths using
precision–recall analysis (Fig. 1e). Pixels matching the ground-
truth were coded green, false positives coded blue and false
negatives coded magenta, with a tolerance of half the minimum
tubule diameter. In general, the automated extraction worked
well for the central portion of any network (Dice Similarity
Coefficient, F1= 0.94 ± 0.019, mean ± s.e.m, n= 5), but there was
more ambiguity at the margins where signals declined as the
ER network moved out of focus following the curvature of
the periclinal cell wall. To reduce these errors, we introduced
additional masking around the boundary of the ER region using a
contraction of the convex hull onto the irregular boundary,
followed by erosion by 4–6 pixels to exclude low-level fluorescent
structures on the periphery. The masked region was also used
to define the area analysed for density-based measurements.

Estimation of tubule width. The initial estimate of the tubule
width at each pixel in the skeleton was determined by granulo-
metry techniques through a series of opening and closing
operations with disk-shaped elements of increasing radii51. This
builds up an intermediate (x,y,s) image, where s is the result of
opening and closing at scale, s, which effectively maps the
intensity of successive adjacent pixels back onto the skeleton in
each layer in the (x,y,s) image. The result is an intensity profile
normal to the tubule in s for each pixel in the skeleton. The width
of each tubule was estimated from either the position of the

maximum (negative) gradient of the granulometry curve, or
the integrated intensity under the curve as a measure of the
relative amount of probe present locally (Fig. 1f). The actual
width of tubules and cisternae were determined independently
from ER profiles in transverse sections using serial-section
block-face SEM (SBF-SEM) of Arabidopsis leaf tissue stained
with zinc-iodide-osmium tetroxide (ZIO), and subsequent
reconstructions with 90° rotation to give a planar view of the
cortical ER (Fig. 1g, h). The average ER width from these mea-
surements (40.51 ± 0.82 nm, mean ± SD, n= 1, 25 technical
repeats) was used to calibrate the integrated granulometry
intensity values using an idealised microscope psf53, and the
average fluorescence intensity from a cisternal sheet as an internal
reference to standardise the intensity of fluorescence from a
unit volume of ER.

Conversion from a pixel-skeleton to a graph representation.
The single-pixel skeleton was converted to a graph representation
with nodes at junctions, including puncta, and free ends,
connected by edges (Fig. 1i, j). Each edge was associated with a
vector of properties, including the length (Fig. 1i), and average
width for the segment excluding the node regions (Fig. 1j),
speed and persistency (see below). Likewise, each node was
associated with a vector of properties including the node
degree, branch angles between the incident tubules, speed and
persistency (see below).

The cisternae were represented in the network graph as a single
central node connected to each of the tubules incident on the
boundary (e.g. Fig. 1l). A vector of properties was also associated
with each cisterna, with selected values overlaid on the image.
In the case of Arabidopsis and other members of the order
Brassicales, segmentation and analysis of cisternae are complicated
by the presence of fusiform bodies within the ER54–57 that are
strongly labelled by GFP-HDEL56,58. While the fusiform body can
be segmented and quantified using automated image analysis59,
their presence has previously hindered segmentation of the
surrounding ER network itself (Fig. 1k). Here, by partitioning
the intensity histogram into multiple categories, typically 3 or 4,
an appropriate threshold was selected automatically to extract the
cisternae around the fusiform bodies (Fig. 1l). Cisternae contain-
ing fusiform bodies were easily identified later as their properties
were significantly different from other cisternae. For example, in
this image the maximum intensity for all cisternae was 0.21 ± 0.01
(mean ± SD, n= 16), compared to 0.82 for the cisterna with the
fusiform body (Fig. 1m).

Analysis of ER-shaping proteins and tubule morphology. The
default measurement of tubule width in the network graph
returned an average along each tubule, excluding the overlap at

Fig. 1 Automated ER network analysis. a Analysis of a single tobacco leaf epidermal cell expressing the ER lumenal marker GFP-HDEL from a single
paradermal optical section; b phase congruency enhancement of tubular elements using the local weighted mean phase angle; c hysteresis thresholding
and thinning to produce a single pixel skeleton (green), and segmented cisternal structures (magenta with white boundary) following opening and active
contour refinement; d polygonal regions pseudo-colour coded by log10 area; e comparison of the skeleton with a manually digitised ground truth (cisternae,
black; true positives, green; false positives, blue; false negatives, magenta); f tubule width estimation using integrated granulometry; g A 3D reconstruction
of the ER from an Arabidopsis leaf epidermal cell captured by SBF-SEM after zinc-iodine-osmium (ZIO) staining; h Enlargement of an SBF-SEM cross-
section highlighting elements of tubular ER in green and cisternae in magenta, with a zoomed inset image (scale bar= 1 µm); i, j Graph representation
of the ER network, with nodes at junctions linked by edges with a vector of properties including tubule length (i) and average width, excluding junctions (j).
All scale bars= 5 µm, unless stated otherwise. k Arabidopsis plants stably expressing GFP-HDEL show high-intensity fluorescence concentrated in a single
fusiform body within the ER; l segmentation of the cisterna containing the fusiform body using the lowest of multiple partitions of the image intensity
histogram, with superimposed pixel skeleton colour-coded by width; m the maximum intensity value (magenta) is associated with a unique cisternal
ID (green) which can be used to identify cisternae associated with fusiform bodies enabling separate quantification of their properties and behaviour.
Scale bars= 2 µm
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junctions (e.g. Fig. 1j). However, the intensity of luminal or
membrane markers fluctuated along the length, indicative of
changes in the (sub-resolution) width. Furthermore, the number,
size and distribution of these bulges and constrictions altered
during over-expression of ER-shaping proteins, such as reticu-
lons14–17. To quantify these effects, the change in morphology
along each tubules was analysed using the network graph to
extract an intensity trace, integrated normal to the tubule axis, for
both a GFP-HDEL luminal marker and an Arabidopsis RFP-
tagged reticulon1 (Fig. 2a). The method used a peak-finding
algorithm to identify the peaks along the intensity profile,

excluding the nodes, above a minimum height and sufficiently
distinct from neighbouring peaks. The intervening troughs were
defined similarly as peaks on an inverted intensity profile. These
corresponded to bulges and constrictions, respectively, for the
lumenal GFP-HDEL marker. Over-expression of RFP-RTN1
reduced the cisternal area and caused extensive constrictions
along the ER tubules, with the lumenal GFP-HDEL marker
restricted to discrete bulges. Analysis of the morphology for all
tubules quantified the properties of the bulges and constrictions
for GFP-HDEL and the degree of (negative) correlation with the
distribution of the RFP-RTN1 (Fig. 2b). This can be seen clearly
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Fig. 2 ER tubule morphology analysis. a A merged two-channel confocal optical section following transient over-expression of RFP-RTN1 (magenta) and
GFP-HDEL (green) in tobacco leaf epidermal cells. b Automatic measurement of peaks and troughs for both RFP-RTN1 (left justified labels, peaks in
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from the trace along a single tubule (Fig. 2c), between the yellow
arrows shown in (Fig. 2a), where accumulation of RFP-RTN1
(magenta) caused a reduction in GFP-HDEL (green). In general,
bulges in GFP-HDEL occurred every ~1 µm and peak intensity
and width were not statistically different in the presence or

absence of RFP-RTN1 (Fig. 2b, c). However, the troughs (con-
strictions) were significantly dimmer and thinner (Fig. 2d).
Likewise, where two or more constrictions occurred on a single
tubule, their separation was slightly, but significantly, increased
in the presence of RFP-RTN1, leading to an overall reduction in
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trough density. In the dual-labelled data, the ratio of intensities
between the two channels at a bulge confirmed the anti-phase
relationship between RFP-RTN1 localisation and GFP-HDEL
distribution (Fig. 2c, d). Conversely, peaks in RFP-RTN1 locali-
sation were associated with thinner tubules. The dual-labelling
approach also confirms that the changes in GFP-HDEL intensity
resulted from RFP-RTN1, not movement of the ER tubule out
of the plane-of-focus.

Mapping the localisation of proteins in cisternae. Members of
the reticulon family are also required along the periphery of the
cisternae to induce curvature9,38,60, while other proteins, such as
Arabidopsis Lunapark 1 and 2, are suggested to maintain or
induce the sheet-like structure19. Previous descriptions of protein
localisation have been essentially qualitative, but these distribu-
tions can also be quantified. For example, following co-over-
expression with RFP-LNP1, GFP-HDEL (Fig. 3a) was restricted
to the perimeter of the cisternae (Fig. 3b, c), which resulted in a
peak in the average intensity transect normal to the cisternal
boundary (Fig. 3g). This was not due to non-specific crowding,
as it was not observed with co-expression with RFP-HDEL as
a second lumenal marker (Fig. 3d–f), where both markers showed
identical profiles (Fig. 3h). Small flecks of GFP-HDEL were
observed within the main sheet-like regions. These may arise
from local bulges of the lumen within the sheet with a lower RFP-
LNP1 density, or indicate accumulation along the cisternal
perimeter around sub-resolution spaces21, that may reflect the
collapsed remnant of a previous polygonal region that has not yet
undergone homotypic fusion6,61.

Texture-based analysis of cisternal sub-structure. Quantifying
sub-resolution spaces21 or fenestrations6 within cisternae or
discriminating cisternae from a raft of appressed tubules, is
challenging in living systems without recourse to super-resolution
microscopy. Nevertheless, the different types of tubule and cis-
ternal organisation predicted should leave a statistical imprint
on the fluorescent intensities within the sheet-like regions, visible
as a change in texture. Texture analysis has been widely used
in medical imaging to identify features and patterns, often as
inputs to machine-learning classifiers62. We therefore included
a set of four standard orthogonal texture metrics (contrast, cor-
relation, energy and homogeneity) calculated from a symmetric
grey-level co-occurrence matrix (GLCM)63,64, to describe the
spatial distribution of intensities in each cisterna. The GLCM
represents the pair-wise comparison of intensity values between
each pixel and its neighbours at fixed geometric positions to give a
joint probability distribution63,64. Thus, a completely homo-
geneous image would have a single entry on the diagonal of the
GLCM. Noise causes non-zero entries to spread along and away
from the diagonal, while texture increases the number of both on-
axis and off-axis elements63–65. The structure of the GLCM can be
summarised to give texture features that capture different aspects
of the grey-level distribution. These features do not give a
mechanistic understanding of sheet formation, but provide a set of

comparative measures between experimental treatments to iden-
tify which candidate ER-shaping proteins impact tubule-sheet
transitions and/or cisternal organisation. Typical distribution
patterns are shown in (Fig. 3i–l) for GFP-HDEL alone, following
perturbation of the secretory pathway with Brefeldin A (BFA),
physical stress through rapid heat shock (42 °C, 20min), phar-
macological disruption of the actin cytoskeleton with Latrunculin
B (Lat B), or through transient over-expression of the ER shaping
protein RFP-LNP2, which induces excessive cisternae. The con-
trast (Fig. 3i) is a measure of the variance within the sheet that
gives a high weight to pixel pairs with dissimilar intensities.
Correlation (Fig. 3j) is a measure of linear dependency of inten-
sities and is bounded in the range [−1 1]. Energy, or angular
second moment, (Fig. 3k) summarises the evenness of the spatial
distribution, and is bounded in the range [0 1]. Homogeneity
(Fig. 3l) is related to the inverse difference moment64, and mea-
sures the closeness of the distribution to the diagonal. It is also
bounded in the range [0 1]. Thus, a completely homogeneous
cisterna has values of zero for contrast and energy, and one for
correlation and homogeneity. In contrast, cisternae following BFA
treatment show low contrast and high correlation and homo-
geneity, as expected for large homogeneous sheets, but the
development of brighter patches within the cisternae is also
observed as an increase in cisternal energy (Fig. 3k). This is
also seen with RFP-LNP2, which increases the size and intensity
variation within the cisternae.

Persistency mapping of static elements. The metrics described
above can be calculated for a single optical-section to provide
a snapshot of ER morphology, but analysis of ER dynamics in
time-series images provides much more information. Persistency
mapping characterises features that remain static, such as EPCS,
and allows quantification of immobile tubules compared to
mobile elements5,8,45. At present, there is no agreed definition of
the duration an object has to remain in position to be regarded
as persistent, but current practice has adopted a period of ~5–10 s
for tubules and cisternae5,45, or longer periods for persistent
nodes30,32. For example, in time-series images (50 frames lasting
20.5 s) of GFP-HDEL transiently expressed in tobacco epidermal
cells (Fig. 4a), a number of tubules remained stationary over the
lag period examined (12 frames, ~5 s), with their persistence
coded by intensity (Fig. 4d, g, green). Likewise, many cisternae
were relatively stationary, with only fluctuations at the margin
over this time period, unless they were translocating in the
streaming cytoplasm (Fig. 4d, g, magenta). Nevertheless, certain
nodes remained in position over a substantial fraction of the
complete time series (in this case 10 s) in both the tubular net-
work, and where tubules or cisternae moved over a fixed node
(Fig. 4d, g, white crosses). Both Lat B (Fig. 4b, e, h) and heat
shock (42 °C, 20 min) (Fig. 4c, f, i) increased the proportion of
persistent nodes, tubules and cisternae, and the period that they
remained static (Supplementary Movie 1a). In untreated cells,
the majority of tubules (Fig. 5a) and nodes (Fig. 5d) showed low
persistency, that increased in the presence of Lat B (Fig. 5b, e)
or heat shock (Fig. 5c, f). Nevertheless, even with these

Fig. 3 Analysis of label protein distribution in cisternae. Single optical sections showing transient co-expression of GFP-HDEL (a) and RFP-LNP1 (b), along
with the merged image (c). The GFP-HDEL shows a peak in the distribution normal to the cisternal boundaries in the presence of RFP-LNP1 (g, mean ± SD,
n= 15 cisternae). In contrast, co-expression of two lumenal markers GFP-HDEL (d) and RFP-HDEL (e) show complete co-localisation (f), and identical
distributions across the boundary (h, mean ± SD, n= 83 cisternae). All scale bars= 5 µm. Comparison of ER cisternae texture metrics calculated from
GLCM analysis: i contrast, j correlation, k energy, l homogeneity for GFP-HDEL and different treatments including BFA, Lat B, heat shock and transient
overexpression of RFP-LNP2 (wild-type, n= 46; BFA, n= 46; Lat B, n= 28; heat shock, n= 33; RFP-LNP2, n= 29, where n is the number of independent
5-frame time-series images). Box plot elements correspond to centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers. Source data are provided as a Source Data file
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treatments a small number of tubules and nodes had low or zero
persistency, indicative of substantial movement between frames.
The cisternae in untreated cells were more stable with a peak
in the distribution around 3.5 s (Fig. 5g, magenta), while Lat B
and heat shock shifted most of the distribution to increased

persistency (Fig. 5h, i). Given the shapes of these distributions,
the mean persistency alone does not fully capture the behaviour
of the network, but division into categories of high and low
persistence5 are reasonable, and can now be made explicit using
fits to the frequency distributions.
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Quantifying ER velocity in time-series using optical flow. The
counterpoint to persistency measurements is characterisation
of movement in the network. Previous work used optical flow
measured by cross-correlation between local neighbourhoods25,
which provides an overall measure of movement, but does not
distinguish between internal flows within the ER lumen or
membrane, local ER remodelling, or bulk movement by cyto-
plasmic streaming8,45. Here we also characterise ER movement
by optical flow, but using the Farnebäck algorithm, as this
incorporates a scale-space analysis suited to quantify movement
over different length scales, to give maps of speed (Fig. 4j–l) and
direction (Fig. 4m–r), for untreated (Fig. 4j, m, p), Lat B (Fig. 4k,
n, q), and heat shock (Fig. 4l, o, r) time-series (Supplementary
Movie 1b, c). In untreated cells, there were small, localised
movements from ER re-modelling and lateral wiggling of tubules
through much of the network, with occasional substantial
translocation of a bolus of ER along cytoplasmic strands (Fig. 4j).
To quantify these speeds, the optical flow measurements were
interrogated by the pixel skeleton and cisternal segmentation to
extract the average local speed (scalar mean), average net speed
(vector mean), and maximum speeds per tubule, node or cisterna.
In all cases, the distribution of average speeds followed a log-
normal distribution, with the back-transformed mean around
0.26 µm s−1 for tubules (Fig. 5j), and 0.21 µm s−1 for cisternae
(Fig. 5l). The maximum speeds observed were higher, with means
of 0.52 µm s−1 for tubules (Fig. 5m), and 0.95 µm s−1 for cis-
ternae (Fig. 5l). Values greater than 2.5 µm s−1 were routinely
observed for ER moving along cortical actin strands (Fig. 4j, m,
p). Movements of cisternae were also identified, although, as with
other studies, it is not clear whether movement relates to trans-
location of the entire structure, or just elements within the
structure8. Lat B (Fig. 5k, n) and heat shock (Fig. 5l, o) caused a
reduction in the distribution of speeds, with the mean dropping
by 24% (tubules) and 45% (cisternae), following Lat B treatment
(Fig. 5k, n), or 34% (tubules) and 49% (cisternae) following
heat shock (Fig. 5l, o). The tail of the distribution at higher speeds
(>1 µm s−1) also disappeared in these treatments and the direc-
tion of movement was less correlated, reverting to just local
fluctuations, rather than directed flows (Fig. 4n, o, q, r). The
extent of random movement to directed flow was quantified using
flow coherence, calculated as the vector sum of velocities divided
by the scalar sum of speeds (Fig. 5p–r). A value of 1 indicates all
flows moving in parallel, compared to zero for no net movement.
This confirmed that flows were directed in the HDEL control
with high coherence (Fig. 5p), a shift to predominantly dis-
organised fluctuations in Lat B treatments (Fig. 5q), with heat
shock intermediate (Fig. 5r). Local variation of flow within cis-
ternal sheets and tubules was also quantified by changes in the
curl (Supplementary Fig. 4d-f) and divergence (Supplementary
Fig. 4g-i) of the flow pattern. Quantitatively, both curl and
divergence of the vector flows showed greater spread in the HDEL
control (Supplementary Fig. 5a, d) than in Lat B (Supplementary
Fig. 5b,e) or heat shock (Supplementary Fig. 5c, f) treatments, but
inspection of the corresponding images did not yield clear sig-
nature patterns that could be easily related to microscopic
behaviour. We also note that different classes of cisternae can be

readily distinguished based on their morphology and dynamics
that correspond to regions where the automated image analysis
cannot distinguish sheets from aggregates or ribbons of tubules
in the streaming cytoplasm (Supplementary Fig. 6a, b).

Quantitative comparisons using multiple network parameters.
While examination of specific metrics such as tubule length,
cisternal area, speed, coherence or persistency, can be used to
test specific hypothesis about the role of a particular ER or
cytoskeletal protein, calculation of a comprehensive set of metrics
allows an un-biased comparison of any treatment with the GFP-
HDEL control and provides potential input to automated classi-
fiers to detect aberrant ER behaviour. This approach also captures
subtle differences in behaviour that may not give a significant
result for pairwise comparison of any single metric, but show
a consistent phenotype as a combination of several metrics. The
first stage of a parametric analysis explored here was based on
multivariate analysis (MANOVA) to test the null hypothesis that
the multivariate means were drawn from the same population,
after transformation of individual metrics to achieve normality.
As the null hypothesis was rejected, parametric ANOVA com-
parisons against the GFP-HDEL control were used to identify
which metrics showed a significant difference. This helps to
identify the potential site and mode of action of any given
treatment as a guide to future investigation. The MANOVA also
provided separation of the data by canonical discriminant vari-
ables to give a visual representation of the clustering relationships
between the factors, and the potential for this approach for
automated discriminant classifiers.

We illustrate this approach using a data set comprising 182, 5-
frame movies of wild-type ER labelled with GFP-HDEL (Fig. 6a,
n= 46), and with treatments including pharmacological pertur-
bation with BFA (Fig. 6b, n= 46), and Lat B (Fig. 6c, n= 28),
abiotic heat stress (Fig. 6d, n= 33), or transient over-expression
of the ER shaping protein RFP-LNP2 (Fig. 6e, n= 29). Using
a subset of 19 metrics, MANOVA analysis revealed the there
was a highly significant difference in the structure and dynamics
of the plant ER under these treatments (Pillai’s trace, F(72,648)=
17.5, p= 2.7 × 10−110; or Roy’s largest root, F(18,162)= 36.7,
p= 7.9 × 10−48). The first two discriminant canonical variables
from the MANOVA provided complete separation of Lat B and
heat shock treatments from the other factors (Fig. 6f). The third
canonical variable teased apart GFP-HDEL control from BFA
(Fig. 6g), while the fourth canonical variable separated BFA,
RFP-LNP2 and control (Fig. 6h). Subsequent ANOVAs revealed
that BFA differed from control in almost every category of metric,
apart from persistency and flow coherence. The main effects of
Lat B and heat shock were on movement, as might be expected
from disruption of the actin cytoskeleton, with some impact
on the shape of cisternae and the intervening polygonal regions,
but little difference in cisternal texture. Conversely, both BFA
and RFP-LNP2 showed a significant difference from control in
cisternal texture metrics of energy and homogeneity. Interest-
ingly, while RFP-LNP2 predominantly affected shape and texture
metrics, there was also a highly significant reduction in cisternal

Fig. 4 Mapping ER persistency and movement over time. The middle frame from a 50-frame time-series image taken at 0.41 s intervals of GFP-HDEL
transiently expressed in tobacco leaf epidermal cells (a); after treatment with Lat B (b); or heat shock (42 °C, 20min) (c). d–f persistency maps calculated
using a 12 frame lag period (~5 s) for cisternae (magenta), tubules (green) and nodes (white crosses), with the background set to grey. The intensity
corresponds to the length of time each pixel is occupied in the time series according to the inset scales; g–i Enlarged (3×) regions from the approximate
centre of each image. j–l Optical flow analysis between the middle two frames of the same time series images for comparison. Images are pseudo-colour
coded on the inset scale between zero (blue) and 2.5 µm s−1 (red). m–o Predicted direction of ER network movement with arrows scaled to a maximum
value of 2.5 µm s−1. p–r Enlarged (3×) regions from the approximate centre of each image. All scale bars= 5 µm
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speed, emphasising the importance of scoring across a wide
range of both morphological and dynamic parameters when
characterising ER-modifying protein function (Table 1).

Discussion
We have developed a set of integrated tools that can be routinely
used to assess a wide range of parameters describing the structure
and dynamics of the ER network in living plant cells. We have
validated the approach against manual ground-truth images,
and tested performance by artificially inducing changes to the ER
network in leaf epidermis through physical perturbation (heat
shock), drug treatments affecting ER-Golgi trafficking (BFA), the
actin cytoskeleton (Lat B), ER shaping proteins (RFP-RTN1), or
cisterna-modifying proteins (RFP-LNP1 and RFP-LNP2). Using
these diverse treatments as test cases, we can readily quantify the
effects on ER-morphology and dynamics using a wide range of
metrics that can both readily discriminate between the different
treatments and provide a rich source of information to under-
stand the physiological impact of each intervention. Importantly,
we quantify the consequential effects that modification of one
aspect of ER morphology, such as cisternal reorganisation, can
have on overall network behaviour, such as ER dynamics. The
software can also handle multiple channels, which allows object-
based co-localisation of different reporter constructs, or quanti-
tation of ratiometric physiological reporters, such as roGFP66.
The analysis requires minimal user interaction, mainly to set

experiment-dependent parameters such as the background
intensity, and can be run in batch mode to achieve a medium-
throughput pipeline capable of handling hundreds of images
required for statistical robustness or mutant screening. Taken
together, this represents a major advance in un-biased, quanti-
tative analysis of the plant ER, and should prove equally applic-
able to the analysis of mammalian or animal cortical ER.

Methods
Plant material and transient protein expression. N. tabacum (SR1 cv Petit
Havana) were grown in preparation for transient Agrobacterium-mediated
expression as previously reported67. Transient expression of fluorescent constructs
was performed according to Sparkes et al.4. In brief, transformed agrobacteria were
pelleted by centrifugation at 2200g at room temperature for 5 min. Infiltration
buffer (5 mgml−1 glucose, 50 mM MES, 2 mM Na3PO4·12H2O and 0.1 mM
acetosyringone) was used to wash the pellet once and then to resuspend the
agrobacteria. The bacterial suspension was diluted in the infiltration buffer to
an OD600 of 0.1 for GFP-HDEL, RFP-HDEL, RFP-LNP1 and RFP-LNP2 and an
OD600 of 0.05 for RFP-RTN1. The final dilution of the infiltration medium was
injected through the stomata on the underside of the tobacco leaf using a 1 ml
syringe. Infiltrated plants were kept at 23 °C for 3 days prior to imaging. For
imaging of fusiform bodies, Arabidopsis Col-0 seeds stably expressing GFP-HDEL
were sterilised in 70% ethanol and placed on 1/2 strength MS plates. These were
stratified for 3 days at 4 °C in the dark and then grown in an incubator at 22 °C
for 2 weeks prior to imaging.

Cloning of expression plasmids. Primers were obtained from Eurofins Genomics.
Q5 high-fidelity DNA polymerase (New England Biolabs, Ipswich, MA, USA)
was used for all PCR reactions. Using Gateway technology (Invitrogen, Waltham,
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MA, USA), genes of interest were cloned into the modified binary vector
pB7WGR2,068 using the cauliflower mosaic virus 35S promoter upstream of coding
fusions to RFP.

Stress induction and drug treatments. In preparation for stress and drug
treatments, small leaf segments of approximately 25 mm2 were cut from the
transformed N. tabacum. Heat shock was induced by rapidly heating the leaf
segment to 42 °C for 20 min. Drug treatments were performed by incubating leaf
segments in either Lat B (25 µM for 30 min) or BFA (100 μg ml−1 for 1 h) at
room temperature.

Confocal microscopy. Leaf epidermal samples were imaged using a Zeiss PlanApo
×100/1.46 NA oil immersion objective on a Zeiss LSM880 confocal equipped with
an Airyscan detector. Typically 512 × 512 images were collected in 8-bit with 2-line
averaging at an (x,y) pixel spacing of 20–80 nm with excitation at 488 nm (GFP)
and 561 nm (RFP), and emission at 495–550 nm and 570–615 nm, respectively.

Serial-section block-face SEM (SBFSEM). For EM, Arabidopsis Col-0 seeds
expressing the Golgi marker ST-GFP were grown as described for 2 weeks. Seed-
lings were removed from the agar, cotyledon leaves cut off and submerged in
fixative (1% paraformaldehyde, 1% glutaraldehyde, 2% sucrose and 2 mM CaCl2 in
0.1 M sodium cacodylate buffer) under mild vacuum for 1 min and for a further
hour without vacuum at room temperature. Leaves were then washed twice with
0.1 M sodium cacodylate buffer and once in deionized water for 10 min. Zinc-
iodide was prepared by adding 3 g of zinc powder and 1 g of resublimed iodine to
20 ml distilled water with stirring for 10 min. The solution was filtered through
filter paper and mixed 1:1 with 2% aqueous osmium tetroxide. Leaves were
incubated in the ZIO mix overnight at room temperature with rocking, then
washed with deionised water and dehydrated in an ethanol series from 10 to 100%.
Infiltration with Spurr resin (hard) was carried out in a series from 10 to 100% for
a minimum of 2 h for each step. Infiltration with 100% Spurr resin was exchanged
3 times over 2 days. Leaves were embedded in 100% Spurr resin in flat embedding
dishes and polymerised at 70 °C for 11 h.

Leaves were mounted for cross-sectioning onto 3View stubs (Gatan, Abingdon,
UK) with conductive epoxy (Chemtronics, Hoofddorp, Netherlands) and hardened
for 4 h at 100 °C. The trimmed block was sputter coated with gold for 30 s to give
a layer of around 20 nm to improve conductivity. Serial block face (SBF) images
were collected with a Merlin Compact scanning electron microscope (Zeiss,
Cambridge, UK) with the Gatan 3View system using a 30 µm aperture at 4 kV in
variable pressure mode (50 Pa), a pixel dwell time 2 µs, and a pixel size of 6.9 nm.
Serial sections were cut at 100 nm thickness.

SBF images were stacked, aligned, scaled to common mean and standard
deviation and cropped to the area of interest using the IMOD software package69.
Reconstruction of the ER was performed with Amira software (Thermo Fisher
Scientific-FEI) using manual masking and thresholding tools. The rendering was
visualised through surface generation and surface view in Amira.

Image processing. The GUI interface for ER image processing and analysis is
shown in Supplementary Fig. 1. A complete description of all the processing steps
and additional options available in the software is given in the accompanying
manual available from the Oxford Research Archive (ORA) (https://ora.ox.ac.uk/
objects/uuid:cb0e2845-2a9c-495a-84f0-4dd2c5164463). To standardise all sub-
sequent processing and filtering operations, images were up-sampled using linear
interpolation to ensure that the minimum tubule size, estimated from the full-
width-half-maximum height (FWHMmin) of manual transects across the tubules,
was around 5 pixels. Images were then background subtracted, using an average
value determined from a manually-defined region-of-interest (ROI), and smoothed
with a guided anisotropic filter70, with the kernel size set to the FWHMmin to avoid
blurring across tubule edges. Regions where the signal decreased as the curvature
of the cell took the ER out-of-focus, were masked where the pixel intensity fell
below the lowest automatically determined threshold, after partitioning the image
histogram into two, three or four sections using Otsu’s method which minimises
the intra-class variance within the pixel intensity histogram44. Multi-threshold
partitioning was useful when the image included additional strongly labelled
structures, such as Arabidopsis fusiform bodies56,57,59. Internal polygonal regions
within the mask were initially filled to retain all internal structures, the outermost
boundary identified by contraction of the convex hull using a shrink factor of
0.5–0.8, and the final boundary eroded by a fixed number of pixels, typically 4–6.
The boundary was used to determine the area analysed for density-dependent
metrics. The internal holes were then reintroduced to complete the mask for
subsequent image processing operations

Tubule enhancement and segmentation. A number of options are included in
the software to enhance the ER tubules including Vesselness46, Neuriteness48,
second-order anisotropic Gaussian kernels (SOAGKs)49, or intensity-independent
phase-congruency filtering50,71, typically applied over 3–5 spatial scales and 4–6
orientations. Although the phase-congruency filters characterise a number of
relevant image properties, we have found the local weighted mean phase angle
(Feature-Type) provided the most robust subsequent segmentation in a variety of
contexts51,52, including enhancement of ER-tubules14,42. Full details of the phase
congruency analysis and alternative approaches to ridge enhancement are given
in the accompanying manual available from ORA. The Feature-Type image
was normalised to [0 1], and the tubular network segmented using hysteresis
thresholding, with a lower threshold of 0.3 and upper threshold of 0.5. To ensure
closely appressed regions were not merged during the hysteresis threshold, all local
intensity minima were first identified using an h-minimum transform, with a
threshold of 0.05, and set to zero. The binarised imaged was reduced to a single-
pixel-wide skeleton by thinning using the Zhang and Suen algorithm72.

Segmentation of cisternae and polygonal regions. ER cisternae were auto-
matically segmented by image opening5,8,45 to remove all features smaller than
the maximum tubule diameter (estimated as the full-width half-maximum
(FWHMmax) from manual transects across 3-way junctions). Segmentation was
followed by an active-contour step73 to shrink the segmented boundary back onto
the intensity profile of the cisternae. The resulting objects were filtered on the basis
of their area to be above a user-defined value of 0.3 µm2, chosen as the area of

Table 1 ANOVA for a subset of ER variables

ER structural subdomain Variable F(4,177) p Value BFA Lat B Heat shock RFP-LNP2

Tubule Length 15.78 4.58 × 10−11 *** *** *** ***
Tubule Maximum speed 50.52 2.59 × 10−28 *** *** *** ***
Tubule Mean speed 46.16 1.60 × 10−26 *** *** *** ***
Tubule Flow coherence 19.71 1.96 × 10−13 * ***
Tubule Persistency 60.36 5.11 × 10−32 *** ***
Cisternae Contrast 5.894 1.78 × 10−04 *
Cisternae Correlation 4.612 1.45 × 10−03 *
Cisternae Energy 54.94 4.72 × 10−30 *** ***
Cisternae Homogeneity 40.19 6.32 × 10−24 *** ***
Cisternae Maximum speed 46.17 1.57 × 10−26 *** *** *** ***
Cisternae Mean speed 74.1 8.72 × 10−37 *** *** *** ***
Cisternae Flow coherence 77.42 7.61 × 10−38 *** *** *** ***
Cisternae Persistency 53.46 2.00 × 10−29 ** *** *** ***
Cisternae Circularity 8.325 3.56 × 10−06 ** ** **
Cisternae Area 6.467 7.03 × 10−05 ** *** ** *
Cisternae Perimeter 15.56 6.29 × 10−11 *** ***
Polygonal regions Area 40.14 6.61 × 10−24 *** *** ***
Polygonal regions Perimeter 19.85 1.63 × 10−13 *** *** ***
Polygonal regions Circularity 41.26 2.09 × 10−24 *** *** * ***

ANOVA results of planned comparisons against the GFP-HDEL control for the sub-set of variables included in the MANOVA, with the associated F-statistic and p-value. Means that were significantly
different from the control using Tukey HSD post-hoc test are coded as *p < 0.05; **p < 0.01; and ***p < 0.001. (Wild-type, n= 46; BFA, n= 46; Lat B, n= 28; Heat shock, n= 33; RFP-LNP2, n= 29, where
n is the number of independent 5-frame time-series images.) Source data are provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08893-9

12 NATURE COMMUNICATIONS |          (2019) 10:984 | https://doi.org/10.1038/s41467-019-08893-9 | www.nature.com/naturecommunications

https://ora.ox.ac.uk/objects/uuid:cb0e2845-2a9c-495a-84f0-4dd2c5164463
https://ora.ox.ac.uk/objects/uuid:cb0e2845-2a9c-495a-84f0-4dd2c5164463
www.nature.com/naturecommunications


persistent puncta that are associated with immobile scaffold sites5. These puncta
were included as nodes in the tubular network. A variety of morphological metrics
(area, perimeter, major and minor axis length, solidity, elongation, circularity, and
roughness) were determined for each sheet-like region (Supplementary Figure 2a).
A similar set of morphological metrics was calculated for the polygonal regions
enclosed by the ER network, following segmentation from the complement of
the combined pixel skeleton and cisternae (Supplementary Figure 2b).

Precision–recall analysis of segmentation performance. Ground truth images
were manually digitised from 5 single confocal images using a Wacom DTK-2241
digitising tablet (http://www.wacom.com/) and GIMP software (https://www.gimp.
org/). The manual skeleton was thinned and masked in parallel to the automated
skeleton, and the cisternae excluded. The number of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) were calculated,
allowing a tolerance of half FWHMmin

74. Performance was assessed using
precision–recall (P–R) analysis in preference to receiver operating characteristic
(ROC) plots, as the former is better suited to imbalanced data sets, where the
number of TN from the background is expected to be much greater than TP from
the skeleton75. Precision (P) was calculated as ¼ TP

TPþFP
, recall (R) as R ¼ TP

TPþFN
and

overall performance assessed with the Dice Similarity Coefficient or F1 score as the
harmonic mean of precision and recall, F1 ¼ 2 ´ P ´R

PþR.

Estimation of tubule width. The width of the tubules was estimated by several
different methods. To estimate the tubule FWHM, the peak height was determined
from the intensity, sampled for each pixel in the skeleton; the distance from the
skeleton was estimated from the Euclidean distance transform (EDT) of the pixel
skeleton; and the 50% threshold estimated from where the pixel intensity fell below
half the peak intensity of the background-subtracted image. This gave the FWHM
of the tubule convolved with the psf. Alternatively, a granulometry approach51,52

was used whereby the intensity image was processed through a set of image
opening operations (erosion followed by dilation), with a circular kernel of radius
0 to FWHMmax. This resulted in an intermediate (x,y,s) image, where s increased
with the size of the disk-shaped kernel, that effectively builds a stack of the
intensity of each successive neighbouring pixel underneath each pixel in the
skeleton. The gradient profile for a given skeleton pixel in s decreased slowly as
the kernel sampled more of the object, but then reduced dramatically once the
boundary of the object was reached, and the kernel sampled the background. The
width was estimated as either the maximum (negative) gradient of this profile,
or from the integrated intensity under the curve. However, in the former case,
the radius was constrained to integer pixels values and results were limited by
the discrete digital approximation of small kernels to a true disk-shaped kernel.
Conversely, the latter provided an estimate of the local amount of fluorescence in
the tubule which was related to the width, even if it was sub-resolution, provided
it was assumed that the fluorescent probe was evenly distributed throughout the
ER, there was a linear relationship between signal and the amount of probe, and
the ER was fully within the sampling volume of the confocal defined by the psf53.
The average intensity from the cisternal sheets (Is), typically 0.35, the estimated
sheet thickness (Ts) of 40 nm, and the size of the lateral psf (psfxy) of 140 nm, were
used to relate the measured intensity to the volume of ER that a fully-filled psf
would yield when sampling sheets of defined thickness (Vs ¼ πpsf 2xyTs) (Supple-
mentary Figure 3). The radius of the tubules (rt) was estimated by assuming the
volume of the tubule sampled by the same stylised psf (Vt ¼ πr2t psf xy) compared to
the sheet, scaled as the ratio of the intensities from the tubule and sheet (It=Is).

Thus, the radius of the tubule (rt) was estimated as rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

It=Isð Þ psf xyTs=4
� �

r

(Supplementary Figure 3).

Conversion to a graph representation. The pixel skeleton was converted to a
graph representation with nodes at the junctions and free ends, connected by edges
along each tubule30,42,43,51,52 (Supplementary Figure 2d(i)), using the edgelink
algorithm written by Kovesi71, which exports a list of pixel co-ordinates for each
edge. Duplicate edges connecting the same two nodes were resolved to two separate
edges in the graph by introducing an additional node with degree 2 in one arm
(Supplementary Figure 2d(ii)). The pixel co-ordinates for each edge were used to
extract relevant information from different images, such as intensity, width, speed,
direction, coherence, divergence, curl or persistency, and the mean (or other
summary statistic) and SD for each metric stored in a vector of properties for each
edge. The initial width was further refined by excluding pixels within a certain
distance from each node, to give the centre-weighted width, which provides a
better estimate of the tubule width that excludes the 3-way junctions or cisternae
(Supplementary Figure 2d(iii)). The exclusion distance was determined as the
maximum of the initial widths of tubules connected to the node. A vector of
properties was also associated with each node, including the degree, widths of the
incident tubules, branch angles between incident tubules (estimated from segments
drawn between the node and the mid-point of each connected tubule), strength
(measured as the sum of the centre-width of the incident edges), persistency and
speed (Supplementary Figure 2c). Summary metrics for orientation and branching
angles were calculated using circular statistics76. The cisternae were represented as

a single-node placed at the intensity-weighted centroid of each cisterna, and
connected to each edge incident on the boundary (Supplementary Figure 2d(i)).
Edges within the cisternae were set to the average centre-width of all the tubules,
along with their Euclidean length, for graph–theoretic calculations where the
connectivity of the network is important, but were excluded from calculations of
tubule statistics.

Variation in morphology along the length of tubules and cisternal edges. The
position of bulges along the tubules (Supplementary Figure 2c) were estimated
from peaks in the integrated intensity trace along each tubule, excluding the nodes,
at each wavelength that were at least 5% of the maximum intensity (peak height)
and also 3% of the maximum intensity greater than the signal on either side
(peak prominence). Likewise, constrictions were determined using the same peak-
finding process on the inverted intensity profile. The width of the tubule at these
points was then extracted from the granulometry width image. The distribution
of fluorescence around the perimeter of the cisternae was determined in the same
manner.

Characterisation of cisternal sub-structure using texture metrics. The varia-
tion in intensities within the cisternal region was characterised using texture
analysis from the normalised grey-level co-occurrence matrix (GLCM)63–65. In
brief, for each pixel in the segmented cisternal region, the GLCM examined pixels
at a distance that was set by the tubule radius to maximise the likelihood of
revealing texture from appressed tubule regions. Results were aggregated in four
directions (NW, N, NE, E) with symmetry to complete the angular sampling and
ensure results were independent of orientation. Results were added to an accu-
mulator array where the row (i) and column (j) indices correspond to the intensity
value of the target pixel and the neighbour, grouped into a number of equal
intensity bins to capture key differences in intensity without rendering the GLCM
too sparse. The resultant GLCM was normalised to give a probability p(i, j) of
co-occurrence for each intensity pair. Choice of the number of intensity bins and
spacing is known to affect texture features65, thus to standardise results65, images
were collected under identical conditions, GLCM constructed using 32 fixed
intensity bins over the full intensity range, at a distance equal to the minimum
tubule radius, and with inclusion of all neighbouring pixels to give direction

invariance. The contrast,
P

i;j
i� jj j2pði; jÞ; correlation, P

i;j

i�μið Þ j�μjð Þpði;jÞ
σ iσj

, where μi

and μj were the weighted mean intensities and σi and σj their standard deviation;

energy,
P

i;j
pði; jÞ2 ; and homogeneity,

P

i;j

pði;jÞ
1þji�jj, of the GLCM were calculated

individually for each cisterna and then averaged, and also as a single accumulated
GLCM for all cisternae, which effectively weights the contribution of each cisterna
to the overall statistic by the number of pixels. Contrast measures the local var-
iation in the GLCM, correlation measures the joint-probability distribution, energy
measures the sum of the squares, while homogeneity measures how close elements
in the GLCM are to the diagonal. Conveniently, correlation is scaled from [−1 1],
while energy and homogeneity are scaled between [0 1]. An idealised cisternal sheet
would have a value of 1 for correlation and homogeneity, and zero for energy. The
contrast scales from 0 to (nbins− 1)2, but was normalised here by (nbins− 1)2 as
all images were processed with the same number of bins, to constrain the range
to [0 1], where an idealised sheet would have a value of zero.

The distribution of fluorescence intensities across the cisternal boundary was
determined by averaging intensities in incrementing (external) and decrementing
(internal) integer radial bins, determined from the EDT, normal to the edge of each
cisternal region.

Measurement of movement using optical flow. A number of different methods
are available in the software that draw from the MATLAB® Computer Vision
Toolbox including Horn–Schunck24, Lucas–Kanade77 and Farnebäck78. Here, we
have used the Farnebäck algorithm78 which uses local quadratic polynomial
expansions to approximate image intensities over a given neighbourhood, with
weightings based on the strength of the signal and the distance from the central
pixel. The algorithm also includes a coarse-to-fine pyramidal scale-space iteration
to improve the a priori estimate of the initial displacement field, which allows the
method to handle larger displacements. Typically a neighbourhood of 5 pixels was
used, with a three-level image pyramid. The resultant vectors were then averaged
over a 15-pixel region to estimate the local velocity. The average velocity for tubules
and cisternae was calculated as the scalar mean to give an estimate of the total
amount of movement irrespective of direction, while the net directed movement
was estimated from the vector mean. The maximum speed was also recorded.
Flow coherence was calculated as the vector mean divided by scalar mean, and
gives a ratio of one for fully directed flow and zero for random movement.
Divergence and curl were calculated from the velocity field. Summary metrics for
optical flow direction were calculated using circular statistics76.

Persistency mapping of static elements. In the original approach to persistency
mapping5, tubule and cisternal persistency were estimated from the difference
between two images with a lag of 5–8 frames (8–14 s), following by a Boolean AND
operation between time-points to only include features present in both. Results
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were normalised to the total segmented area present in all frames (Boolean OR
operation on the image stack). Here we implement two approaches. The first
method followed Sparkes et al.5 using the difference in the intensity image over a
user-defined time-period, masked by a thresholded binary image from both time-
points. The second used the segmented skeleton and cisternal regions directly.
Binary images of the skeleton and cisterna were dilated by FWHMmin/2 and
analysed separately or in combination, by either summing over a defined time
window, giving a graded estimate of persistency, or by differencing between the
start and end of the time window, giving a binary estimate of persistency. Results
were displayed as a persistency map, summed over the entire time course, and
were also aggregated for each edge and cisterna and included in their vector of
properties. Nodes that were persistent over longer periods that might transiently
be associated with tubules or cisternae moving across the anchor points30,32, were
identified following a 1D median filter in time across the entire time course
followed by Gaussian smoothing in xy with σ= FWHMmin/2, normalisation to
[0 1], and extraction of the position of local maxima above an intensity threshold
of 0.3–0.5.

Statistical methods. Results for different transgene expression and drug treat-
ments were compared against a GFP-HDEL control using a parametric MANOVA
with Pillai’s trace and Roy’s largest root as test statistics. Metrics that were bounded
in the range [0 1] were arcsin transformed to improve normality, while those
spanning a wide range, such as length, area or speed, were typically normalised
using a log, logit or square root transform. Logit data was adjusted to the interval
0.025–0.975 before transformation. We note that some metrics, such as persistency,
may be problematic as they deviate strongly from normality and cannot be reduced
easily to a single summary statistic (mean, mode or median) that is well behaved.
We also note that collectively, the co-variances may fail Mauchly’s test for
sphericity, which then requires additional correction factors to apply to the degrees
of freedom before calculation of p-values. Nevertheless, the F-ratio and p-values we
have encountered so far are all so low and highly significant (typically < 10−30),
that the conclusions are insensitive to these corrections. Parametric ANOVA
comparison between individual means and the control used Tukey–Kramer HSD
with results reported at least at the 95% significance level. Other statistics are given
as mean ± SD when results are illustrative for a single experiment, or mean ± s.e.m.
when averaged across experiments for a given n.

Software implementation and code availability. All of the analysis routines were
implemented in MATLAB (The Mathworks) and are available in a standalone
package for 64-bit Windows 10, or a MATLAB 2017a app from the Oxford
Research Archive (https://ora.ox.ac.uk/objects/uuid:cb0e2845-2a9c-495a-84f0-
4dd2c5164463). The app also provides access to the source code when installed in
the ../MATLAB/Add-Ons/Apps/AnalyzER_v1_app/code folder.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All images, parameter files used in the software to analyse them, and the results are
available from the Oxford Research Archive (ORA) (https://ora.ox.ac.uk/objects/uuid:
cb0e2845-2a9c-495a-84f0-4dd2c5164463).
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