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As obligate intracellular parasites, virus reproduction requires host cell functions. Despite
variations in genome size and configuration, nucleic acid composition, and their repertoire of
encoded functions, all viruses remain unconditionally dependent on the protein synthesis
machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A
complex signaling network responsive to physiological stress, including infection, regulates
host translation factors and ribosome availability. Furthermore, access to the translation
apparatus is patrolled by powerful host immune defenses programmed to restrict viral invad-
ers. Here, we review the tactics and mechanisms used by viruses to appropriate control over
host ribosomes, subvert host defenses, and dominate the infected cell translational land-
scape. These not only define aspects of infection biology paramount for virus reproduction,
but continue to drive fundamental discoveries into how cellular protein synthesis is con-
trolled in health and disease.

A defining attribute of virus infection biology
is its absolute reliance on the host transla-

tion machinery to produce the polypeptides
needed for virus reproduction. This feature can-
not be overstated, as virus replication and spread
depend on conscripting host ribosomes to trans-
late viral messenger RNAs (mRNAs). Failure
to engage ribosomes would have dire conse-
quences for virus reproduction and evolution.
To ensure translation of their mRNAs, virus-
encoded functions dominate cell signaling path-
ways that control the host protein synthesis
machinery. Commandeering these regulatory
circuits preserves the functionality of compo-
nents that recruit ribosomes to viral mRNAs.
Although many host cell intrinsic immune de-
fenses target translation factors to incapacitate

the protein synthesis apparatus of the infected
cell, viral factors have evolved to limit host an-
tiviral responses. Exploiting virusmodel systems
continues to reveal fundamental parameters
governing how mRNA translation is controlled
in infected and uninfected cells. Here, we review
molecular interactions between select plant and
animal viruses and their hosts that regulate pro-
tein synthesis in infected cells, and recent devel-
opments in the field are highlighted.

A PRIMER ON VIROLOGY AND VIRUS
REPRODUCTION STRATEGIES

Viruses are vastly diverse, and although a com-
prehensive discussion of virus biology is not our
purpose, an overview of select principles is war-
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ranted. Viruses are obligate intracellular para-
sites with varied lifestyles. Whereas acute infec-
tions are often cytolytic and destroy the cell, per-
sistent infections can be tolerated. Some viruses
establish permanent infections, in which viruses
continually replicate or, alternatively, remain la-
tentwithin cells and reproduce only periodically.
These distinct reproduction strategies differen-
tially impact the host translation machinery and
translated mRNA landscape. Viruses replicate
within andmay remodel the cytoplasm or nucle-
us. Not all infections cause clinical disease, and
infection outcome varies among organisms or
cell types and is dependent on immune status.
Finally, viruses have diverse genome structures
comprised of single- or double-stranded (ds)
DNA or RNA, and RNA virus genomes can be
composed of single or multiple nucleic acid seg-
ments. Viral genome size varies from less than
10 Kb for small RNAviruses to greater than 200
Kb for large human DNAviruses and megabase
genomes of DNA viruses that infect Acantha-
moeba (Schultz et al. 2017). Notwithstanding
genome size, viruses are under selective pressure
to optimize coding capacity, and tactics like poly-
protein processing, where proteases generate
multiple proteins from one open reading frame
(ORF; e.g., in picornaviruses and flaviviruses)
and recoding (e.g., frameshifting as in retrovirus
Gag-Pol) are frequently observed (Jan et al. 2016;
Atkins et al. 2016).

Genome structure largely informs mRNA
biogenesis and mRNA features impact transla-
tion. Single-strand RNA virus genomes having
an identical polarity to mRNA, termed plus
(+)-strand RNA viruses, function as mRNA
and are directly translated on infection. RNA
virus genomes of opposite polarity, designated
minus (−)-strandRNAviruses, anddsRNAvirus
genomes require an RNA-dependent RNA po-
lymerase to produce mRNA. Discrete structural
elements within 50 and 30 untranslated regions
(UTRs) support RNA virus genome replication
and mRNA translation. Viral mRNA 50 ends
may be uncapped, protein-linked, modified by
viral capping enzymes to contain a 50 methyl-7-
GTP (m7GTP) cap, or derived from host mRNA
50 terminal fragments that are naturally capped
(Decroly et al. 2012). Uncapped viral mRNAs

deploy specialized genome elements to recruit
40S ribosomal subunits that support translation
even when canonical cap-dependent translation
is impaired (Kwan and Thompson 2018). Poly-
adenylated 30 ends are generally template-en-
coded for RNAviruses or replaced by an element
that recruits a viral 30 terminal binding protein
(Poon et al. 1999; Deo et al. 2002; Kempf and
Barton 2015). After converting (+)-strand RNA
genomes into dsDNA using reverse transcrip-
tase, retroviruses produce mRNA using the
hostRNApolymerase II transcriptionalmachin-
ery. Whereas most DNAviruses replicate within
the nucleus and use host enzymes for mRNA
biogenesis, others, including poxviruses and as-
farviruses, replicate in the cytoplasm, encoding
their own transcription, capping, and 30 end
processing machinery (Van Etten et al. 2010).

STRESS RESPONSES AND INFECTION
BIOLOGY

Controlling gene expression by mRNA transla-
tion enables swift responses to environmental
and physiological insults, including infection.
Indeed, many host proteins and mechanisms
regulating protein synthesis in response to stress
in uninfected cells (reviewed by Wek 2018) play
significant roles during infection. Likewise, fea-
tures of translational control in virus-infected
cells resemble and perhaps were co-opted from
host cell stress responses.

Host Defenses and Antiviral Immunity

While hijacking ribosomes enables virus protein
production, it also is a vulnerability exploited by
the host. Significantly, many innate host defenses
limit mRNA access to ribosomes by selectively
or globally impairing the translation machinery.
The struggle between viruses and their hosts to
control ribosomes occupies the front lines in the
innate immune response to virus infection.

By detecting conserved viral nucleic acid
features, including uncapped single-stranded
RNA, dsRNA, or cytoplasmic DNA, host senti-
nel pattern recognition receptors trigger type I
interferon (IFN) production (Chiang and Gack
2017). The resulting IFN-induced host proteins
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establish an “antiviral state” that is not permissive
for virus reproduction. Many IFN-induced pro-
teins impact translation and ribosome recruit-
ment to mRNA (Diamond and Farzan 2013;
Schoggins 2014). Central among these are PKR,
a eukaryotic initiation factor (eIF)2α kinase,
and oligoadenylate synthetase (OAS), which are
both activated by dsRNA. Importantly, dsRNA
accumulates in cells infected with RNA or DNA
viruses. Although some viruses have dsRNA ge-
nomes, dsRNA is an obligatory intermediate in
RNAvirus genome replication and can be present
as secondary structures in single-strand RNA.
dsRNA also accumulates in cells infected with
DNA viruses, which produce mRNAs from op-

posing strands of the viral genome. Upon acti-
vation by dsRNA, PKR phosphorylates the α
subunit of eIF2 (Fig. 1). This inactivates eIF2, a
GTP-regulated, three-subunit complex that loads
40S ribosomal subunits with initiator methionyl-
transfer RNA (Met-tRNAi

Met) (Merrick and Pa-
vitt 2018; Wek 2018). Normally, GTP hydrolysis
is stimulated by eIF5 following start codon recog-
nition enabling 60S subunit joining. Subsequent
eIF2•GDP recycling to the GTP-bound form re-
quires guanine nucleoside exchange factor (GEF)
eIF2B (Merrick and Pavitt 2018; Wek 2018).
However, phosphorylated eIF2 binds tightly to
eIF2B, inhibiting its GEF activity (Fig. 1). Because
eIF2B is limiting, small changes in phosphorylat-
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Figure 1.Targeting stress-responsive host defenses by viral functions controls eukaryotic initiation factor (eIF)2α
phosphorylation and translation initiation. Composed of three subunits (α,β,γ), eIF2 is a GTP-binding transla-
tion initiation factor that loads eIF3-bound 40S ribosomal subunits with methionyl-transfer RNA (Met-tRNAi)
(right panel). SubsequentmRNA recruitment, AUG recognition, and eIF5-stimulatedGTPhydrolysis is followed
by 60S subunit joining and translation initiation by the 80S ribosome. Recycling inactive eIF2•GDP to the active
GTP-bound form requires the GEF eIF2B. Phosphorylation of eIF2α on S51 blocks initiation by binding to and
inhibiting eIF2B, preventing GDP-GTP exchange. Four eIF2 kinases, each of which is activated by specific
molecules that accumulate in response to a discrete physiological stress, and the protein phosphatase 1 catalytic
subunit (PP1c), partnered with an inducible (GADD34) or constitutively active (CreP) regulatory subunit,
control eIF2α phosphorylation. Viral functions that activate (green), respond to (green), or repress (red) the
indicated host effectors are shown. aa, amino acid.
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ed eIF2α have a large impact on protein synthesis
and globally inhibit initiation.

Whereas OAS is similarly activated by
dsRNA, it interferes with protein synthesis via
a different mechanism. OAS synthesizes short
oligoadenylate (OA) polymers with a 20–50 link-
age that stimulate RNase L, an endogenous ri-
bonuclease whose activation is dependent on
OA (Sadler and Williams 2008; Han et al.
2014). Active RNase L degrades ribosomal RNA
(rRNA) andmRNA, inactivating both the trans-
lation machinery and its templates. RNase L
cleavage products, which contain 20–30 cyclic
phosphorylated termini, also stimulate inflam-
masome activation (Chakrabarti et al. 2015).

Viral Tactics to Counter Host Defenses

Viruses have acquired countermeasures that
neutralize host dsRNA-activated defenses or al-
low their replication despite them. Coronavirus
and rotavirus-encoded phosphodiesterases at-
tack OA, limiting its accumulation and RNase
L activation (Zhang et al. 2013). In addition, a
picornavirus-encoded RNA and protein inhibit
RNase L (Townsend et al. 2008; Sorgeloos et al.
2013), and Rift Valley fever virus (RVFV) trig-
gers PKR degradation (Mudhasani et al. 2016).
dsRNA-binding proteins encoded by a variety of
viruses shield dsRNA from host sensors, foiling
PKR and OAS activation (Fig. 1), and some
physically interact with PKR to prevent its acti-
vation (Jan et al. 2016). Surprisingly, dsRNA
accumulation and dsRNA-responsive immune
effectors are regulated by the host Xrn1 mRNA
exoribonuclease (Burgess and Mohr 2015). By
accelerating RNA decay, viral enzymes like pox-
virus decapping enzymes or coronavirus nsp15
endonuclease, which presumably produce Xrn1
substrates, limit dsRNA accumulation (Burgess
andMohr 2015; Liu et al. 2015; Deng et al. 2017;
Kindler et al. 2017). Alternatively, an adenovirus
(Ad) small RNA,VARNAI, binds PKRbut is not
large enough to support PKR dimerization,
which is needed for activation (Mathews and
Shenk 1991; Launer-Felty et al. 2015).

Broader strategies protect eIF2α from phos-
phorylation not only by PKR, but by the other
stress-activated eIF2α kinases PERK, HRI, and

GCN2 (Fig. 1) (Pavio et al. 2003; Berlanga et al.
2006; Won et al. 2012; Vincent et al. 2017). Ex-
amples include the poxvirus-encoded eIF2α
pseudo-substrate K3L (Sood et al. 2000; Seo
et al. 2008), the HCMV TRS1 protein that binds
and inhibits PKR and HRI (Hakki et al. 2006;
Vincent et al. 2017), and a phosphatase regula-
tory subunit encoded by herpes simplex virus
(HSV)-1 (γ34.5) and African swine fever virus
(ASFV) DP71L, which recruits the host protein
phosphatase 1α catalytic subunit to eIF2αwhere
it counteracts the activity of eIF2α kinases (Ro-
jas et al. 2015; Barber et al. 2017). Induction of
host p58IPK by infection can also limit PKR,
PERK, and GCN2 activation (Goodman et al.
2011; Roobol et al. 2015). Multiple functions
that act synergistically to restrict eIF2α phos-
phorylation are encoded by HSV-1 and poxvi-
ruses, illustrating the importance of preserving
functional eIF2 (Mulvey et al. 2003, 2007; Seo
et al. 2008; Rice et al. 2011; Sciortino et al. 2013;
Burgess andMohr 2015; Liu et al. 2015).Mutant
viruses deficient in functions that subvert host
dsRNA-activated defenses often have an altered
host range (Haller et al. 2014; Carpentier et al.
2016; Peng et al. 2016), are hypersensitive to
IFNs and in some cases are profoundly attenu-
ated (Mulvey et al. 2004;White and Jacobs 2012;
Liu et al. 2015). Activation of the unfolded pro-
tein response and PERK by hepatitis C virus
(HCV) and vesicular stomatitis virus (VSV),
however, may also favor virus replication by ac-
celerating type I IFN receptor degradation to
attenuate IFN responses (Liu et al. 2009). Final-
ly, several RNA viruses including cricket paral-
ysis virus (CrPV) and Sindbis virus (SINV) con-
tain cis-elements that obviate the requirement
for eIF2 altogether (Wilson et al. 2000; Spahn
et al. 2004; Kerr et al. 2016; Sanz et al. 2017).
Although in vitro studies suggested a mecha-
nism in which eIF2A or eIF2D supply Met-
tRNAi

Met, recent work using knockout cell lines
shows that these factors are dispensable (Sanz
et al. 2017; Gonzales-Almela et al. 2018). The
role of RNA structures and contribution of
other proteins to eIF2-independent initiation
on CrPV and SINV remain to be established.

Stress responses, including those resulting
from infection, impact mRNA and translation
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factor subcellular distribution. Stalled initiation
complexes containing messenger ribonucleo-
proteins (mRNPs), mRNA, 40S subunits, initi-
ation factors, and RNA-binding proteins (RBPs)
accumulate in phase-dense, non-membrane-
bound aggregates called stress granules (SGs)
(Protter and Parker 2016; Ivanov et al. 2018).
Although eIF2α phosphorylation often accom-
panies SG formation, implying a reversible way
of regulating initiation, SG accumulation can be
inhibited or viral mRNAs released from SGs re-
gardless of eIF2α phosphorylation (Montero
et al. 2008; Qin et al. 2011). SG core components
can directly interfacewith viral RNAgenomes or
mRNAs, repressing their translation (Albornoz
et al. 2014). Host cytoplasmic RNA sensors in-
cludingMDA-5, RIG-I, and PKR can be recruit-
ed to SGs in response to eIF2α phosphorylation,
suggesting SGs are platforms for viral RNA de-
tection (Reineke and Lloyd 2015; Oh et al. 2016;
Sánchez-Aparicio et al. 2017). Indeed, many vi-
ruses interfere with SG formation (Emara and
Brinton 2007; White et al. 2007; Finnen et al.
2014; Khaperskyy et al. 2014; Dauber et al.
2016; Humoud et al. 2016; Nelson et al. 2016;
Rabouw et al. 2016; Amorim et al. 2017; Basu
et al. 2017; Choudhury et al. 2017; Khong et al.
2017; Le Sage et al. 2017). In cells infected with
Middle East respiratory syndrome (MERS) co-
ronavirus, Kaposi sarcoma–associated herpesvi-
rus (KSHV), or HSV-1, this is achieved in part
by preventing PKR activation (Rabouw et al.
2016; Sharma et al. 2017; Burgess and Mohr
2018). Even though SG formation is inhibited
by dengue virus (DENV) and Zika virus, host
protein synthesis remains suppressed, uncoupl-
ing these processes (Roth et al. 2017). Depleting
key SG components like G3BP reduces Zika vi-
rus replication, however, indicating that host SG
components may be repurposed to benefit virus
reproduction without SG formation (Hou et al.
2017). Whereas SGs can be dynamic platforms
for staging host antiviral responses (Tsai and
Lloyd 2014; McCormick and Khaperskyy
2017), SG formation is stimulated by rabies virus
(Nikolic et al. 2016) and enhances respiratory
syncytial virus replication (Lindquist et al.
2010). The rationale underlying this seemingly
opposite strategy is unknown.

Remodeling Host mRNA Translation
in Infected Cells

By interfering with host translation, which over-
whelmingly is cap-dependent, viruses antago-
nize host defenses. In its extreme form, termed
“host shut-off,” virus infection impairs ongoing
host protein synthesis, limiting production of
host defense molecules and allowing viral
mRNAs to better compete for limiting factors
(Mohr and Sonenberg 2012; Mohr 2016). Dif-
ferent mechanisms account for host shut-off
(Fig. 2). Picornaviruses suppress host protein
synthesis by inhibiting cap-dependent transla-
tion and often target eIF4F, a multisubunit ini-
tiation factor comprised of the cap-binding
protein eIF4E, the eIF4G scaffold, and the
DEAD-box-containing RNA helicase eIF4A,
needed to load 40S subunits ontom7GTP-capped
mRNAs. Poliovirus 2A proteinase cleaves eIF4G,
separating the eIF4E-binding domain from the
eIF3-binding region (Gradi et al. 1998), whereas
3C proteinases cleave the poly(A)-binding pro-
tein (PABP) (Rivera and Lloyd 2008; Kobayashi
et al. 2012a). Cleavage of eIF4G by poliovirus
or group A rhinovirus 2A protease is stimulated
by eIF4E (Aumayr et al. 2017; Avanzino et al.
2017). During encephalomyocarditis virus
(EMCV) infection, hypophosphorylated 4E-
BP1 repressor accumulates, inhibiting eIF4E
binding to eIF4G and limiting eIF4F assembly
(Gingras et al. 1996). Enterovirus 71 (EV 71)
instead induces host microRNA miR-141 ex-
pression, which reduces eIF4E abundance to
suppress host protein synthesis (Ho et al. 2010).

Remodeling the host mRNA pool available
for translation by cytoplasmic ribosomes is an-
other shut-off mechanism. By encoding virus
factors that stimulate mRNA turnover, viral
mRNAs, which are actively transcribed in acute-
ly infected cells, dominate the mRNA pool. Ac-
celeratingmRNAdecay also sculpts viralmRNA
populations, facilitating temporal viral gene ex-
pression transitions (Jan et al. 2016). Viruses
that produce mRNAs with m7GTP-capped 50

termini, like herpesviruses and poxviruses, rely
on mRNA decay to liberate host ribosomes
without impairing cap-dependent translation.
Viral functions subsequently can stimulate

Translational Control in Virus-Infected Cells
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cap-dependent translation by subverting cell
signaling (Walsh et al. 2005, 2008). To generate
substrates for mRNA decay, some viruses en-
code endoribonucleases (influenza, HSV-1, co-
ronavirus, KSHV) (Kamitani et al. 2009; Read
2013; Abernathy and Glaunsinger 2015; Kha-
perskyy et al. 2016), whereas others like poxvi-
ruses encode decapping enzymes (Parrish and
Moss 2007). The HSV-1 endoribonuclease vhs
interacts with eIF4B and eIF4H to target mRNA
cleavage (Read 2013), the KSHV SOX protein
directs host RNA decay components, including
the exoribonuclease XRN1, to translating ribo-
somes (Abernathy and Glaunsinger 2015), and
the coronavirus nuclease nsp1 associates with
40S ribosomal subunits (Kamitani et al. 2009).
Viruses can also disrupt host mRNA biogenesis
and nuclear export to remodel the host mRNA
pool (Faria et al. 2005; Rutkowski et al. 2015;
Gong et al. 2016).

Not all viruses impair ongoing host transla-
tion during their acute reproductive cycle, how-
ever. Notably, host protein synthesis proceeds
in human cytomegalovirus (HCMV)-infected
cells. Activation of the mechanistic target of ra-
pamycin complex 1 (mTORC1) (see Proud
2018) by the viral UL38 protein promotes cap-
dependent translation and stimulates synthesis
of factors encoded by mRNAs containing a 50

terminal oligopyrimidine (50-TOP; see Proud
2018) sequence element including PABP (Mc-
Kinney et al. 2012, 2014). Higher PABP levels
allow HCMV to overcome a host response that
increases PABP-interacting protein 2 (Paip2)
abundance, which inhibits PABP binding to
eIF4G and poly(A) RNA (Fig. 3). Interfering
with the HCMV-induced PABP increase results
in restriction of virus replication by Paip2, high-
lighting an unexpected antiviral role for Paip2
in host-cell-intrinsic defenses (McKinney et al.
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2013). Avian herpesvirus microRNAs similarly
repress Paip2 to stimulate translation of a spe-
cific viral mRNA (Tahiri-Alaoui et al. 2014).
Additional host genes, like the IFN-induced
C19orf66 (RyDEN) may also target PABP to
restrict both DNA and RNA viruses, including
DENV (Suzuki et al. 2016).

Regulating eIF4E phosphorylation impacts
selective host mRNA translation and modulates
IFN production, influencing host defenses. Co-
ronaviruses, flaviviruses, noroviruses, and many
large DNA viruses promote eIF4F assembly,
positioning the eIF4G-associated kinase Mnk1
proximal to its substrate eIF4E (Fig. 3) (Mizu-
tani et al. 2004; Walsh and Mohr 2004, 2006;
Walsh et al. 2005, 2008; Royall et al. 2015;
Roth et al. 2017; Proud 2018). This stimulates
eIF4E S209 phosphorylation and translation of
IκB mRNA, which encodes an NF-κB inhibitor
(Herdy et al. 2012). Besides counteracting NF-
κB-dependent IFN production, eIF4E phos-
phorylation stimulates viral mRNA translation
(Walsh and Mohr 2004; Walsh et al. 2008).
Significantly, eIF4E phosphorylation is depen-
dent on eIF3 subunit e, showing how loading
eIF3-bound 40S marks cap-bound eIF4F by
phosphorylation to regulate selective mRNA
translation (Walsh and Mohr 2014). Unphos-
phorylated eIF4E accumulates in cells infected
with adenovirus and many RNA viruses (Jan
et al. 2016), resulting in reduced translation of
IκB-encoding mRNA, NF-κB activation, and
IFN production.

Harnessing Stress Responses to Control Viral
Persistence

Unlike acute infections, different viral lifestyles
necessitate specialized interactions with host
cells. Some, like herpesviruses, establish life-
long latency where virus reproduction is sup-
pressed in specific cell types. Periodically, latent
infections reactivate and reenter the productive
growth cycle, which allows virus reproduction
and spread to new hosts. Reactivation is influ-
enced by host defenses and physiological stress
responses induced by disrupting homeostasis.
KSHV stimulates eIF4F assembly on induci-
ble reactivation, and eIF4E phosphorylation is

needed for optimal production of the lytic
activator RTA (Arias et al. 2009). In contrast,
HSV-1 establishes latency in neurons, where
inactivation of the translation repressor 4E-BP1
by persistent mTORC1-dependent phosphory-
lation in response to neurotrophic factor suffi-
ciency promotes latency (Camarena et al. 2010).
Conversely, preventing4E-BP1phosphorylation
stimulates reactivationpresumably by restricting
translation of eIF4E-responsive mRNAs that are
repressed by 4E-BP1 (Kobayashi et al. 2012b).
Whereas the mRNA targets remain unknown,
monitoring host mRNA translation can gauge
homeostasis in long-term, latent infections to
support latency or trigger virus reproduction.

VIRAL STRATEGIES TO CAPTURE
RIBOSOMES

The absolute dependence of viruses on host ri-
bosomes for protein production demands tac-
tics to ensure their recruitment to viral mRNAs.
Shut-off mechanisms suppress host cap-depen-
dent translation and effectively remodel the
translation-ready mRNA pool. Ribosome re-
cruitment, however, cannot be left to chance
given its vital role in virus reproduction.

Mechanisms of Cap-Independent Translation
Used by Viruses

When eIF4F becomes limiting, cap-dependent
translation is restricted. Cleavage of eIF4G by
poliovirus 2A proteinase shows a severe exam-
ple of inactivating eIF4F. Uncapped poliovirus
mRNA contains a specialized, cis-acting RNA
internal ribosome entry site (IRES) in the
50UTR. In contrast to canonical cap-dependent
initiation where 40S ribosomes load onto the
mRNA 50 end, highly structured IRES elements
enable ribosome recruitment to specific internal
sites within viral RNA (Kwan and Thompson
2018). IRESs were first discovered in poliovirus
and EMCV where they allow translation initia-
tion of uncapped, single-stranded (+)-sense
RNA viral genomes immediately upon release
into the cytoplasm (Jang et al. 1988; Pelletier
and Sonenberg 1988). Subsequently, IRESs have
been identified in many virus genomes includ-
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ing retroviruses like the human immunodefi-
ciency virus (HIV)-1, which uses an IRES to ex-
press the Gag protein late in infection when cap-
dependent initiation is impaired (Brasey et al.
2003; Amorim et al. 2014; Carvajal et al. 2016).
Some DNAvirus genomes like KSHV even con-
tain IRES elements to facilitate translation of
polycistronic mRNA (Othman et al. 2014).

Although they share the general capacity to
direct initiation when canonical cap-dependent
translation mechanisms are suppressed, dif-
ferent IRESs are structurally distinct and show
varied functional requirements for eukaryotic
initiation factors to load 40S subunits (Table 1)
(Jan et al. 2016; Kwan and Thompson 2018).
For example, the poliovirus IRES requires the
eIF4G carboxy-terminal fragment, and selec-
tively recruits 40S subunits to viral mRNA in a
bona fide cap-independent manner (Sweeney
et al. 2014). Even though the hepatitis A virus
(HAV) RNA genome lacks an m7GTP cap, it

contains the only IRES found to require the
cap-binding protein eIF4E (Table 1). Stimula-
tion of the HAV IRES by eIF4E is independent
of m7GTP cap binding. Instead, eIF4E increases
the affinity of eIF4G for several picornavirus
IRESs, including HAV, and promotes IRES re-
structuring by the eIF4A helicase (Avanzino
et al. 2017). In contrast, some IRESs, such as
those in the CrPV intergenic region (IGR) and
HCV, recruit 40S subunits without eIFs (Jan and
Sarnow 2002; Pestova andHellen 2003).Where-
as the HCV IRES requires eIF3 and eIF2 to ini-
tiate translation (Fraser and Doudna 2007), the
CrPV IGR can directly assemble 80S ribosomes
and initiate translation in the absence of canon-
ical initiation factors and even the initiator
tRNA (Thompson et al. 2001; Jan et al. 2003;
Pestova and Hellen 2003; Deniz et al. 2009).

In an alternative strategy, some RNAviruses
like norovirus and calicivirus rely on a 50 termi-
nal protein covalently linked to the 50 end of the

Table 1. Major types of IRESs

IRES Examples Required initiation factorsa References

Picornaviruses
I. Enterovirus Poliovirus, EV71, bovine

enterovirus
eIF1A, eIF2, eIF3, eIF4A, eIF4B,
central domain eIF4G, ITAFs
(PCBP1/2, PTB)

Martinez-Salas et al.
2015

II. Cardio-/apthovirus EMCV, FMDV eIF2, eIF3, eIF4A, eIF4B,
central domain eIF4G, ITAF
PTB)

Martinez-Salas et al.
2015

III. HAV-like Hepatitis A virus eIF2, eIF3, eIF4A, eIF4B, eIF4E,
eIF4G, ITAF (PTB, PCBP2)

Martinez-Salas et al.
2015

IV. HCV-like
picornaviruses

Simian picornavirus type
9 (SPV9), porcine
teschovirus I (PTV-1),
Avian
encephalomyelitis virus

eIF2, eIF3 Pisarev et al. 2004;
Chard et al. 2006;
Martinez-Salas
et al. 2015

V. Aichivirus Aichivirus eIF2, eIF3, eIF4A, central domain
eIF4G, ITAF (DHX29, PTB)

Yu et al. 2011

HCV-like HCV, CSFV eIF2, eIF3, binds to 40S directly Fraser and Doudna
2007

Dicistrovirus
intragenic (IGR)

CrPV, DCV, IAPV, PSIV No initiation factors, binds 40S
and assembles 80s directly

Hertz and
Thompson 2011b

Retrovirus HIV-1, HTLV-1, SIV, FIV Central domain eIF4G, hypusine-
eIF5A, eIF4A, likely other eIFs,
ITAF (hnRNPA1, hRIP,
DDX3), viral proteins (Rev)

Ohlmann et al. 2014;
Plank et al. 2014;
Caceres et al. 2016

KSHV vFLIP KSHV vFLIP eIF4A, eIF4G, eIF4E, eIF3, eIF2 Othman et al. 2014
aITAFs: IRES transacting factors.
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genome to recruit eIF4E, eIF4G, and/or eIF3
(Daughenbaugh et al. 2003; Leen et al. 2016).
Different cis elements mediating long-range
RNA interactions have been identified in plant
(+)-strand RNAviruses (barley yellow dwarf vi-
rus,maize necrotic streak virus, carnation Italian
ringspot virus, tomato bushy stunt virus, sagua-
ro cactus virus). These cap-independent trans-
lation enhancers (CITEs) reside within 30UTRs
where they recruit 40S ribosomes directly or via
eIF4F subunits eIF4E or eIF4G (Simon andMil-
ler 2013). Functional base-pairing subsequently
repositions 30-CITE-loaded ribosomes proximal
to 50UTR structural elements (Nicholson and
White 2014). Multiple 30-CITEs in pea enation
mosaic virus recruit both 40S and 60S subunits
(Gao et al. 2014, 2017). By adopting alternate
conformations induced by viral RNA polymer-
ase binding, CITEs also repress translation to
facilitate RNA replication (Le et al. 2017).

Strategies and Mechanisms Used by Viruses
that Produce m7GTP-Capped mRNAs

Viral mRNAs with a 50-m7GTP-cap and 30-
poly(A) tail are indistinguishable from host
mRNAs and are typically translated by cap-
dependent processes. A number of different
strategies that are used to commandeer control
over the translational machinery by dominating
host cell signaling pathways (reviewed by Proud
2018) have been defined (Fig. 3). Herpesviruses
and poxviruses constitutively stimulate mTORC1
to ensure that the 4E-BP1 translational repressor
is inactivated (Moorman et al. 2008; Walsh et al.
2008; Arias et al. 2009; Chuluunbaatar et al.
2010). By targeting the host tuberous sclerosis
complex (TSC), the HSV1 Us3 ser/thr kinase
not only enforces mTORC1 activation by mim-
icking the cellular kinase Akt (Fig. 3), but also
subverts host AMPK-dependent responses to
energy insufficiency and supports virus replica-
tion during stress (Vink et al. 2017). In addition
to inactivating 4E-BP1, these viruses rely on di-
versemechanisms topromote assemblyof eIF4F,
the multisubunit initiation factor that recruits
40S ribosomes tom7GTP-cappedmRNA. These
include an eIF4G-binding protein encoded by
HSV-1 (ICP6) that stimulates eIF4E binding to

eIF4G, promotes eIF4E phosphorylation, and
stimulates viral mRNA translation (Walsh and
Mohr 2006). To capitalize on limiting cytoplas-
mic PABP availability in HSV-1-infected cells,
the viral ICP27 RNA-binding protein may stim-
ulate initiation downstream of cap binding by
harnessing PABP and eIF4G in a mechanism
similar to that used by the cellular regulator
Dazl (Deleted in azoospermia-like) (Smith et al.
2017). HCMV increases the overall abundance of
eIFs and PABP. Moreover, preventing the virus-
induced rise in PABP levels reduces eIF4F com-
plex assembly and virus growth (McKinney et
al. 2012). Instead of manipulating translation
factor abundance, vaccinia virus (VACV) and
ASFV,which replicate in the cytoplasm, increase
the effective local concentration of eIFs by se-
questering themwithindiscrete replication com-
partments (Katsafanas and Moss 2007; Walsh
et al. 2008; Castelló et al. 2009; Zaborowska
et al. 2012; Desmet et al. 2014).

Following ribosome loading on capped viral
mRNAs, AUG start codons are usually identi-
fied by 50UTR scanning (Merrick and Pavitt
2018). However, some viruses use cis elements
that allow ribosomes to bypass 50UTR segments
and resumeAUG scanning further downstream.
This nonlinear ribosome translocation, called
ribosome shunting, is used to produce heat
shock proteins in uninfected cells subjected to
stress and involves base-pairing with 18S rRNA
and mRNA cis elements (Yueh and Schneider
2000). In adenovirus-infected cells, ribosome
shunting requires a cis-acting tripartite leader
RNA sequence in late mRNAs, the virus-encod-
ed 100K protein and eIF4G (Xi et al. 2004).
Shunting also occurs in mRNAs encoded by
cauliflowermosaic virus, human papillomavirus
(HPV), DNA pararetrovirus, and a picorna-like
virus (Remm et al. 1999; Pooggin et al. 2012).

Controlling Elongation

In comparison with initiation, our understand-
ing of whether viruses control translation elon-
gation ismuch less developed.Elongation factors
are repurposed to function in RNA replication
by many bacterial and plant viruses (Takeshita
andTomita 2012; Li et al. 2013).ASFVandSINV
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concentrate eEF2 within virus replication com-
partments (Castelló et al. 2009; Sanz et al. 2009).
Whereas mTORC1 activation by many viruses
likely inhibits eEF2K (Fig. 3), stimulating elon-
gation, the impact on infection biology remains
largely unknown. Finally, expression of prokary-
ote-like elongation factors encoded by the giant
mimivirus changes in response to nutrient avail-
ability (Silva et al. 2015), hinting that viral trans-
lation factors may supplant or supplement those
resident in the host.

TACKLING THE RIBOSOME DIRECTLY

Viruses depend on host ribosomes regardless of
whether they use cap-dependent or noncanon-
ical translation initiation mechanisms. Whereas
ribosome loading onto mRNAs in eukaryotes is
typically reliant on initiation factors, a more di-
rect role for the ribosome itself in regulating
translation is emerging.

Dicistrovirus IRESs

Dicistroviruses are (+)-sense, single-stranded
RNA viruses with two ORFs that are translated
by two different IRESs. The 50-IRES drives ex-
pression of the nonstructural proteins at a low
level early in infection, whereas the IGR IRES
drives robust structural protein expression late
in infection (Garrey et al. 2010). IGR IRESs as-
semble 80S ribosomes without assistance from
eIFs and initiate from the ribosomal A site at a
non-AUG codon by priming the ribosome for
elongation (Sasaki and Nakashima 2000; Wil-
son et al. 2000; Jan and Sarnow 2002; Jan et al.
2003; Pestova et al. 2004; Cevallos and Sarnow
2005; Yamamoto et al. 2007; Deniz et al. 2009;
Zhang et al. 2016). By dissociating eIF4G from
eIF4E to impair host protein synthesis, dicistro-
viruses subvert host ribosomes to translate viral
IRES-containing RNAs (Garrey et al. 2010).

Ribosomal Proteins Control Translation
in Virus-Infected Cells

Through discrete functions andmodifications of
specific protein subunits, ribosomes themselves
selectively control viral and host mRNA transla-
tion (Fig. 4). Indeed, significant insight into how

ribosome composition impacts translation has
been gleaned from viral models. Two 40S sub-
unit-associated proteins (eS25, RACK1) dispen-
sable for cap-dependent initiation, but required
for IRES activity, have been identified (Landry
et al. 2009; Hertz and Thompson 2011a; Maj-
zoub et al. 2014; Olivares et al. 2014; Carvajal
et al. 2016). Whereas RACK1 is required by spe-
cific IRESs (dicistroviral 50-IRES, HCV), it is not
compulsory for the IGR IRES (Majzoub et al.
2014). In contrast, eS25 is essential for 40S sub-
unit recruitment by numerous IRESs, including
the dicistrovirus IGR and picornavirus, flavivi-
rus, retrovirus, and cellular IRESs (Landry et al.
2009; Hertz et al. 2013; Olivares et al. 2014;
Carvajal et al. 2016). Unexpectedly, eS25 is also
important for ribosomal shunting, suggesting a
potential shared mechanism between these two
noncanonical initiation strategies (Hertz et al.
2013). Although RACK1 is not essential for
cap-dependent translation of cellular mRNAs,
poxvirus late mRNAs, which have 50UTR aden-
osine tracts, require phosphorylated RACK1 for
translation. By expressing a viral kinase that
phosphorylates a loop region on RACK1, poxvi-
ruses remodel host ribosomes to confer a trans-
lational advantage on viral mRNAs that contain
adenosine repeats in their 50UTR (Jha et al.
2017). Consistent with this, adenosine-rich
leaders enhance translation in plants where the
RACK1 loop region is naturally negatively
charged, suggesting thatpoxviruseshave exploit-
ed a conserved mechanism to preferentially
translate certaincappedmRNAs(Jha et al. 2017).

A 60S subunit protein (eL40/RPL40) is re-
quired forVSV, rabies, andmeasles virusmRNA
translation (Lee et al. 2013). These viruses pro-
duce capped, polyadenylated transcripts like cel-
lular mRNAs, yet viral mRNAs are efficiently
translated by an unknown mechanism even
though host protein synthesis is suppressed. A
screen for eL40-dependent mRNAs in yeast re-
vealed that 7% of the yeast mRNAs required
eL40, suggesting that VSV has usurped a highly
conservedmechanism for translating a subset of
cap-dependent mRNAs (Lee et al. 2013).

Dengue virus NS1 protein associates with
ribosomal proteins from both the small and
large subunits (Cervantes-Salazar et al. 2015).

Translational Control in Virus-Infected Cells
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Whereas the DENV RNA genome has a capped
50 end, it lacks a poly(A) tail (Edgil et al. 2006).
Two 60S ribosomal subunit proteins, eL18 and
uL30 (previously called RPL18 and RPL7; Ban
et al. 2014), were shown to relocalize with NS1
following DENV infection. Whether they play a
direct role in translation is not known; however,
knockdown of eL18 reduced viral titers by one
log (Cervantes-Salazar et al. 2015). P1/P2
(RPLP1/2) are 60S subunit proteins that are
part of the ribosome L1 stalk. They are also re-
quired for DENV protein expression early in
infection (before replication) (Campos et al.
2017). Because the P1/P2 complex only associ-
ates with 80S ribosomes (not free subunits) and
is important for eEF2 recruitment and GTPase
activity, whether it effects elongation rather than

initiation needs to be evaluated (Uchiumi et al.
2002; Bautista-Santos and Zinker 2014).

NEW INSIGHTS FROM GENOME-WIDE
STRATEGIES

Recent progress using genome-wide, high-
throughput technologies has reshaped our un-
derstanding of translational control. Besides un-
covering new principles and mechanisms, these
methodologies provide a global, unbiased view
of the infected cell translational landscape.

Genome Annotation

Virus genomes contain densely packed coding
information that is often accessed via specialized
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RACK I
eS25

180°

180°

eL40

40S

60S

uL30

eLI8

PI/P2

Figure 4. Ribosomal proteins are required for translation of viral RNAs. Locations of ribosomal proteins on 40S
and 60S subunits that are important for viral messenger RNA (mRNA) translation are shown on the ribosome
structure derived from PDB entry 4v88. (Figure based on data in Ben-Shem et al. 2011.) Both intrasubunit (left)
and solvent surfaces (right) are shown. Ribsomal RNA (rRNA) (gray) and ribosomal proteins (tan) are depicted
with the proteins implicated in viral mRNA translation in color: eS25 (red), RACK1 (turquoise), eL40 (green),
uL30 (purple), eL18 (orange), and P1/P2 (dark blue/light blue).
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translation strategies. Ribosome profiling (RP)
(sequencing ribosome-protected fragments) al-
lows global translation analysis and direct, ex-
perimental annotation of translation events (In-
golia et al. 2009, 2018). It couples classic nuclease
footprinting with deep sequencing and indicates
ribosome position with single-nucleotide reso-
lution. Besides identifying precise boundaries of
translated regions, the three-nucleotide foot-
print periodicity (reflecting translocation steps)
indicates which reading frame is being decoded.
Translational start sites can be mapped using
conditions that preferentially capture initiating
ribosomes (Ingolia et al. 2011; Lee et al. 2012;
Stern-Ginossar et al. 2012). These approaches
allow transcriptome annotation in areas trans-
lated in two overlapping reading frames, a
frequent occurrence in virus genomes. Two her-
pesvirus genomes (HCMV, KSHV) (Stern-Gi-
nossar et al. 2012; Arias et al. 2014), VACV
(Yang et al. 2015), and a murine coronavirus
(Irigoyen et al. 2016) have been annotated using
RP, identifying numerous novel, mostly short
ORFs translated upstream of, or within, known
virus coding regions. Ribosome pause sites were
identified in coronavirus A59, but their signifi-
cance remains unknown (Irigoyen et al. 2016).
RP also accurately measures virus gene expres-
sion kinetics throughout infection. During
EMCV infection, RP exposed a temporally reg-
ulated frameshifting event. Although negligible
early in infection, frameshifting efficiency in-
creased to 70% at late time points, suggesting a
new mechanism to modulate relative levels of
EMCV structural and nonstructural proteins
(Napthine et al. 2017).

Host Shut-Off

Application of genome-wide technologies to in-
vestigate host shut-off has clarified our under-
standing of underlying mechanisms and their
relative contribution to impairing host transla-
tion. Concurrent measurement of translation
and mRNA levels throughout influenza A virus
(IAV), VACV, and coronavirus infections re-
vealed that genome-wide changes to the host
translation landscape are primarily driven by re-
modeling the mRNA pool (Bercovich-Kinori

et al. 2016; Irigoyen et al. 2016; Dai et al. 2017).
Although many viruses encode endoribonu-
cleases, their specificity varies. In α (HSV-1)
and γ (Epstein–Barr virus [EBV], KSHV) her-
pesvirus subfamily members, viral and cellular
mRNAs are degraded, whereas viral mRNAs are
spared by coronavirus and IAV (Rivas et al.
2016). A degenerate sequence motif was identi-
fied that enables cleavage of numerous RNA
targets by a γ-herpesvirus endoribonuclease
(Gaglia et al. 2015). Finally, transcription termi-
nation of cellular, but not viral, genes was un-
expectedly disrupted by HSV-1, broadening our
perception of the range of processes that
potentially impact host shut-off (Rutkowski et
al. 2015). Furthermore, γ-herpesvirus-induced
mRNA degradation reduced host but not viral
mRNA transcription, suggesting this cellular
feedback mechanism empowers viral gene ex-
pression (Abernathy et al. 2015).

Infected Cell Translational Landscape

The notion of host shut-off as a blunt, indis-
criminate instrument to halt host gene ex-
pression has been revised by genome-wide stud-
ies. While host shut-off curtails host antiviral
responses, impairing overall cellular protein
production could adversely impact virus repro-
duction. Precisely how the infected cell transla-
tional landscape impacts viral propagation is
just beginning to be shown. Significantly, cellu-
lar mRNAs encoding critical maintenance func-
tions like oxidative phosphorylation are spared
from host shut-off and translated in IAV- and
VACV-infected cells (Bercovich-Kinori et al.
2016; Dai et al. 2017). Although ongoing pro-
duction of these proteins requires stable mRNA
expression in IAV-infected cells, translation of
mRNAs encoding oxidative phosphorylation ef-
fector proteins is stimulated by VACV. Contin-
uous oxidative phosphorylation is important for
viral propagation in both cases. Discrimination
among targets during host shut-off is likely
greater than previously anticipated. Similarly,
numerous hostmRNAs escape KSHV-mediated
shut-off and affect viral pathogenesis (Glaun-
singer and Ganem 2004). A different tactic was
observed in HCMV-infected cells, where host
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protein synthesis is not globally suppressed, so it
was assumed that host protein synthesis pro-
ceeded uninterrupted. Using polysome profiling
(McKinney et al. 2014) and RP (Tirosh et al.
2015), HCMV was shown to dramatically re-
shape the infected cell translation landscape.
This translational reprogramming is dependent
onmTORactivation, and expression of the virus-
encoded UL38 mTORC1 activator in uninfected
cells in part recapitulates these translational al-
terations. Importantly, interfering with the virus-
induced activation of cellular mRNA translation
can limit or enhance HCMV growth (McKinney
et al. 2014). These examples show how genome-
wide methodologies have revised our under-
standing of how viruses facilitate selective trans-
lation of host mRNAs needed for infection.

Synthetic Genome Recoding

Coding genes are biased in the relative frequen-
cies of codons specifying the same amino acid. In
some organisms, codon bias reflects optimiza-
tion for specific tRNAs and elongation rates
(Gingold and Pilpel 2011). Some synonymous
codon pairs are used more or less frequently
than expected, a phenomenon termed codon
pair bias (Yarus and Folley 1985) that may influ-
ence translation efficiency (Tats et al. 2008). In-
deed, altering codon pair frequencies reduced
virus replication without affecting protein se-
quence (Coleman et al. 2008; Mueller et al.
2010; Martrus et al. 2013; Yang et al. 2013; Le
Nouen et al. 2014). As the resulting virus atten-
uation depends on numerous mutations, rever-
sion is markedly reduced, providing an exciting
opportunity for live-attenuated vaccine develop-
ment (Wimmer et al. 2009). However, in addi-
tion to codonpair bias and translation efficiency,
other viral genome features, such as suppression
of CpG and UpA dinucleotide frequencies, and
variations in the propensity to mutate, which
generate differential access to protein sequence
space can contribute to the reduced replication
phenotypes (Lauring et al. 2013; Tulloch et al.
2014; Kunec and Osterrieder 2016). Therefore,
precisely how codon usage impacts virus atten-
uation and the relative contribution of transla-
tion repression requires further investigation.

RNA MODIFICATION AND INFECTION
BIOLOGY

Although noncoding RNAs contain numerous
modifications, only a few have been found in
mRNAs. By far the most prevalent internal
modified base on mRNAs is a methyl group
on the N6 position of adenosine (m6A) (Yue
et al. 2015; Peer et al. 2018).

Modulating Viral mRNA Metabolism
by m6A

The m6Amodification occurs predominantly in
the nucleus and is mediated by the enzyme
methyltransferase-like 3 (METTL3) together
with METTL14, WTAP, KIAA1429, and
RBM15/RBM15B. Following nuclear export,
m6A is recognized by cytoplasmic “reader” pro-
teins, YTHDF1, YTHDF2, and YTHDF3 (Yue
et al. 2015; Peer et al. 2018). m6A modification
reportedly influences mRNA splicing, export,
translation and stability, all of whichmay impact
virus biology.

Advances in genome-widem6Amapping on
mRNAs and identification of the m6A machin-
ery fueled investigations into how this modifi-
cation influences virus gene expression. m6A
modification was reported to enhance HIV-1
replication by regulating viral mRNA nuclear
export or by stimulating viral gene expression
(Kennedy et al. 2016; Lichinchi et al. 2016a; Ti-
rumuru et al. 2016). YTHDF m6A-reader pro-
teins bind HIV-1 RNA at m6A sites but their
suggested function varies from promoting viral
transcript abundance and translation to sup-
pressing reverse transcription. Several m6A-
modified regions were identified in flaviviruses,
such as HCV, Zika virus, DENV, yellow fever
virus, and West Nile virus (Gokhale et al.
2016; Lichinchi et al. 2016b). Because these vi-
ruses replicate exclusively within the cytoplasm,
the m6A methyltransferase machinery is appar-
ently active in this compartment. Knockdown of
the host m6A machinery enhances HCV and
Zika virus production. HCV mRNA translation
and replication are unaffected, but m6A inhibits
HCV RNA packaging into viral particles (Gok-
hale et al. 2016). Although the mechanism(s)
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through which m6A act remain unclear, virus
model systems could help clarify how m6A con-
trols gene expression.

Discriminating Self versus Nonself
mRNAs

Most eukaryotic mRNAs contain a Cap-0
(m7GpppN) structure with a methyl group at
the guanine N-7 position. In higher eukaryotes,
the mRNA cap is further modified by ribose 20-
O-methylation on the first and sometimes sec-
ond cap-proximal nucleotides, resulting in Cap-
1 (m7GpppNmN) or Cap-2 (m7GpppNmNm).
Although 20-O-methylation does not affect
translation directly, it provides a molecular sig-
nature of “self.” Hence mRNAs that lack 20-O-
methylation are marked as “nonself,” triggering
type I IFN production (Zust et al. 2011), which
induces transcription of IFN-stimulated genes
(ISGs). Among the most highly upregulated
ISGs are those encoding IFIT (IFN-induced pro-
teins with tetratricopeptide repeats) proteins
(Fensterl and Sen 2015). Viral 20-O-methyl-
transferases encoded by coronavirus, flavivirus-
es, and VACV prevent recognition by IFIT1
(Daffis et al. 2010; Szretter et al. 2012;Menachery
et al. 2014) and cap-proximal structural ele-
ments in α virus Cap-0 mRNA restrict IFIT1
action (Hyde et al. 2014). Mechanistically, IFIT1
can sequester eIF4F, inhibiting viral Cap-0
mRNA translation (Habjan et al. 2013). Howev-
er, N1 methylation (Cap-1) may be insufficient
to protect all mRNAs from IFIT1, as the second
N2 methylation (Cap-2) and secondary struc-
ture may also impact IFIT1 activity (Daugherty
et al. 2016; Young et al. 2016; Abbas et al. 2017).
Most mammals encode several IFIT proteins
with varying affinities for distinct RNA ligands
(Hyde and Diamond 2015), suggesting that ad-
ditional RNA determinants are recognized. Be-
sides competing with eIF4E for cap binding,
IFIT1 binds eIF3 subunits, preventing ribosome
recruitment, and may inhibit 48S complex for-
mation (Hyde and Diamond 2015). Because
IFITs alter translation in uninfected cells (Guo
et al. 2000) and increase following infection,
IFITs might remodel the infected cell-transla-
tion landscape.

CODING CAPACITY

To maximize their genome coding capacity, vi-
ruses use multiple strategies, including leaky
scanning, polyproteins, reinitiation, translation-
al bypass (hopping), readthrough of stop co-
dons, and programmed ribosomal frameshifting
(PRF) (Fig. 5).

Coding and Recoding Strategies

PRF is a recoding event that shifts the reading
frame of a translating ribosome one or two
nucleotides in the + or − direction (Caliskan
et al. 2015; Dever et al. 2018). PRF frequencies
range from 1% to 80%, but are typically low. A
7-nucleotide slippery site sequence, the spacer
region, and structural barriers that stall the
ribosome, impact PRF efficiency. Retroviruses
generate high levels of Gag and low levels of a
Gag-Pol fusion from the same transcript via
PRF or by readthrough of a stop codon (Hung
et al. 1998; Csibra et al. 2014). Perturbations in
this ratio affect viral assembly, RNA packaging
and maturation. Mimiviruses use both PRF and
readthrough to encode a polypeptide chain re-
lease factor homolog (Jeudy et al. 2012). West
Nile virus, which encodes a single polyprotein,
uses an efficient -1 PRF (∼30% to 70%) to gen-
erate additional structural proteins, which in-
creases virus levels in birds and mosquitoes for
efficient transmission (Melian et al. 2010, 2014).
Dicistroviridae IGR IRESs induce a +1 frame-
shift during initiation by extending pseudoknot
I by one base pair to translate a short protein,
ORFx (Ren et al. 2012). In addition, +1 frame-
shifting in IAV gene segment 3, which encodes
the viral RNA polymerase subunit PA, produces
the PA-X endonuclease that coordinates host
shut-off (Jagger et al. 2012). Rarer -2 PRF events,
first reported in porcine reproductive and respi-
ratory syndrome virus (PRRSV, an RNA virus),
also occur (Fang et al. 2012). PRRSV -2 frame-
shifting is responsive to a viral protein transac-
tivator that binds to a C-rich region downstream
of the PRF (Li et al. 2014). Efficient +1/−2 PRF
within repetitive sequence elements encoded by
the DNAviruses EBV and KSHV also generates
alternative reading frame versions of their re-
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Figure 5. Strategies to maximize viral genome coding capacity. Internal ribosome entry site (IRES)-driven
polyprotein production, programmed ribosome frameshifting (PRF), reinitiation, stop-codon readthrough, leaky
scanning, ribosome stalling, and translational bypass/ribosome hopping are shown in the cartoon. (See the text
for a detailed description.) Stop codons (stop signs), proteolytic cleavage sites (scissors), 50-cap structure (orange
circle), open reading frames (green), ribosome subunits (brown and blue), and initiation factor loaded with
transfer RNA (tRNA) are shown.
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spective latency proteins EBNA1 and LANA1,
although their functions remain unknown
(Kwun et al. 2014).

Polyproteins, which are proteolytically pro-
cessed by viral and cellular proteases, are used
by many (+)-stranded RNA viruses and allow
for a single viral RNA to encode several differ-
ent proteins. Alternatively, some DNA and
RNA viruses express multiple proteins from
a polycistronic transcript using a reinitiation
mechanism (ribosomal termination-reinitia-
tion or stop–start) (Wise et al. 2011; Kronstad
et al. 2013, 2014; Royall and Locker 2016). For
example, caliciviruses recruit ribosomes to the
viral RNA 50 end to translate an upstream ORF
(uORF). Calicivirus RNAs contain a termina-
tion upstream ribosomal binding site (TURBS)
that retains the 40S subunit after termination.
By base pairing with 18S rRNA, TURBS facili-
tates efficient translation reinitiation at a nearby
AUG or non-AUG codon (Luttermann and
Meyers 2014; Royall and Locker 2016). In vitro,
reinitiation by a terminated 40S ribosomal sub-
unit requires eIF2, 1, and 1A but not eIF3 (Zi-
noviev et al. 2015).

To produce a single polypeptide from two
discrete ORFs, bacteriophage T4 relies on a
translational bypass or ribosome hopping. After
translating a glycine codon that precedes a stop
codon, the 80S ribosome “hops” over a stretch of
sequences and resumes translation at a down-
stream glycine codon. This hoppingmechanism
likely requires a compact structure in the gap
region to bring together the two glycine codons
in the translating ribosome and to prevent the
release factor from entering the A site (Todd and
Walter 2013).

uORFs

Some DNA and RNA viral polycistronic tran-
scripts contain upstream start codons that can
translate short uORFs. The uORFs are a barrier
to efficient initiation at a downstream ORF. Vi-
ruses modulate downstream ORF expression by
leaky scanning, which transpires when the 40S
subunit scans past an upstream AUG in a weak
or moderate Kozak consensus sequence context
before initiating at a downstream AUG (Wise

et al. 2011; Kronstad et al. 2013, 2014). For ex-
ample, members of the triple gene block (TGB)
superfamily of movement proteins encoded by
many plant viruses, which allow cell-to-cell
movement and vascular spread needed to cause
disease, are often produced by leaky scanning
along a single mRNA transcript that contains
overlapping ORFs (Lezzhov et al. 2015; Miras
et al. 2017).

Ribosome Stalling

During cap-dependent initiation, the start co-
don is recognized when the Met-tRNAi

Met

base-pairs with the start codon. When eIF2 is
phosphorylated, levels of ternary complex
(eIF2•GTP•Met-tRNAi

Met) are reduced, which
shuts down protein synthesis globally. Alphavi-
ruses use a stable RNA stem-loop structure lo-
cated within their coding sequence to stall the
ribosome on the initiation codon of the 26S
mRNA when ternary complex levels are low
and rely on an as-yet-unknown initiation mech-
anism to avoid a major antiviral defense (To-
ribio et al. 2016, 2018). Once the 60S subunit
joins the stalled ribosome, it is released to trans-
late the viral RNA.

CONCLUDING REMARKS

The categorical requirement for host ribosomes
to translate viral mRNAs continues to provide
powerful opportunities to investigate how pro-
tein synthesis is regulated. Indeed, exploiting
virus model systems has defined fundamental
features of the cellular protein synthesis ma-
chinery, how it is regulated in uninfected cells,
and how it responds to physiological stress. In-
sights gleaned from investigating viral mecha-
nisms have implications for understanding how
different forms of acute and chronic stress im-
pact translational control of gene expression in
health and disease. As virus reproduction is de-
pendent on protein synthesis, the identity and
roles of leading molecular actors during infec-
tion have been revealed. RNA structural ele-
ments and modifications detected by host sen-
tinel molecules coordinate powerful antiviral
responses intended to restrict virus access to
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the translational apparatus. Further insights can
be expected from functional analysis of the
genes encoding certain translation system com-
ponents in giant Acanthamoeba viruses (Abra-
hão et al. 2017; Schultz et al. 2017).

Virus–host interactions that control protein
synthesis could potentially be valuable targets
for new antiviral therapies and/or lead to new
vaccines and biological treatments. Included
among these are virus-encoded functions that
counter host dsRNA-dependent, antiviral re-
sponses. By capitalizing on this biology, a rep-
licating HSV-1 missing the ICP34.5 eIF2α
phosphatase subunit, but producing a viral
dsRNA-binding protein that inhibits PKR and
OAS, was developed into the first oncolytic vi-
rus immunotherapy approved by U.S. and Eu-
ropean regulatory agencies (Taneja et al. 2001;
U.S. Food and Drug Administration 2015; Eu-
ropean Medicines Agency 2016; Ribas et al.
2017). Potent innate defenses in normal cells,
including IFN-induced functions like PKR and
OAS, effectively limit replication of the onco-
lytic HSV-1 lacking the virus-encoded phos-
phatase subunit. However, impaired cell-intrin-
sic immune responses in cancer cells support
preferential virus reproduction and spread
through tumor tissue. This new class of biolog-
ical therapeutics for cancer was an unexpected
outgrowth of understanding and manipulating
a translational control mechanism in virus-in-
fected cells. New fundamental mechanisms of
initiation and regulation have been revealed. In
particular, roles for RNA modifications and the
ribosome itself in regulating translation have
emerged with discrete ribosomal proteins selec-
tively controlling translation. Furthermore, ap-
plication of genome-wide methodologies has
revealed surprising insights into how host
shut-off is achieved and how viruses that do
not impair host protein synthesis globally im-
pact the host translational landscape. While the
underlying mechanisms remain unknown, viral
systems continue to be instrumental in delineat-
ing how ribosomes differentially recruit or ex-
clude messages and how discrete modifications
of ribosomes and mRNAs comprehensively
shape translation in response to physiological
and environmental stress.
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