Skip to main content
. 2019 Feb 28;9:3046. doi: 10.1038/s41598-019-39377-x

Table 5.

The MN and MN-MS generally predict out-of-sample mosquito data better than other competing regression models.

Species Predictive performance
MN model MN-MS model
Poisson NB ZINB ZIP Poisson NB ZINB ZIP MN
A. darlingi 0.86 0.79 0.79 0.64 0.86 0.79 0.79 0.64 0.36
A. nuneztovari 0.86 0.86 0.93 1.00 0.93 0.79 0.93 1.00 0.57
A. triannulatus 0.79 0.71 0.79 0.64 0.79 0.71 0.79 0.64 0.29
A. benarrochi 0.79 0.79 0.86 0.71 0.79 0.86 0.93 0.71 0.79
A. oswaldoi 0.79 0.86 0.71 0.71 0.79 0.79 0.79 0.79 0.64
A. rangeli 0.79 0.93 0.93 0.79 0.71 0.93 0.93 0.79 0.79

Numbers indicate the proportion of cross-validation folds (based on 14 folds) in which the MN and MN-MS models had lower MSE scores when compared to each alternative model and for each mosquito species. “ZI” stands for zero-inflation. The last column on the right shows the proportion of cross-validation folds in which the MN-MS model had lower MSE score relative to the MN model.