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ABSTRACT: Alzheimer’s disease (AD) is the most common form of dementia. The pathogenesis of the disease is associated
with aggregated amyloid-β, hyperphosphorylated tau, a high level of metal ions, abnormal enzyme activities, and reactive
astrocytes. This outlook gives an overview of fluorescent small molecules targeting AD biomarkers for ex vivo and in vivo
imaging. These chemical imaging probes are categorized based on the potential biomarkers, and their pros and cons are
discussed. Guidelines for designing new sensing strategies as well as the desirable properties to be pursued for AD fluorescence
imaging are also provided.

1. INTRODUCTION

Alzheimer’s disease (AD), known as the most common type of
dementia, is a global concern today.1−3 It is characterized by
various pathological markers, including amyloid-β (Aβ)
plaques and neurofibrillary tangles (NFTs), which are two of
the main AD hallmarks.4 Fluorescence imaging probes are
commonly used in clinical investigations and diagnosis of
AD.5,6 Specifically, Aβ plaques and tau tangles can be readily
stained by fluorescent chemicals such as thioflavins for
microscopic imaging of brain tissues.7 Fluorescent chemicals
that penetrate the blood−brain barrier (BBB) and target these
misfolded proteins were radiolabeled, which became the most
innovative chemical contribution to the diagnosis of AD.8−10

Before the discovery of Pittsburgh compound B (PiB), a
benzothiazole analogue derived from thioflavin T, autopsy was
required to confirm the presence of the misfolded proteins in
the brain tissue for a definitive diagnosis of AD.11

Accumulation of Aβ plaques and tau tangles precedes brain
atrophy at least for a decade.12 Although the correlation of Aβ
plaque levels with cognitive deficits is weak and tau tangles are
not AD specific, the two species still remain as gold standards

for the early diagnosis of AD. New biomarkers have also been
suggested, and diverse small-molecular fluorescent probes are
being investigated. In this Outlook, we review the representa-
tive AD biomarkers and sensing strategies of fluorescent probes
to visualize each of the biomarkers using one-photon or two-
photon microscopy, hoping that scientific endeavors in this
field could lead to new diagnosis methods at clinical research
sites, in addition to providing powerful tools for basic research
on this detrimental disease.

2. MISFOLDED AMYLOID-β SPECIES
Aggregated Aβ species are considered to be the key
pathological marker of AD. Efficient detection of these species
is of keen interest for elucidating fundamental aspects of
AD.13,14 In the amyloidogenic pathway, cleavage of amyloid
precursor protein (APP) by β-secretase produces the N-
terminal ectodomain fragment APPsβ and the transmembrane
fragment β-stub that is subsequently cleaved by γ-secretase to
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Figure 1. Biomarkers of Alzheimer’s disease and its relevance in the pathogenesis of the disease. (a) Amyloid-β proteins, (b) neurofibrillary tangles,
(c) metal ions (Cu(II), Zn(II), Fe(II/III)), (d) γ-aminobutyric acid (GABA), and (e) monoamine oxidases.

Figure 2. Sensing strategies of AD biomarkers. Development of probes for (a) amyloid-β plaques, (b) neurofibrillary tangles, (c) metal ions
(Cu(II), Zn(II), and Fe(II/III)), (d) monoamine oxidases, and (e) astrocytes.
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produce monomeric Aβ peptides, while α-secretase produces
APPsα and α-stub in the non-amyloidogenic pathway (Figure
1a).15,16 Twenty missense mutations in APP such as KM670/
671NL (Swedish) lead to Aβ peptides of different lengths.17

Monomeric Aβ peptides aggregate into different higher order
species of oligomers, fibrils, and plaques (Figure 1c).18 The
oligomeric intermediates have attracted particular attention
due to their higher neurotoxicity than the plaques.19 Oligomers
bind to various synaptic receptors (e.g., NMDAR, PRPc, and
AMPAR) modulating several signaling pathways20 and also
activate the pattern recognition receptors (PRRs) of the innate
immunity system that triggers an inflammatory response21

(Figure 1e).
Design Strategies of Fluorescent Probes for Mis-

folded Amyloid-β Species. The generally targeted Aβ
species are in a cluster form of amyloids which have compact
and homogeneous cross-β sheet structures, providing a

hydrophobic environment in contrast to a hydrophilic
outside.22 For this reason, a typical sensing strategy is to
discriminate the contrasting environments by using environ-
mentally sensitive dyes having intramolecular charge transfer
(ICT) excited states. In hydrophilic media, these dyes show
poor fluorescence due to the formation of twisted ICT (TICT)
states which are generally nonemissive. However, these are
strongly fluorescent in hydrophobic media since the TICT is
less stabilized, and, instead, a planarized ICT (PICT) state

A probe with a flexible π-con-
jugated backbone offers strong
fluorescence enhancement with
minimized background signal
when it binds with Aβ plaques.

Figure 3. Two-photon probes for detecting AD biomarkers. (a) Illustration of two-photon absorption, pulsed laser and focal point excitation. (b)
Illustration of the distribution of amyloid-β plaques in the brain. (c−h) Two-photon amyloid-β probes: (c) 2E10, STB-8, PiB, (d) benzothizole 4,
(e) NIRFs, Aβ probe 5, (f) SAD-1, (g) CRANADs, and (h) QAD-1. (i) A two-photon dual probe for MAOs and amyloid-β plaques.
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which is strongly emissive is preferred.23 Thus, dipolar dyes
emit weakly outside Aβ clusters but strongly inside Aβ clusters,
allowing us to detect Aβ plaques (Figure 2a). In addition, the
intercalation-induced conformational restriction of dyes inside
the plaques can cause additional fluorescence enhancement in
general. Most of the known fluorescent probes for Aβ plaques
are sterically not bulky and have a linear shape to interact with
“aligned” hydrophobic amino acid substituents in the β-sheet
structures of Aβ plaques. It is also known that hydrogen
bonding can provide additional binding affinity.
The molecular probes for Aβ species have been developed in

three stages (Figure 2a): (i) Charged structures, (ii) neutral
donor−acceptor (D−A) dipolar structures with rigid back-
bone, and (iii) flexible π-conjugated backbone structures. In
the 19th century, Congo Red (CR) was introduced as an Aβ
plaque probe.24,25 The structural feature of CR is the acidic
functional groups (−SO3H). The hydrophilic functional group
enhanced water solubility and binding affinity toward Aβ
plaques, but significantly reduced their BBB uptake. Although
CR’s poor BBB permeability was enhanced through the
modification of the backbone structure and substitution
moieties (ThT,26 Methoxy-04,27 and AOI-98728), these
cationic probes still showed moderate binding affinity toward
Aβ plaques and slow clearance from the brain. A neutral
version of probes such as PiB which was introduced later
alleviated the limitations mentioned above.29,30 The neutral
probes showed improved binding affinity, BBB penetration
ability, and faster clearance kinetics compared to the charged
probes. Lastly, introducing flexible vinylene units, -(CH
CH)n-, into a π-conjugation backbone provided an advanta-
geous feature of minimizing the background signal.31 Rota-
tional motions at the π-conjugation backbone induced
nonradiative decay, and restricted rotational motion in a
congested environment of Aβ plaques led to enhanced
fluorescence. Therefore, a probe with a flexible π-conjugated
backbone offers strong fluorescence enhancement with a
minimized background signal when it binds with Aβ plaques.
The dicyanovinyl group, which is a well-known electron-
acceptor and acts as a molecular rotor, can be found in DDNP
and related D−A type dipolar dyes. An additional advantage of
this approach is the bathochromic shift to the near-infrared
(NIR) region by extending the vinyl units. In spite of the great
efforts made in this field, however, still it is challenging to
detect amyloid oligomers, in addition to detecting Aβ plaques
with complete suppression of background signals as well as the
very low level of Aβ plaques in blood samples.
Design Strategies of Two-Photon Absorbing Fluo-

rescent Probes for Misfolded Amyloid-β Species. For
imaging biological systems with fluorescent probes, use of the
longer wavelengths, preferably in the far-red or NIR region, is
beneficial to obtain minimal autofluorescence from innate
biological species, reduced light scattering, deep tissue
penetration, and less photobleaching.32 In the same vein,
two-photon and multiphoton microscopies (MPM) have
received increasing interest in recent years (Figure 3a).33

Generally, Aβ plaques in AD mouse models first appear in the
deeper layer of the cortex (>500 μm depth) and then gradually
spread out to the entire cortex (Figure 3b).34 Therefore, the
deep-tissue imaging capability for the AD biomarker is crucial
for in vivo studying of AD in the animal model at an early
stage. Accordingly, fluorescent probes having efficient two-
photon absorbing properties, which are expressed by two-
photon absorption cross section (TPACS, σ) in the unit of

GM (Göppert-Mayer), are highly desired along with far-red
and NIR emission. A general design strategy for such probes is
to extend the π-conjugated backbone of dipolar dyes that have
electron-donor and -acceptor groups at the opposite ends.
Unfortunately, however, extension of the π-conjugated back-
bone structure also increases the molecular size of probes,
which in turn reduces their photo- and chemical stability, water
solubility, BBB permeability, and degree of ICT, all of which
are undesirable features. Thus, it is challenging to compromise
these conflicting issues in order to develop TP probes with
large TPACS values and longer absorption/emission wave-
lengths.35

Chang and co-workers found the 2E10 dye through
screening of a fluorescent styryl dye library, but it had poor
BBB penetration capability.36 In order to overcome this
drawback, the structure was modified into neutral analogues,
and eventually STB-8 was developed for in vivo two-photon
imaging (Figure 3c).37 In 2013, Kim and co-workers reported a
TP probe for Aβ plaques, SAD-1, by combining PiB and
acedan that is a well-known TP dye.38 SAD-1 had a nanomolar
level of dissociation constant (Kd = 17 nM) for the Aβ plaques
and was used to construct in vivo two-photon 3D images
(Figure 3f). The benzothiazole compound 4, a hybrid structure
between PiB and STB-8, was developed as a PET tracer.39 A
vinyl spacer between the two aryl groups was introduced to
increase the molecular flexibility (Figure 3d). Muruhan and co-
workers found that the elongation of the spacer in near-
infrared fluorescence (NIRF) probes results in bathochromic
shifts with larger TPACS values.31 Later, Ahn and co-workers
reported a modified version, Aβ probe 5, which has a more
rigid backbone structure and thus shows higher photochemical
stability and also emits stronger fluorescence than the acyclic
analogue.40 The Aβ probe 5 readily penetrated BBB and
visualized Aβ plaques down to >300 μm depth using two-
photon microscopy (Figure 3e). Moore, Ran, and co-workers
reported curcumin derivatives as two-photon probes for Aβ
plaques.41 Since curcumin has anti-inflammatory, antioxidant,
and lipophilic action, which improve the cognitive functions of
AD patients, it has been also used for the treatment of AD.42

However, bioimaging application of the curcumin derivatives
was limited due to their low fluorescence quantum yields. To
overcome this limitation, curcumin derivatives, CRANAD
compounds, were prepared by converting the enolate moiety
into the corresponding boron complex and replacing the aryl
groups of curcumin with different aromatic substrates. The first
boron complex CRANAD-2 displayed a significantly increased
fluorescence in the NIR region; however, CRANAD-2 was not
able to detect soluble Aβ species such as monomeric Aβ
peptide and cerebral amyloid angiopathy (CAA). The second-
generation boron-complexes, CRANAD-3 and CRANAD-28,
displayed excellent fluorescent responses toward Aβ species
including soluble Aβ monomers, dimers, and oligomers with
high binding affinity (Figure 3g). Similarly, a quadrupolar type
dye, QAD1, reported by Kim and co-workers showed high
two-photon absorbing property (σmax = 420 GM) and dramatic
fluorescence enhancement upon the binding with Aβ plaques
(Figure 3h).43

3. HYPERPHOSPHORYLATED AND AGGREGATED
TAU PROTEINS

In healthy neurons, the microtubules are assembled and
stabilized by tau proteins. During neurodegeneration, tau
proteins are often found detached from the microtubules and
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modified by multiple post-translational modifications, such as
phosphorylation, proteolysis, and glycosylation in the intra-
cellular region.44 In the case of AD, intra- and extracellular
hyperphosphorylation of tau proteins and subsequent for-
mation of NFTs are the key biomarkers for clinical diagnosis.
Formation of hyperphosphorylated form of tau (p-tau) is
favored in the AD brain due to the imbalance of kinases and
phosphatases. p-Tau loses its binding affinity to microtubule
assembly and disintegrates to form tau aggregates and
eventually NFTs.45 The abnormal NFTs destroy a vital cell
transport system, eventually leading to neuronal cell death.46

There is approximately a 4−8-fold higher level of p-tau
proteins in the AD brain compared to that of age-matched
healthy brain.47 Similar to amyloid plaques, NFTs exhibit a
characteristic distribution pattern of growth from entorhinal
cortex to hippocampus to neocortex.
Design Strategies of Fluorescent Probes for Tau

Protein. To date, a few molecular probes for p-tau aggregates
have been reported, and they were developed mainly based on
two detection strategies: intercalation of probes into p-tau
aggregates and electrostatic binding of probes containing zinc
ion with the phosphate groups in p-tau aggregates (Figure 2b).
The sensing strategy for NFTs is not as apparent as it is for Aβ
aggregates, plausibly due to the less defined binding modes in
the case of p-tau aggregates. The most challenging part in the
approach using the intercalation with p-tau aggregate is to
secure selective binding affinity toward p-tau aggregates over
Aβ plaques. Most of the known probes for p-tau and Aβ
plaques are structurally somewhat similar (Figure 2b).
Therefore, the way to find hit compounds showing selective
binding affinity for p-tau has been to rely on a random
screening method. Recently, it was proposed that a distance of
13−19 Å between the donor and acceptor in the probes
benefits NFTs selectivity, while a shorter distance favors Aβ
plaques and that, among similar compounds, fused ring
containing probes show higher selectivity for tau over Aβ
fibrils.48 Okamura and co-workers evaluated over 2000
molecular probe candidates in search of those with higher
binding affinity for NFTs over Aβ species, and eventually they
found a series of aryl-quinoline derivatives, the THK
derivatives.49 Among them, THK-523 allowed noninvasive
quantification of p-tau aggregates, K18Δ280K, over Aβ plaques
for the first time, along with high in vitro binding affinity (Kd =
1.67 nM) and fast BBB penetration (20 min, Log P = 2.91).50

After that, much efforts have been made to develop new p-tau
probes, leading to a few more p-tau probes such as the probes
based on phenyldiazenyl-benzothiazole (PDB) and styryl-
benzimidazole (SBIM) scaffolds by Saji and co-workers,51

thiohydantoin based p-tau probe (TH2) by Ono and co-
workers,52 and 18F-T807 by Kolb.53 Recently, Kim and co-
workers disclosed a systematic design of a probe Tau-1 that
selectively senses p-tau aggregates over Aβ plaques.48 They
conducted molecular docking studies with a crystal structure of
the PHF6 fragment (306VQIVYK311), the R3 binding region
of p-tau protein. Tau-1 showed efficient BBB penetration, low
cytotoxicity, as well as in vivo imaging capability in a transgenic
mouse model. Since NFTs consist of phosphate groups in p-
tau structure, unlike Aβ aggregates, a few probes have been
developed by utilizing its binding affinity toward metal ions
such as zinc.54 In 2009, Hamachi and co-workers reported
BODIPY-1 containing binuclear Zn(II)-2,2′-dipicolylamine
(DPA) moieties, which selectively detects p-tau with
fluorescent signal enhancement through electrostatic inter-

action (Figure 2b).55 By using the same approach, Bai and co-
workers developed CyDPA2 by replacing the dye part of
BODIPY-1 with a NIR emitting cyanine dye.56 Since this
approach utilizes selective and strong electrostatic interaction
between phosphates group and zinc ion, the probes
discriminated p-tau protein (EC50 = 9 nM) over non-
phosphorylated tau protein (EC50 = 80 nM) and Aβ plaques
(EC50 = 650 nM) in in vitro assays.

4. HIGH LEVELS OF METAL IONS
Copper, zinc, and iron are essential metal ions for brain
functions. Normal signaling involves a high level of Zn(II)
(∼0.3 mM), flooding over synapses, which activates Cu(II) to
be released into the synapses (0.015−0.03 mM).18 Homeo-
stasis breakdown of these metal ions is often observed during
the neurodegeneration process in many brain disorders such as
AD.57 Epigenetic alterations by environmental exposure and
inadequate diet are reported to cause such dysregulation of
metal ions.58 In the senile plaques of AD patients, higher
concentrations of transition metal ions, particularly Cu(II)
(>0.4 mM), Zn(II) (>1.0 mM), and Fe(III) (>0.9 mM), are
found.59,60 Increased concentration of transition metal ions
affects not only the complexation and stabilization of Aβ
plaques but also aggravation of cellular oxidative stress by
converting hydrogen peroxide to hydroxyl radical through the
Fenton-like reaction: (i) Aβ-Cu(II) + H2O2 → Aβ-Cu(I) +
•OOH + H+; (ii) Aβ-Cu(I) + H2O2 → Aβ-Cu(II) + •OH +
−OH.18

Design Strategies of Fluorescent Probes for Metal
Ions. To study the relationship between those metal cations
and Aβ plaques, Lim and co-workers reported iminopyridyl
chelates, L1 and L2-a/b, which bind with both Cu(II) and
Zn(II) ions.61,62 These chelates are designed to interact with
Aβ plaques after forming the complexes with the metal ions
(Figure 2c). L2-b which has high stability in aqueous media
detects metal-induced Aβ aggregates in vitro as well as in
human neuroblastoma cells. Furthermore, they showed that
the dual probes based on this approach could be used to probe
Aβ aggregation control, metal chelation, and ROS regulation
by mass, NMR, and biochemical analyses. However, L1 and
L2-a/-b seem to be not suitable for further fluorescence studies
due to its poor fluorescent properties.

5. UPREGULATED MONOAMINE OXIDASES
Monoamine oxidases (MAOs) are found in the outer
mitochondrial membrane of neuronal, glial, and other
mammalian cells. MAOs catalyze the oxidative deamination

To date, a few molecular probes
for p-tau aggregates have been
reported, and they were devel-
oped mainly based on two

detection strategies: intercalation
of probes into p-tau aggregates
and electrostatic binding of

probes containing zinc ion with
the phosphate groups in p-tau

aggregates.
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of amine neurotransmitters such as dopamine and serotonin,
playing an important role in the metabolism of neuro-
transmitters in the central nervous system.63 MAOs oxidize
the amine functionality of neurotransmitters, for example,
dopamine, to the corresponding iminium ion, which undergoes
hydrolysis to produce the corresponding aldehyde, which in
turn is converted into homovanillic acid with the production of
hydrogen peroxide and ammonia through other enzymatic
processes. MAOs assist in maintaining the homeostasis of
neurotransmitters in the brain, thereby supporting appropriate
neurological and behavioral outcomes.64 Upregulated activity
of MAOs causes excessive production of neurotoxic by-
products such as hydrogen peroxide which promote neuronal
dysfunctions of both psychiatric disorders and neurodegener-
ative diseases (Figure 1e).65−67 Dysfunction of MAOs is
closely associated with AD, Parkinson’s disease, and
Huntington’s disease.68−72 A high level of MAOs, particularly
MAO-B, was observed in the AD brain.73 In 2012, Ahn and co-
workers used a two-photon MAO probe, which, upon
enzymatic reaction, produces a fluorescent dye that can also
sense Aβ plaques, to monitor a close correlation between the
MAO-B activity and accumulation of Aβ plaques upon aging. A
further study is necessary to understand the close correlation
and also to know whether the enzyme activity is associated
with the progress of AD.70

Design Strategies of Fluorescent Probes for MAOs. A
conventional strategy to develop MAO probes is to utilize the
enzymes’ oxidizing reactivity to amine neurotransmitters,
which can induce subsequent chemical transformations with
fluorescent changes (Figure 2d). In the development of MAO
probes, two kinds of amine substrates for MAOs have been
introduced to the electron-donor of ICT based dipolar dyes,
which undergo enzymatic cleavage accompanied by fluores-
cence changes. In 2006, Wood and co-workers introduced (3-
amino-propyloxy)arenes as the reactive substrates of MAOs.74

MAOs transform the propylamine moiety into the correspond-
ing iminium ion, leading to the cleavage of the amine moiety. A
different amine substrate, 4-aryloxy-1,2,3,6-tetrahydropyridine,
was introduced by Castagnoli and Zhu groups.75 MAO-B
oxidizes the tetrahydropyridine moiety into the corresponding
dihydro-pyridinium intermediate, which subsequently under-
goes a hydrolytic ether cleavage. In both cases, probes
exhibited a turn-on type response due to the PET quenching
effect of the amine moiety. By following similar approaches,
several fluorescent probes for MAOs have been developed. But
still those with practical utility are in strong demand. As
mentioned above, Ahn and co-workers recently disclosed that
the MAO-B activity is highly correlated with the accumulation
of Aβ plaques.70 The MAO probe, upon enzymatic reaction,
produced a two-photon absorbing dye, IBC 2, that is capable
of visualizing Aβ plaques down to >600 μm depth in in vivo
imaging. The deep imaging capability of IBC 2 is notable,
considering that the reported TP probes imaged Aβ plaques
only down to ∼300 μm. Moreover, IBC 2 allowed imaging of
small amyloid depositions such as CAA surrounding of the
blood vessels (Figure 3i).

6. REACTIVE ASTROCYTES
Recently, astrocyte-related neuropathology has gained high
research interest for studying homeostasis in the AD brain,
memory impair process, and AD diagnosis. Astrocytes perform
many functions in the brain, including the support of the
endothelial cells in forming the BBB, the provision of nutrients

to the nervous tissue, the maintenance of ion balance, and the
repair process in the brain.76 In the AD brain, astrocytes
undergo prominent changes in morphology and gene
expression, leading to the disruption of synaptic connectivity
and imbalance of neurotransmitter homeostasis.77,78 Moreover,
in the AD brain, astrocytes near Aβ plaques become reactive
(Figure 1d). Reactive astrocytes produce more putrescine, a
type of polyamine degraded from toxic molecules, which is
degraded into γ-aminobutyric acid (GABA) by MAO-B.79 Also
reactive astrocytes elevate the resting Ca(II) level and enhance
the intercellular Ca(II) waves, all of which may potentially lead
to enhanced release of various gliotransmitters containing
GABA into the extracellular space.79 GABA released into the
extracellular space inhibits neuronal activity and impairs
memory abilities. As a result, monitoring of unusual behavior
of astrocytes along with the inflammation factor is one of the
key subjects for AD-related mechanism study as well as AD
diagnosis.

Design Strategies of Fluorescent Probes for Astro-
cytes. Astrocytes can be selectively stained by using
fluorescent antibodies against glial fibrillary acidic protein
(GFAP),80,81 a calcium-binding protein S100 beta,82 excitatory
amino acid transporters (EAAT1/2),83 and aldehyde dehy-
drogenase-1 family (ALDH1L1).84 Sulforhodamine 101
(SR101), a small molecular dye, was known to stain astrocyte
selectively, but the detecting mechanism remains to be
elucidated (Figure 2e).85 Staining astrocyte with SR101 is
fast and gives bright fluorescence in the red region, but
application to in vivo staining is limited for its high dose
injection requirement and poor BBB permeability, which is
plausibly due to the negatively charged character. Since then,
no specific strategy to detect astrocytes has been reported,
demanding further efforts in this subject.

7. SUMMARY AND OUTLOOK
In this Outlook, we have reviewed the detection strategies of
fluorescent probes for AD biomarkers, along with a summary
of AD biomarkers. Even though the fluorescence imaging
techniques with molecular probes are still a ways from clinical
application, the in vivo study for the disease in animal models
with finely designed probes contributes to our understanding
of the biology of AD. We summarized demands and
perspectives of fluorescent molecular probes for AD bio-
markers. For in vivo imaging application of AD biomarkers,
small molecular probes should meet several criteria listed
below.

(i) High selectivity toward the biomarker
(ii) Biocompatibility (sufficient aqueous solubility, cell

permeability, and low toxicity)
(iii) Sufficient photostability
(iv) Notable photophysical property change after binding or

reaction with biomarkers

A conventional strategy to de-
velop MAO probes is to utilize
the enzymes’ oxidizing reactivity

to amine neurotransmitters,
which can induce subsequent
chemical transformations with

fluorescent changes.
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(v) Excitation as well as emission wavelengths in the
biological optical window

(vi) BBB penetration
(vii) Fast circulation in and clearance from the brain.
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