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Ordinal regression models for  
zero-inflated and/or over-dispersed 
count data
Denis Valle   1, Kok Ben Toh2, Gabriel Zorello Laporta3,4 & Qing Zhao1

Count data commonly arise in natural sciences but adequately modeling these data is challenging 
due to zero-inflation and over-dispersion. While multiple parametric modeling approaches have been 
proposed, unfortunately there is no consensus regarding how to choose the best model. In this article, 
we propose a ordinal regression model (MN) as a default model for count data given that this model 
is shown to fit well data that arise from several types of discrete distributions. We extend this model 
to allow for automatic model selection (MN-MS) and show that the MN-MS model generates superior 
inference when compared to using the full model or more traditional model selection approaches. 
The MN-MS model is used to determine how human biting rate of mosquitoes, known to be able 
to transmit malaria, are influenced by environmental factors in the Peruvian Amazon. The MN-MS 
model had one of the best fit and out-of-sample predictive skill amongst all models. While A. darlingi 
is strongly associated with highly anthropized landscapes, all the other mosquito species had higher 
mean biting rates in landscapes with a lower fraction of exposed soil and urban area, revealing a striking 
shift in species composition. We believe that the MN and MN-MS models are valuable additions to the 
modelling toolkit employed by environmental modelers and quantitative ecologists.

Count data are ubiquitous in natural sciences1–8 and other fields9–13. The default modeling choice for count data 
has traditionally been a Poisson regression but it is widely acknowledged that a Poisson likelihood is a poor choice 
for over-dispersed and/or zero-inflated data and different conclusions may be reached depending on whether 
zero-inflation and/or over-dispersion are properly accommodated or not3,8,14. As a result, considerable research 
has been devoted to devising alternative statistical modeling approaches to properly accommodate these count 
data characteristics. A common alternative to the Poisson regression model that accounts for over-dispersion is 
the negative-binomial [NB] regression model6,10,11,14,15. However, other models also exist (e.g., new parameter-
ization of the NB distribution that allows for different quadratic mean-variance relationships7, the Generalized 
Poisson distribution12, and the Quasi-Poisson regression2). Similarly, besides the negative-binomial regression 
model1,16, various hurdle and mixture models have been proposed in the literature to appropriately deal with 
zero-inflation (ZI)3,4,8.

As a result of the large number of potential models for count data and the fact that model choice has important 
consequences for the derived conclusions, choosing the most appropriate model is critical, even amongst models 
that properly accommodate over-dispersion and/or zero-inflation2,3,7,8,14. Despite substantial research comparing 
different statistical models using a range of criteria1,3,12,16,17, several researchers have ultimately concluded that 
determining the best modeling approach for count data is challenging2,7.

In this article, we propose a Bayesian ordinal regression model that can flexibly fit count data that arise from 
various distributions, regardless of zero-inflation and/or over-dispersion, circumventing the need to choose the 
most appropriate distribution. Furthermore, we extend this model to allow for model selection and parameter 
estimation within a single coherent modeling framework, enabling researchers to more fully explore the infor-
mation from covariates (e.g., by accounting for non-linear relationships). We compare the performance of the 
proposed model to that of other commonly used models using simulations and real data. More specifically, our 
simulations explore how well the proposed model works for inferential purposes, including how well it (a) fits 
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data that arise from different distributions, (b) determines which predictors are associated with the response 
variable (i.e., model selection), and (c) characterizes the (possibly nonlinear) relationship between the response 
variable and predictor variables. Our case study focuses on determining how land-use/land-cover and precipi-
tation influence malaria risk by modeling mosquito data collected in the Peruvian Amazon. Finally, we end this 
article with a discussion on important topics for future research.

Methods
Basic model formulation (MN model).  A multinomial distribution can approximate any given discrete 
marginal distribution, with or without zero-inflation and/or over-dispersion. As a result, we rely on the mul-
tinomial distribution as the basis of our model and we hypothesize that an ordered multinomial probit model 
(MN model), also known as an ordinal regression model, can represent a wide range of regression models (i.e., 
conditional distributions).

Here we described the basic structure of a probit ordinal regression model18. We start by ranking the response 
variable wi and let yi = rank (wi), where ties are assigned the same ranking value (i.e., if wi = wk, then yi = yk for 
i ≠ k). Therefore, yi ∈ {1, 2, …, J} where J is the total number of unique wi values. We assume that:
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where b1, …, bJ−1 are breaks to be estimated and zi is a continuous latent variable. We further assume that zi is 
given by:

β∼ xz N( , 1)i
T

i

where xi
T  is the design vector and β is a vector of regression parameters. For identifiability purposes, we either 

have to set one of the breaks b1, …, bJ−1 to zero or eliminate the intercept from our regression. We opt for the latter 
because it is not clear which break should be set to zero. Therefore, the design vector xi does not include a 1 for the 
intercept.

We use uninformative priors:
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Finally, we note that the expected count is given by:
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where Φ() is the cumulative density function of a standard normal distribution, uj are the ordered unique val-
ues of wi, and b0 = −∞ and bJ = ∞. We rely on this expression for the expected count to create response curves 
depicting the effect of different covariates. The MN model can be fitted in a straight-forward fashion using stand-
ard methods in R, as illustrated in S1 Appendix.

Simultaneously performing model fitting and model selection (MN-MS model).  The basic 
model formulation provided above can be extended to perform model selection and model fitting at the same 
time (MN-MS model). We start by noticing that the marginal probability associated with a particular model Mk, 
defined by the subset of covariates k, can be calculated in closed form after integrating out the associated regres-
sion parameters βk. This is given by:
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where Σ+ = −X X I{ }k
T

k k
1 and µ Σ= X zk k k

T . In these equations, Xk is the design matrix with only the subset of 
covariates k. Details on this integration can be found in S2 Appendix. Following Denison et al.19, we set the prior 

for each model Mk as ∝ +








−
−

p M P P
p( ) ( 1)k

k

1
1
, where pk is the number of covariates in set k. In this prior, each 

number of covariates 0, …, P (P is the overall number of covariates) is assumed to be equally likely, represented 
by 

+P
1

1
. Furthermore, this prior assumes that all models with a given number of covariates pk are equally likely, 

represented by 
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 is the number of possible combinations of pk elements out of P.

Our algorithm explores model space by randomly proposing the birth of a new covariate or the death or swap 
of an existing covariate. These proposed moves are then accepted or rejected using a standard Metropolis-Hastings 
acceptance ratio given by:
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where R is typically equal to 1 and ⁎Mk  and Mk are the proposed and current models, respectively. This model 
selection procedure is done as part of the MCMC algorithm. A detailed description of this model formulation and 
associated algorithms can be found in Denison et al.19 and Zhao et al.20. We provide the derivation of the full 
conditional distributions used to create our Gibbs sampler in S2 Appendix. The implementation of our algorithm 
was done in R21. All the MN and MN-MS model results reported in this article are based on running our MCMC 
algorithm for 50,000 iterations and discarding the first half as burn in. The associated code, together with a short 
tutorial reproducing some of our results for the simulated data, is provided in S3 Appendix. Next, we describe our 
case study and the three sets of simulations that were performed to compare the performance of the proposed 
models in fitting data from different discrete distributions, identifying important predictor variables, and mode-
ling nonlinear mean response functions.

Simulation set 1: fitting different discrete distributions.  To assess how well our ordinal regression 
model fits data from a variety of conditional distributions, with and without over-dispersion and/or zero-inflation, 
we generated 10 simulated datasets for each regression model (from a total of 12 distinct models; see distribu-
tional assumptions in Table 1). Each dataset contained 500 observations and the covariate x corresponded to 500 
values equally spaced between −2 to 2. Parameter values were chosen to explore a range of possible scenarios. For 
instance, we simulated data with small and large means (E[wi|xi = 0] = 1 and E[wi|xi = 0] = 5, respectively). In 
addition to small and large means, we experimented with different combinations of small and large variances 
(n = 1 and n = 1/10, respectively) for the NB and ZINB models. In relation to zero-inflation, we assumed that the 
proportion of zeroes arising from the Bernoulli mixture component was equal to 0.25 when the covariate x was 
equal to zero (i.e., = | = =p q x( 0 0)i i

1
4
).

We fit our multinomial model with a quadratic specification (i.e., β β+x xi i1 2
2) and compare model fit to that 

of models using the correct distributional assumptions. Because all models were fit under a Bayesian framework, 
we assess and compare model fit among these models using the posterior distribution of the log-likelihood (LLK), 
summarized by the median and 95% credible intervals (CI). Two models are judged to fit the data equally well if 
the 95% CI’s for their LLK overlap. If their 95% CI’s do not overlap, then the model with the highest LLK is judged 
to be the best fitting model. The models with the correct distributional assumptions (as described in Table 1) were 
fit using JAGS22. When using JAGS, the number of iterations was set to 10,000 and increased if necessary until all 
parameters had converged, as assessed by the potential scale reduction factor R̂. Values of R̂ smaller than 1.1 were 
assumed to indicate successful convergence.

Simulation set 2: identifying relevant predictors.  In our second set of simulations, we aim to exam-
ine if the multinomial model with model selection (MN-MS model) can adequately identify the few important 

Reg. model Mean Variances Assumptions Parameter values

Poisson
Small — wi ~ Poisson (λi) β0 = log (1); β1 = 0.5

Large — wi ~ Poisson (λi) β0 = log (5); β1 = 0.5

NB

Small Small wi ~ Neg Binom (μi = λi, n) β0 = log (1); β1 = 0.5; n = 1

Small Large wi ~ Neg Binom (μi = λi, n) β0 = log (1); β1 = 0.5; n = 0.1

Large Small wi ~ Neg Binom (μi = λi, n) β0 = log (5); β1 = 0.5; n = 1

Large Large wi ~ Neg Binom (μi = λi, n) β0 = log (5); β1 = 0.5; n = 0.1

ZIP
Small — qi ~ Bernoulli (πi)

wi ~ Poisson (λi × qi)
α0 = log (3); α1 = 0.5;
β β= = .( )log ; 0 50

4
3 1

Large — qi ~ Bernoulli (πi)
wi ~ Poisson (λi × qi)

α0 = log (3); α1 = 0.5;
β β= = .( )log ; 0 50

20
3 1

ZINB

Small Small qi ~ Bernoulli (πi)
wi ~ Neg Binom (μi = λi × qi, n)

α0 = log (3); α1 = 0.5;
β β= = . =( ) nlog ; 0 5; 10

4
3 1

Small Large qi ~ Bernoulli (πi)
wi ~ Neg Binom (μi = λi × qi, n)

α0 = log (3); α1 = 0.5;
β β= = . = .( ) nlog ; 0 5; 0 10

4
3 1

Large Small qi ~ Bernoulli (πi)
wi ~ Neg Binom (μi = λi × qi, n)

α0 = log (3); α1 = 0.5;
β β= = . =( ) nlog ; 0 5; 10

20
3 1

Large Large qi ~ Bernoulli (πi)
wi ~ Neg Binom (μi = λi × qi, n)

α0 = log (3); α1 = 0.5;
β β= = . = .( ) nlog ; 0 5; 0 10

20
3 1

Table 1.  Assumptions used to simulated data for each model. In these equations, qi is a latent binary variable, 
ωi is the response count variable, xi is an explanatory variable, λi = exp (β0 + β1xi), and π = α α

α α
+

+ +i
x

x
exp( )

1 exp( )
i

i

0 1

0 1
. For 

the negative binomial distribution, E[wi] = μi and μ= +
μ

Var w[ ]i i n
i
2

.
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predictor variables among a large number of covariates. To this end, we generated data from a Poisson regression 
model with a large number of covariates:

β∼ xy Poisson (exp( ))i
T

i

where the design vector xi
T  contains the intercept, 10 covariates and all pairwise interaction terms between these 

10 covariates. In total, this model has (1 + 10 + (10 × 9/2)) = 56 regression parameters in the vector β. We simu-
late data by assuming that β is comprised of zeroes except for the intercept and a given number m (varying from 
0 to 10) of randomly chosen elements of β. These m non-zero elements in β were randomly set to 0.5 or to −0.5 
and correspond to important predictor variables. We generated 10 datasets for each m = 0, 1, 2, …, 10, resulting 
in a total of 110 datasets with 500 observations per dataset.

According to a recent review, the most common procedure used for model selection in ecological publications 
is to select covariates based on AIC23, often within a forward, backward, or stepwise (i.e., combined forward and 
backward) approach. We compare the performance of this approach in identifying important predictors to that 
of the MN-MS model. To this end, we performed AIC model selection using the glm() and stepAIC() (from the 
MASS package) functions in R. The identified best model was subsequently fitted within a Bayesian framework. 
We compare the results from this best model to that of a Poisson model without any covariate selection and the 
MN-MS model. These latter models were also fitted within a Bayesian framework and we used the 95% credible 
intervals (CI) to determine if the method identified the zero and non-zero slope parameters correctly. More 
specifically, a non-zero coefficient was deemed correctly estimated if its 95% CI did not include zero and had the 
same sign as the true parameter. On the other hand, a zero coefficient was judged to be correctly estimated if the 
95% CI overlapped with zero. Covariates that were excluded by the AIC model selection procedure were deemed 
to have a slope coefficient of zero.

Simulation set 3: modeling nonlinear response curves.  In this set of simulations, we investigate 
whether the multinomial model with model selection (MN-MS model) can approximate well different non-linear 
mean response functions in the absence of information on the correct distribution. To this end, we randomly 
generated 10 datasets, each of which had 500 observations with 6 predictor variables. We assumed that only the 
first 3 predictor variables influenced the mean response function, based on the following expression:

Species
Proportion of 
zeroes

Maximum number of mosquitoes 
caught in a 6 hour period

A. darlingi 0.70 109

A. nuneztovari 0.92 24

A. triannulatus 0.60 308

A. benarrochi 0.82 249

A. oswaldoi 0.71 124

A. rangeli 0.86 33

Table 2.  Data on mosquito human biting rate is zero-inflated and over-dispersed.

Reg. model Mean Variances
MN model fits equally well or 
has better fit (proportion)

Poisson
Small — 1.0

Large — 1.0

NB

Small Small 0.9

Small Large 1.0

Large Small 1.0

Large Large 1.0

ZIP
Small — 0.8

Large — 0.0

ZINB

Small Small 0.9

Small Large 1.0

Large Small 1.0

Large Large 1.0

Table 3.  The MN model fits well data generated from a diverse set of conditional distributions despite lack 
of information on the correct distribution. Numbers correspond to the proportion of datasets (based on 10 
datasets) for which the MN model fitted the data equally well or had a better fit when compared to the true 
model with estimated parameters. Models were judged to fit the data equally well if their 95% credible intervals 
for the log-likelihood (our measure of goodness-of-fit) overlapped.
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Figure 1.  The MN-MS model performs slightly worse than the Poisson regression models in identifying the 
true non-zero slopes (left panel) but performs substantially better in identifying the true zero slopes (right 
panel). Results for the Poisson model without model selection (Poisson no MS; purple), with AIC model 
selection (Poisson AIC MS; red), and the MN model with model selection (MN-MS; blue) are displayed. A 1:1 
line was added for reference (dashed diagonal line), where results closer to this line indicate better performance. 
Circles represent the median, thick lines represent the 20–80% range, while thin lines represent the full range 
(minimum to maximum) based on 10 datasets. Left panel: The x-axis displays the true number of non-zero 
slopes used to generate the data while the y-axis reveals how many of these slopes were correctly identified to 
be non-zero and were estimated with the correct sign. Right panel: The x-axis displays the true number of zero 
slopes used to generate the data while the y-axis reveals how many of these slopes were correctly identified to be 
zero.

Figure 2.  The MN-MS model estimates well non-linear effects of covariates x1, x2, and x3 (top panels) and the 
absence of effects associated with covariates x4, x5, and x6 (bottom panels). True mean response functions are 
depicted with red line while the estimated relationship are shown with black lines (continuous and dashed lines 
are the median and point-wise 95% credible intervals, respectively). Circles show the knot locations for each 
covariate, a priori set to 0.2, 0.4, 0.6, and 0.8 quantile of the corresponding covariate. The displayed response 
curves are based on one of the 10 simulated datasets and were created by only varying the focal covariate while 
the other covariates were set to their mean values.
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. To approximate this mean response function, we rely on linear splines as 
our bases functions with four potential inflection points (i.e., knots) for each covariate, a priori set to 0.2, 0.4, 0.6, 
and 0.8 quantiles of the corresponding covariate.

Case study: mosquito data from the Peruvian Amazon.  Data on anopheline mosquitoes were col-
lected along the Iquitos-Nauta road, in the Peruvian Amazon, between 2000 and 2001. The original study’s goal 
was to determine how different land-use land-cover (LULC) classes influenced malaria risk. To this end, Vittor 
et al.9 focused solely on A. darlingi, the mosquito species widely regarded as the most important malaria vector 
in the region, and performed a multinomial regression where biting rates were a priori classified as low, medium, 
or high. Overall, 56 sites (grouped into 14 spatial clusters) were sampled 15 to 16 times between 2000 and 2001. 
These data are fully described in Vittor et al.9 and a review of how malaria is related to LULC in the Amazon 
can be found in Tucker-Lima et al.24. Here we revisit this study but now using the proposed statistical method 
and using data on the six most common anopheline species in this dataset (i.e., A. darlingi, A. nuneztovari,  
A. triannulatus, A. benarrochi, A. oswaldoi, and A. rangeli), all of which are known to be able to transmit malaria 
in the region. We note that adequately modeling these data is challenging because the data are zero-inflated and 
over-dispersed (Table 2).

The covariates in our model consist of precipitation, proportion of forest cover, and proportion of exposed 
soil/urban area. Precipitation data for each location and month were extracted from the Tropical Rainfall 
Measuring Mission (TRMM) product 3B43, which provides monthly rainfall estimates with a 0.25 × 0.25 degree 
spatial resolution25. LULC classification was based on a supervised random forest algorithm applied to a 2000 
Landsat image with a 30 × 30 meter pixel, from which we calculated the proportion of terra-firme forest pixels 
and exposed soil/urban pixels within a buffer of 500 m around each point. All covariates were standardized to 
have a mean of zero and variance of one. Similar to the simulation study described above, we model potentially 
non-linear relationships through the use of linear spline bases, where knots were placed at 0.2, 0.4, 0.6, and 0.8 
percentiles of each covariate.

We separately fit data from each of these six mosquito species using the MN and the MN-MS model. To deter-
mine how well these models fit and predict these data, we compare the log-likelihood (our measure of model 
fit) and out-of-sample predictive skill to that of a set of alternative models. As recommend by Roberts, et al.26,  
because we were primarily interested in spatial covariates (i.e., land use/land cover) and spatial predictions, 

Species

Model fit

Poisson NB ZINB ZIP MN MN-MS

A. darlingi −4756 −1283 −1245 −2682 −1244 −1245

A. nuneztovari −407 −318 −311 −316 −310 −314

A. triannulatus −6922 −1616 −1591 −3905 −1551 −1552

A. benarrochi −4131 −775 −770 −1406 −748 −748

A. oswaldoi −2533 −1057 −1035 −1682 −1032 −1033

A. rangeli −1147 −587 −539 −670 −563 −568

Table 4.  The MN and MN-MS generally fit mosquito data better than other competing regression models. The 
median of the log-likelihood (model fit) is provided for each combination of model and mosquito species. The 
best model for each species is emphasized in bold. “ZI” stands for zero-inflation.

Species

Predictive performance

MN model MN-MS model

Poisson NB ZINB ZIP Poisson NB ZINB ZIP MN

A. darlingi 0.86 0.79 0.79 0.64 0.86 0.79 0.79 0.64 0.36

A. nuneztovari 0.86 0.86 0.93 1.00 0.93 0.79 0.93 1.00 0.57

A. triannulatus 0.79 0.71 0.79 0.64 0.79 0.71 0.79 0.64 0.29

A. benarrochi 0.79 0.79 0.86 0.71 0.79 0.86 0.93 0.71 0.79

A. oswaldoi 0.79 0.86 0.71 0.71 0.79 0.79 0.79 0.79 0.64

A. rangeli 0.79 0.93 0.93 0.79 0.71 0.93 0.93 0.79 0.79

Table 5.  The MN and MN-MS generally predict out-of-sample mosquito data better than other competing 
regression models. Numbers indicate the proportion of cross-validation folds (based on 14 folds) in which 
the MN and MN-MS models had lower MSE scores when compared to each alternative model and for each 
mosquito species. “ZI” stands for zero-inflation. The last column on the right shows the proportion of cross-
validation folds in which the MN-MS model had lower MSE score relative to the MN model.

https://doi.org/10.1038/s41598-019-39377-x
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Figure 3.  Statistical associations between mosquito biting-rates and environmental covariates based on the 
MN-MS model. Modeling results from individual mosquito species are shown separately in each row (A. darlingi  
= darli., A. nuneztovari = nunez., A. triannulatus = trian., A. benarrochi = benar., A. oswaldoi = oswal., and 
A. rangeli = range.). Continuous and dashed lines represent the median and the 95% credible intervals, 
respectively. Circles show potential inflection points (i.e., knot locations), a priori set to 0.2, 0.4, 0.6 and 0.8 
quantiles of the covariate. Left to right panels show the inferred associations between mosquito biting-rate 
(number of mosquitoes caught per 6-hour period) and precipitation (mm/hr), proportion of forest pixels, and 
proportion of exposed soil/urban pixels, respectively. Proportion of pixels was calculated within a 500 m buffer 
of each observation location.
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out-of-sample predictive skill was determined through a spatial validation procedure. In this procedure, one 
spatial cluster of sites was removed for prediction purposes and the rest of the data were used to train the model 
in each of the 14 validation folds. Out-of-sample predictive performance was evaluated based on mean squared 
error (MSE). The alternative models were the Poisson, Negative-Binomial (NB), zero-inflated Negative Binomial 
(ZINB), and zero-inflated Poisson (ZIP) regression models, fitted with JAGS. All models in this comparison had 
the same set of covariates and spline terms.

Results
Simulation set 1: fitting different distributions.  The MN model adequately accounted for over-disper-
sion and zero-inflation, having similar (based on overlapping 95% credible intervals) or greater goodness-of-fit 
when compared to that of the true models with estimated parameters (Table 3). The MN model only failed to fit 
well data originated from the ZIP model with large mean, with a worse fit in all ten simulated datasets. In this 
case, a comparison of the theoretical and the estimated distributions suggests that the MN model has difficulty 
representing conditional distributions that are approximately unimodal for small values of the covariate as well as 
strongly bimodal for large values of the covariate, with little probability mass for numbers in between both modes. 
Overall, these results highlight the flexibility of the MN model in adequately representing data generated from a 
wide range of distributions (over-dispersed and/or zero-inflated).

Simulation set 2: identifying relevant predictors.  Despite the MN-MS model performing slightly 
worse in identifying the relevant covariates than the Poisson regression model using all the covariates (“Poisson 
no MS”) and the AIC model selection procedure (“Poisson AIC MS”) (left panel in Fig. 1), the MN-MS model 
performed substantially better than the Poisson models in identifying the slopes that were equal to zero (right 
panel in Fig. 1). Indeed, the Poisson model using all the covariates (“Poisson no MS”) often times identified 
statistically significant slopes even when the corresponding covariates were independent of the response varia-
ble. Surprisingly, the AIC model selection method (“Poisson AIC MS”) was the worse approach in this respect, 
incorrectly identifying a relatively large proportion of “important” covariates. These results are striking because 
the Poisson models have the advantage of using the correct distributional assumption and yet the MN-MS model 
performs better overall.

Simulation set 3: modeling nonlinear response curves.  We find that the MN-MS model can relia-
bly estimate different non-linear relationships between covariates (e.g., sinusoidal, logistic, and quadratic func-
tions for covariates x1, x2, and x3, respectively; top panels in Fig. 2) and the mean response using linear splines. 
Importantly, this model can also estimate well the absence of effects (e.g., covariates x4, x5, and x6; bottom panels 
in Fig. 2). These results suggest that the lack of information on the true distribution and the relationship between 
covariates and the mean response does not jeopardize the ability of the MN-MS model to infer these non-linear 
relationships. These results are important because researchers seldom have prior knowledge on the most appro-
priate distribution and mean response function to use to model their count data.

Case study: mosquito data from the Peruvian Amazon.  We find that the MN model was the best 
fitting model for five of the mosquito species and the second best model for the sixth remaining species (Table 4). 

Figure 4.  Large shift in species composition in mean mosquito biting-rates associated with changes in the 
proportion of exposed soil/urban area. Modeling results from individual mosquito species are shown in 
different colors (A. darlingi = darli., A. nuneztovari = nunez., A. triannulatus = trian., A. benarrochi = benar., 
A. oswaldoi = oswal., and A. rangeli = range.) as a function of the proportion of exposed soil/urban pixel. 
Proportion of pixels was calculated within a 500 m buffer of each observation location.
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The MN-MS model closely followed the model fit metrics of the MN model, being the best model for one mos-
quito species and the second best model for three other species. Overall, these results suggest that the MN and 
MN-MS models generally have superior fit to these zero-inflated and over-dispersed mosquito data when com-
pared to other more standard regression models.

The model fit statistics reported in Table 4 can be misleading for the identification of the best model if data 
are being over-fitted. Because models that over-fit the data have substantially worse out-of-sample predictive 
performance, we test if these models are over-fitting by comparing the models in Table 4 according to their 
out-of-sample predictive skill using a spatial block cross-validation procedure. This procedure reveals that both 
of the proposed models (MN and MN-MS models) tend to consistently have higher out-of-sample predictive skill 
(i.e., lower MSE values) than the other alternative models across all 6 mosquito species (Table 5). Interestingly, 
as shown in the right most column of Table 5, the MN-MS model tends to have a better predictive performance 
when compared to the MN model, with lower MSE for 4 mosquito species.

Using the MN-MS model, we find that the most important factors driving mosquito biting-rates were pro-
portion of forest and exposed soil/urban area whereas precipitation had a comparatively minor role (Fig. 3). In 
general, we find a negative association between exposed soil/urban area and the biting-rate of all the mosquito 
species, except for A. darlingi which clearly is more common in more heavily disturbed areas (right panels in 
Fig. 3). Interestingly, three mosquito species (i.e., A. nuneztovari, A. benarrochi, and A. rangeli) also have higher 
biting-rates in areas with a lower proportion of forest (middle panels in Fig. 3), suggesting that these species thrive 
in areas that have some vegetation cover but that are not too pristine, such as secondary forest and agricultural 
lands. The use of linear splines allowed for the detection of several non-linear relationships in the mosquito data. 
For instance, Fig. 3 reveals that mosquito biting-rates for A. rangeli and A. darlingi tend to asymptote at interme-
diate levels of forest and exposed soil/urban area, respectively. Similarly, A. triannulatus and A. oswaldoi are only 
strongly influenced by precipitation within a specific range of this covariate.

When results from individual species are put together, they reveal that areas with a lower proportion 
of exposed soil/urban pixels on average have a substantially higher overall mosquito biting-rate (Fig. 4). 
Interestingly, there is a pronounced shift in mosquito species composition as the proportion of exposed  
soil/urban area increases, with A. darlingi mosquitoes dominating areas with intermediate or high proportion 
of exposed soil/urban area. As expected, spatial predictions of mean mosquito-biting rate for A. darlingi reveals 
extremely high biting rates close to the primary road, reiterating the strong association of A. darlingi with highly 

Figure 5.  Spatial prediction of mean mosquito biting-rates for the two most common anopheline species and 
overall biting rate. From left to right, each panel shows the spatial prediction of mean mosquito biting-rate for 
A. darlingi (darli.), A. triannulatus (trian.), and the sum of the predicted mean biting-rate of the six anopheline 
mosquito species (Sum). Axes depict UTM coordinates in meters. The road network is depicted with black 
lines and covariate extrapolation is avoided by removing all areas for which covariate values were outside the 
range used to fit the model. Spatial extrapolation is avoided by restricting spatial prediction to within 2.5 km of 
sampled sites.
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anthropized sites (Fig. 5A). On the other hand, A. triannulatus (the other most common mosquito species in our 
sample) had a substantially different spatial pattern, being virtually absent from the immediate vicinity of the 
primary road (Fig. 5B), similar to the spatial pattern that emerges when the predicted mean biting rate for all 6 
mosquito species are summed (Fig. 5C).

Discussion
Count data are ubiquitous in multiple fields but these data are often zero-inflated and/or over-dispersed. There 
are several models that can be used to make inference based on data with these characteristics but determining 
the best one is challenging and often requires one to a priori choose a particular distribution. In this article, we 
have proposed a new statistical model that relies on a multinomial distribution to fit data from a wide range of 
different discrete distributions and automatically perform model selection. While ordinal regression models have 
a long tradition in statistics18,27, its use to flexibly model count data (rather than ordinal data) and perform model 
selection is, to our knowledge, a novel idea. We illustrate the features of our model using extensive simulations 
and apply this model to a case study on environmental drivers of malaria risk.

It is clear that the MN model can fit data from a wide range of conditional distributions, as evidenced by our 
simulation study. These simulation findings, together with one of the best model fit and out-of-sample predictive 
skill when applied to the mosquito data, suggest that the MN and MN/MN-MS models might be good default 
options for drawing inference from count data. While the data generated from the ZIP model with large mean was 
not well fit, had we chosen the wrong model for these data (i.e., a NB regression model, as suggested by1), the fit 
to these data would be substantially worse than that for the MN model (results not shown). Additional research 
will be needed to more precisely determine the conditions under which the MN model is likely to fail to fit well 
and how prevalent these conditions are.

Despite having no prior knowledge of the underlying distribution of the data, the MN-MS model performed 
very well in variable selection. While the MN-MS model was slightly worse in identifying true explanatory varia-
bles, this was greatly outweighed by its superiority in eliminating false predictors, resulting in overall better infer-
ence when compared to using a simple Poisson regression with or without AIC model selection. This improved 
performance is supported by other studies that have compared Bayesian model averaging with simple and 
stepwise regression methods20,28. Finally, our simulation results suggest that the adopted linear spline approach 
was able to capture a wide range of non-linear patterns. We chose linear splines because they are simple and 
straight-forward to implement but there is a wide-range of more flexible spline functions that could have been 
used (e.g., cubic splines, b-splines, and thin-plate splines)29. Regardless of the specific type, all spline approaches 
entail the inclusion of numerous additional “covariates” (i.e., basis functions) into the design matrix, a setting in 
which our model selection procedure is likely to be particularly effective (e.g.30).

In relation to our case study, we build on the original work of Vittor et al.9 in two important aspects. First, we 
examine multiple malaria vector species rather than just A. darlingi. This is important because, despite A. darlingi 
being widely acknowledged to be the main malaria vector in the Amazon region31, several other anopheline 
species have been shown to be competent vectors and to be locally important for malaria transmission32–40. The 
second aspect that was improved refers to the statistical modeling approach. Vittor et al.9 relied on a multino-
mial regression model where biting rates were classified as “low” (0–0.09/hr), “medium” (0.1–0.9/hr) and “high” 
(1.0–3.8/hr). We have improved on this modeling approach by avoiding the arbitrariness associated with data 
discretization, and the resulting loss of information, and by allowing for non-linear associations.

Our results suggest that one might arrive at very different conclusions regarding how land-use/land cover 
(LULC) classes are associated with malaria risk depending on which anopheline species is analyzed. Unlike the 
other mosquito species, A. darlingi seem to thrive in highly anthropized areas, greatly corroborating earlier pub-
lished results9,32,41. Indeed, our model predicts that biting rate for this species concentrates close to roads, particu-
larly in areas with a high proportion of exposed soil/urban area. However, the addition of other mosquito species 
reveals a different picture in that over-all biting rate is actually higher in areas with lower proportion of exposed 
soil/urban area. This is partly a result of significant changes in species composition along the urbanity gradient, 
where A. triannulatus dominates areas with less exposed soil/urban area whereas A. darlingi is the dominant 
species at the other side of the spectrum.

We believe that the proposed method will find wide use in natural sciences because it can flexibly fit and 
predict data with or without zero-inflation and/or over-dispersion while simultaneously identifying the most 
relevant explanatory variables.
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