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The ribosomal DNA (rDNA) is the most evolutionarily conserved segment of the genome and gives origin to the nucleolus,

an energy intensive nuclear organelle and major hub influencing myriad molecular processes from cellular metabolism to

epigenetic states of the genome. The rDNA/nucleolus has been directly and mechanistically implicated in aging and lon-

gevity in organisms as diverse as yeasts, Drosophila, and humans. The rDNA is also a significant target of DNA methylation

that silences supernumerary rDNA units and regulates nucleolar activity. Here, we introduce an age clock built exclusively

with CpG methylation within the rDNA. The ribosomal clock is sufficient to accurately estimate individual age within spe-

cies, is responsive to genetic and environmental interventions that modulate life-span, and operates across species as distant

as humans, mice, and dogs. Further analyses revealed a significant excess of age-associated hypermethylation in the rDNA

relative to other segments of the genome, and which forms the basis of the rDNA clock. Our observations identified an

evolutionarily conserved marker of aging that is easily ascertained, grounded on nucleolar biology, and could serve as a

universal marker to gauge individual age and response to interventions in humans as well as laboratory and wild organisms

across a wide diversity of species.

[Supplemental material is available for this article.]

The ultraconserved ribosomal DNA (rDNA) is essential for life and
directly relevant to aging, a universal phenotype exhibited by or-
ganisms as diverse as yeasts, plants, worms, flies, and humans.
The rDNA locus is an ideal candidate to harbor fundamental and
evolutionarily conserved agingmechanisms as well as yield widely
applicable markers of aging. In eukaryotes, the array originates the
nucleolus, the site of ribosomal RNA (rRNA) transcription andma-
jor hub influencing molecular processes from cellular metabolism
to genome stability and genome-wide gene expression (Pederson
1998; Murayama et al. 2008; Ide et al. 2010; Németh and Längst
2011; Grummt 2013). Nucleolar size and activity have beenmech-
anistically implicated in aging and longevity (Buchwalter and
Hetzer 2017; Tiku et al. 2017). Yet ascertaining nucleolar function
through easily measurable and scalable markers has been a chal-
lenge. Furthermore, the rDNA array has defied sequencing and as-
sembly technologies and has remained missing from genome
assemblies of even the best-studied organisms such as human
and flies. Thus, epigenetic states of the rDNA have not been ascer-
tained in most epigenomic studies to date, and the segment is
missing from commercial array platforms that are widely used to
ascertain DNA methylation in human population and epidemio-
logical studies.

Aging is accompanied by dramatic changes in myriad biolog-
ical attributes across molecular, cellular, and organismal levels
(López-Otín et al. 2013). Various genomic and epigenomicmodifi-
cations, for instance, are gradually altered during the aging process
(Fraga and Esteller 2007). Tracing these alterations with widely
available technologies provide opportunities to understand the ag-
ing process and assess individual age. Telomere loss, for instance,
impacts cellular fitness through an undisputable mechanism and
is straightforwardly ascertained. However, despite ease of measure

and a biological mechanism linking telomere loss with aging, the
efficacy of telomere length as an aging biomarker has been equivo-
cal (Mather et al. 2011). On the other hand,CpG sites across the ge-
nome can increase or decrease their methylation levels during
aging (Garagnani et al. 2012; Heyn et al. 2012). This feature leads
to methylation age predictors that can successfully estimate chro-
nological age in humans and mice (Hannum et al. 2013; Horvath
2013; Petkovich et al. 2017; Stubbs et al. 2017; Thompson et al.
2017; Wagner 2017). These models were built from thousands of
CpGs scattered across the genome and have proven useful in ascer-
taining individual age within a species. However, the significance
of these methylation clock sites has remained unknown, and the
mechanism linkingDNAmethylation changeswith age is unclear.
These sites, moreover, differed between studies of the same species
and were not conserved between humans and mice. Finally, DNA
methylation age studies did not include information about the
rDNA array.

The 45S rDNA is a significant target of the DNA methylation
machinery that silences supernumerary rDNA units and regulates
nucleolar activity (Santoro and Grummt 2001; Espada et al. 2007;
McStay andGrummt2008). Eachunit of the tens tohundreds of re-
peats harborsmore than1500CpGs, ormore than10CpGsper 100
nt (Supplemental Fig. S1). Given the close connection between
rDNAandnucleoluswith aging,wehypothesized that rDNAmeth-
ylation (rDNAm) might have a uniquely strong association with
age and enable the construction of a universally applicable marker
of aging that is groundedonnucleolar biology (rDNAmage). To ad-
dress the issues, we combined several data sets with age informa-
tion to ascertain the methylation landscape of the rDNA and its
dynamics during aging in mice, canids, and humans.
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Results

The methylation landscape of the rDNA during aging

We started by examining a recently published data set of whole
blood reduced representative bisulfite sequencing (RRBS) from
C57BL/6 mice at ages ranging from 0.67 to 35 mo (16 age stages)
(Supplemental Table S1; Petkovich et al. 2017). We first confirmed
that >99% of rDNA reads are accurately mapped (Supplemental
Fig. S2) and that batch effects are not influential (Supplemental
Fig. S2G,H;Methods). To address the question of howmethylation
of individual CpG sites changes during aging, we correlated each
of 928 informative CpGs (depth≥50 in >90% samples) with age.
We observed that 620 sites (66.8%) uniformly distributed along
the transcribed and promoter regions of the rDNA displayed statis-
tically significant positive correlation with age (Spearman’s corre-
lation, ρage > 0, FDR<0.01) (Fig. 1A). Methylation of CpG 7044
located 10 nt downstream from the mature 5.8S sequence dis-
played the strongest association with age (ρage = 0.78, P<2.2 ×

10−16) (Fig. 1B). The age-associatedhypermethylation is consistent
for both strands of the rDNA sequence (Supplemental Fig. S2I).
Further inspection showed that age has no impact on the sequenc-
ing depth of a sample and that our read depth cutoff is sufficient to
accurately estimate ρage (Supplemental Fig. S3). These results are
consistent with previous qualitative observations that rDNA is
more methylated in aged mice and rats (Swisshelm et al. 1990;
Oakes et al. 2003). Conversely, a recent study did not observe a
clear pattern of age association for about 5 CpGs in the rDNA pro-
moter of humans and rats (D’Aquila et al. 2017). We analyzed
two additional data sets to further validate the age association of
rDNA methylation in mice (Hahn et al. 2017; Stubbs et al. 2017).
Both data sets confirmed that CpGs with higher ρage are also
more likely to be hypermethylated in old mice, despite differences
in tissue types and strains (Spearman’s ρ≥0.24, P≤6.38×10−9)
(Supplemental Fig. S4).

As a comparison, we assessed genome-wide patterns of DNA
methylation changes during aging. In contrast to the strong age-
associated hypermethylation of the rDNA, we found a slight bias
toward loss of DNA methylation with age for CpGs elsewhere
in the genome. The proportion of CpGs with positive correlation
(ρ>0.2) across the genome is markedly lower than that in the
rDNA (9.14% genome-wide versus 71.8% in rDNA) (Fig. 1C). A
closer examination of different classes of genomic segments
showed a similar and rather neutral distribution of age association
for CpGs within introns, exons, promoters, and ultraconserved
elements (UCEs) (Fig. 1D,E). Although CpG islands (CGIs) and
bivalent chromatin (regions marked by both H3K27me3 and
H3K4me3modifications) displayedmoderate shifts toward hyper-
methylation, none of them are as pronounced as rDNA. On the
other hand, repetitive elements including L1, L2, Alu (B elements),
andmammalian-wide interspersed repeats (MIRs) tend to be hypo-
methylated during aging. We also scanned the mouse genome
with windows containing a similar number of informative CpGs
as the rDNA, but all of them displayed a much smaller mean ρage
than the rDNA (Supplemental Fig. S5). Similarly, a limited fraction
of the 15-kb segments (<3%, average of 51 CpGs per segment) dis-
playedmean ρage that was equal to or higher than the mean ρage of
rDNA (Supplemental Fig. S5). Collectively, these observations
establish the rDNA as a hot spot for age-associated DNA
methylation.

CpGs from the rDNA are sufficient to accurately predict age

within species

Genomic screens for DNAmethylation markers of age across non-
rDNA segments identified 353 and 90 CpG sites with the ability to
predict chronological age in the human and mouse genomes
(Hannum et al. 2013; Horvath 2013; Petkovich et al. 2017;
Stubbs et al. 2017). These sites, however, are scattered along the ge-
nome and are neither functionally related to one another nor evo-
lutionarily conserved across species. In view of thewell-established
mechanistic link between rDNA/nucleolus activity and aging as
well as the uniquely strong association of rDNA methylation
with age, we hypothesized that rDNA CpGs might be sufficient
to predict chronological age. To address this, we randomly divided
the mouse data set into two subsets of equal size and applied an
elastic-net regression model to the 816 CpGs with depth≥50 in
all the samples of the Petkovich set (Petkovich et al. 2017). The
procedure yielded two models each using one subset for training
and the other subset for testing. Each model identified a group
ofCpGs (or clock sites), estimated site-specific weights, and yielded
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Figure 1. Ribosomal DNA methylation is strongly associated with age.
(A) Age-associated hypermethylation of rDNA CpGs in mice. Spearman’s
correlation coefficients with age (ρage) for CpGs along the rDNA sequence.
Red dots indicate CpGs with significant positive correlation with age (ρage
> 0, FDR<0.01); pink and light blue dots denote nonsignificant CpGs (FDR
>0.01) with positive and negative coefficients, respectively. The green cir-
cle indicates CpG 7044. (B) Scatterplot shows the correlation between
CpG 7044 methylation and age (ρ =0.78, P<2.2 × 10−16). (C ) The distri-
bution of ρage for CpGs within the rDNA and across the whole genome
(Wilcoxon rank-sum test, P<2.2 × 10−16). (D,E) Cumulative distribution
of correlation coefficients for various genomic elements. CpGs within
CpG islands (CGIs) and bivalent chromatin have significantly higher ρage
than the genome-wide background, although both of them are signifi-
cantly lower than rDNA CpGs (P<2.2 × 10−16). Repetitive elements, in-
cluding L1, L2, Alu (B elements), and mammalian-wide interspersed
repeats (MIR), tend to be hypomethylated during aging (P<2.2 × 10−16)
relative to the genome-wide background. All features on D, except for in-
tron, show a shift to the right of the genome-wide background. All features
on E, except for the rDNA, showa shift to the left of the genome-wide back-
ground. Also see Supplemental Figure S5.
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a predicted age (or rDNAmage) in the training and testing sets (Fig.
2A,B). Due to the stochastic nature of the sample splitting and fea-
ture selection steps, we repeated the entire procedure 10,000 times
(20,000 models in total). We also used two metrics to ascertain fit:
the median absolute error (MAE) between the predicted and ob-
served ages (in units of months) and the correlation between
rDNAm and chronological age. Examination of theMAEs and cor-
relations between rDNAm age and chronological age of the test
subsets showed strong overall fit (median Spearman’s ρ=0.92
and median MAE=3.15 mo; highest correlation ρ=0.98; lowest
MAE=1.63 mo) (Fig. 2C,D). Overall, 736 unique (of the 816)
CpGs were selected in these models (with occurrence between 1
and 19,957 models) corresponding to 786,095 total events (con-
sidering one CpG occurrence in one model as an event). From
the 736 CpGs, the 200 most frequent CpGs accounted for 95.3%
of all the models (Supplemental Fig. S6). The 22 most frequent

CpGs accounted for 43.2% of all events, and all of these 22
CpGs were selected inmore than half of all models. The best-fitted
model (lowest MAE) used 72 CpGs located across the rDNA gene
region (Fig. 2E; Supplemental Table S2).

The rDNAm clock is responsive to interventions that modulate

life-span

We next examined whether the rDNAm clock is responsive to
genetic and environmental interventions that are known to mod-
ulate life-span. The best-fitted model was used in this analysis.
Calorie restriction (CR) has long been reported to extend life-
span and retard aging. For the C57BL/6mice subjected to CR start-
ing at 14 wk old, we observed lower rDNAm age compared to their
ad libitum (AL) controls (one-tailed t-test of the differences be-
tween rDNAm age and chronological age, P=1.17×10−9) (Fig.
3A). The CR effect remained obvious when instead examining
the B6D2F1 strain mice (P=0.002) (Supplemental Fig. S7A). Con-
sistently, the slow-aging full-body growth hormone receptor
knockout (Ghr KO) mice showed significant reduction in rDNAm
age (P=0.013) (Supplemental Fig. S7B) compared towild-type con-
trols. Moreover, we also observed significantly lower rDNAm ages
for induced pluripotent stem cell (iPSC) lines relative to their kid-
ney and lung fibroblasts progenitors (P≤0.039) (Fig. 3B), which in-
dicates that the iPSC lines have rDNA methylation that more
closely resembles those in tissues of youngmice.We further exam-
ined the change of methylation for the intervention groups. In-
deed, both CR and Ghr KO mice showed significant decrease in
rDNAmethylation (Supplemental Fig. S8), especially for CpG sites
with strong age-associations (Fig. 3C; Supplemental Fig. S9) com-
pared to their respective controls. Such pattern also holds for old
CR mice compared to their corresponding AL ones from the
Hahn data set (Supplemental Figs. S8, S9; Hahn et al. 2017) and
for iPSC lines compared to their relative fibroblasts (Fig. 3D,E; Sup-
plemental Fig. S8). Overall, these results indicate that genetic and
environmental interventions known to influence longevity can
impact rDNAmethylation andmodulate the rDNAm clock in a co-
herent manner.

The rDNAm clock is evolutionarily conserved and can be applied

across species

The rDNA is the most evolutionarily conserved segment of the ge-
nome and essential for ribosome biogenesis and function across all
domains of life. Using a highly stringent cutoff for homology, we
observed that >70%of humanCpGs in the 18S and 5.8S are detect-
ed in species as divergent as zebrafish (Fig. 4A; Methods). Hence,
we hypothesized that the rDNA clock might be evolutionary con-
served and asked whether a rDNAm clock trained in one species
could be used to gauge age in a distantly related species. To address
the issue, we examined a canid data set with 80 blood RRBS meth-
ylation samples collected from dogs and wolves (0.4–14 yr old)
(Janowitz Koch et al. 2016). We built 10,000 ribosomal agemodels
with the mouse cohort using 88 mouse-canid homologous rDNA
CpGs in both mouse and canid sets. This relatively small number
of informative homologous CpGs is primarily due to the random
enrichment nature of the RRBS technology used in both data
sets, rather than the lack of sequence similarity between the two
species. Application of mice rDNAm clock models to canids yield-
ed reasonable correlation between rDNAm age and chronological
age despite more than 80 million yr of divergence between the
two taxa (median ρ=0.48) (Fig. 4B). On the other hand, clock
models built in mice with 7600 homologous CpGs identified
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Figure 2. Building the rDNAm age clock. (A,B) Example of two rDNA
methylation clockmodels: (A) Model 1; (B) Model 2. Note that the training
and testing subsets are reversed in the two models. (C,D) Performance of
20,000 models trained and tested on randomly split subsets of the mice
data set. (C ) Correlation coefficients (ρ) between the predicted age (i.e.,
rDNAm age) and chronological age of the test subsets were plotted
against the number of clock CpGs of eachmodel. (D) Themedian absolute
errors (MAEs) of the rDNAm ages were plotted against the number of clock
CpGs of each model. (E) Location and weights of the 72 clock sites identi-
fied by the best-fitted model. The three gray blocks represent the 18S,
5.8S, and 28S components (from left to right). The color coding represents
the strength of age association in each site.
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between mice and canids and residing outside the rDNA array
yielded meager correlations (median ρ=0.22) (Fig. 4B). Reversing
the training and testing sets (i.e., using canids for training and
mice for testing), confirmed themuch better fit of models built us-
ing homologous CpGs from the rDNA relative to those built with
homologous CpGs in other regions of the genome (median ρ, 0.62
versus 0.26) (Fig. 4B). Supplemental Fig. S10 shows the application
of the two best-fitted models. In agreement with the better perfor-
mance of rDNACpGs for estimating age across species, we also ob-
served that the age association of rDNA CpGs in the two species is
evolutionarily conserved and displays significant correlation be-
tween mice and canids (ρ=0.49, P=1.88×10−6) (Fig. 4C). On the
other hand, homologous non-rDNA CpGs display a much weaker
conservation of age association (ρ=0.09, P=7.01×10−16) (Fig. 4D).

Finally, we applied the mouse rDNAm clockmodel to human
samples. Although rDNA states are not specifically measured in
any of the hybridization platforms widely used in human popula-
tion studies, WGBS data can be used to retrieve rDNA states. We
first examined two cell lines (the B lymphocyte derived cell
GM12878 from a healthy adult and the embryo stem cell H1).
In agreement with a conserved clock, a mouse model built exclu-
sively using mouse-human homologous CpGs yielded much
younger rDNAm age for the embryo stem cell than the adult
LCL (Supplemental Fig. S11A). To verify this, we applied themouse
model to the skin samples of six adult individuals. As a result, we
observed a strong positive correlation between rDNAm age and
chronological age (Supplemental Fig. S11B) (ρ=0.79, P=0.0041);
all skin samples had a predicted age larger than that of the stem
cell (Supplemental Fig. S11B). Consistent with the performance

of the rDNAm model, CpGs with higher
ρage in mice are also more likely to be
more hypermethylated in the human
adult LCL compared to the human
embryo stem cell (Supplemental Fig.
S11C), and in the human skin samples
of older individuals compared to the
skin samples of younger ones (Supple-
mental Fig. S11D). These observations re-
veal a conserved ribosomal clock that
operates similarly even across distantly
related mammalian species, such as
mice, humans, and canids.

Discussion

Our study underscores the fundamental
role of the ultraconserved rDNA in aging
and its ability to serve as a universal
predictor of individual age that can be
efficiently calibrated for a diversityof spe-
cies and also be applied across species.
The observations are compatible with
the well-documented impact of rDNA
on aging that is exerted via the manifold
consequences of the rDNA on nucleolar
activity, cellularmetabolism,heterochro-
matinmaintenance, and genome integri-
ty (Murayama et al. 2008; Ide et al. 2010;
Larson et al. 2012; Grummt 2013). The
data also agree with the observation of
significant overrepresentation of ribo-
somal protein genes among candidates

whose expression is associated with age in human, mouse, and
Drosophila studies (Zahn et al. 2007; Carlson et al. 2015; Peters
et al. 2015). The data presented here further reveal the unique po-
tential of using rDNA CpGs to build methylation age clocks that
can be used interspecifically. Collectively, the ribosomal clock like-
ly reflects conserved functions of the nucleolus during aging, can
serve as a universalmarker of aging, and could be deployed to aging
and population studies in natural settings and wild organisms
across a variety of species.

Evolutionarily conserved and mechanistic indicators of age
represent a critical part of aging research. A satisfying marker of
age should (1) be evolutionarily conserved, (2) have a mechanistic
relationship with age, (3) be useful in predicting chronological age
under control conditions, and (4) be responsive to interventions
that are known to decrease or increase longevity. The rDNA array
is an excellent candidate to fulfill these criteria. First, the element
is ultraconserved and functions consistently across the tree of life
from prokaryotes to eukaryotes. Second, the direct role of the
rDNA in aging has been unequivocally demonstrated through
mechanistic studies. Third, the data show that rDNA methylation
is sufficient to predict chronological age and that rDNAm clocks
can be applied across species. Finally, rDNA methylation and the
rDNAm clock are responsive to calorie restriction and other
interventions.

The rDNAm clock reached comparable accuracy to other
models calibrated in mouse using sites across the whole genome
(Petkovich et al. 2017; Stubbs et al. 2017; Wang et al. 2017).
Specifically, the correlation coefficients between predicted and
chronological ages for the Petkovich and Wang models were
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Figure 3. rDNA methylation and the rDNAm clock are responsive to interventions that modulate life-
span. (A) C57BL/6 mice subjected to calorie restriction (CR) (starting at 14 wk old) displayed lower
rDNAm age than mice fed ad libitum (AL) (one-tailed t-test of the differences between rDNAm age
and chronological age, P=1.17×10−9). CR mice were at four age stages (10, 18, 23, and 27 mo old,
each with five samples). The theoretical line is shown in dashed gray. The black and blue lines show
the regression line for the relationship between chronological and biological age of control and CR
mice, respectively. (B) Derived iPSC cell lines have significantly lower rDNAm ages than their progenitor
kidney and lung fibroblasts: (∗) P≤0.039; three samples in each group. (C–E) Correlations between the
ρage of each of the 816 rDNA CpGs used to train the rDNAm clock and their change in methylation
caused by interventions. (C) C57BL/6 strain 27-mo-old CR mice were considered (versus ad libitum
26-mo-old mice, i.e., the ones with the closest ages). (D,E) Derived iPSC cell lines relative to fibroblast
progenitors. All samples are from the Petkovich set (Petkovich et al. 2017).

Wang and Lemos

328 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.241745.118/-/DC1


around 0.95 and 0.91, respectively (Petkovich et al. 2017; Wang
et al. 2017). For comparison, themedian correlation coefficient be-
tween predicted and chronological age in the 20,000 rDNAm
clocks is ρ= 0.92, and themodelwith the best correlation displayed
a ρ=0.98. The Stubbs multitissue clock reported a MAE of 3.33 wk
(Stubbs et al. 2017). ThisMAE corresponds to an 8.1% error relative
to the oldest mice (MAE of 3.33 wk/age of oldest mice of 41 wk),
which is slightly higher than our estimate of 4.7% error for the
rDNA clock (MAEof 1.63mo/age of oldestmice of 35mo). The per-
formance of the rDNAm clock possibly emerges due to the signifi-
cant enrichment of rDNA CpGs associated with age, which is
much less dramatically observed in other genomic elements and
genomic regions.

Noteworthy, the rDNA array has defied sequencing and as-
sembly technologies. The result of this is that the segment remains
missing from genome assemblies even in the best-studied organ-
isms such as mouse and human. Thus, the rDNA is not typically
incorporated into genomic studies and is similarly missing from
prior analysis of age-associated DNA methylation. For instance,
in humans, two genomic screens for DNA methylation markers
of age did not include the rDNA but identified 353 CpG and 71
CpG sites scattered along the genome with a superb ability to pre-
dict chronological age (Hannum et al. 2013; Horvath 2013). The
sites, however, are usually located within genes that have no
mechanistic link with aging. Hence, skepticism regarding these
353 or 71 nonoverlapping sites has remained partially due to the
lack of a functional relationship among the clock sites in each
model and the lack of overlap among sites in both models.
Similarly, recent methylation age clocks built in mice successfully
identified methylation clock sites in mice but again did not in-
clude the rDNA array. The efforts led to the identification of

some 90 disparate sites that, as in humans, were scattered at seem-
ingly random positions across the genome (Petkovich et al. 2017;
Stubbs et al. 2017). There was also no relationship between clock
sites in humans and clock sites in mice: Neither the sites nor the
nearby genes were conserved between human and mouse, and
the clock from one organism could not be applied to the other or-
ganism. Although these clock sites are a useful tool they lack a
functional relationship with one another, and their identification
has not led to a mechanistic understanding of the underlying mo-
lecular processes that theywere indexing.Our data reconcile obser-
vations from transcriptome studies that identified ribosomal genes
among the most age-associated transcripts (Zahn et al. 2007;
Carlson et al. 2015; Peters et al. 2015) and raise the prospects
thatmethylation clocksmight reflect changes in nucleolar biology
during aging (Buchwalter and Hetzer 2017; Tiku et al. 2017).

The age-associated rDNA hypermethylation is supported by
the alleviation of such pattern in iPSC lines and in CR and Ghr
KO mice. The reversal to a more hypomethylated state and near-
zero rDNAm age in iPSC lines might also suggest the importance
of low rDNAmethylation levels in order to maintain the multipo-
tent state. Laron syndrome, which is marked by dwarfism and oth-
er characteristic biochemical features, is primarily caused by
mutations in theGHR gene that lead to growthhormone resistance
(Laron 2004). Here, we observed that Ghr mutant mice displayed
hypomethylated rDNA and decelerated rDNAm age; further stud-
ies in humans could be relevant to link the clinical outcomes of
Laron syndrome to rDNA states. In addition to aging, rDNAhyper-
methylation has also been observed in youngmicewhosemothers
suffered from poor nutrition (Holland et al. 2016), in the hippo-
campus of individuals who died by suicide (Carvalho et al.
2010), and linked to diseases including breast carcinoma (Yan
et al. 2000; Bacalini et al. 2014) and myelodysplastic syndromes
(Raval et al. 2012). Themultiple implications of rDNAmethylation
likely reflect the versatile roles of ribosomal biogenesis and nucle-
olar activity across various biological processes.

Although the rDNA is universal across eukaryotes, DNA
methylation is not. Several unicellular (e.g., some yeasts) andmul-
ticellular organisms (e.g., worms) entirely lackCpGmethylation or
show it at nearly undetectable levels. This is also the case of
Drosophila, one of the most widely used complex multicellular
model organisms, that either lacks CpG DNA methylation or pre-
sents it at an extremely low level (Urieli-Shoval et al. 1982; Goll
et al. 2006; Capuano et al. 2014). Yet, the rDNA has been implicat-
ed inDrosophila and yeast aging (Larson et al. 2012). Similarly, the
most evolutionarily conserved responses to aging (i.e., slower
aging upon calorie restriction) are also well-documented in
Drosophila and yeast, despite absent or low CpG methylation.
Although it is evident that the DNAm clock could not be suitable
for Drosophila and yeast, the mechanistic link between the rDNA
and aging inDrosophila or yeast needs to be reconciledwith the ab-
sent or limited role of DNA methylation in these organisms
(Kennedy et al. 1997; Capuano et al. 2014). One possibility is
that Drosophila and yeast might use unique mechanisms to modu-
late nucleolar function during aging. This raises the possibility that
even more universal age-associated indexes of nucleolar function
might exist beyond rDNAmethylation, as captured in recent stud-
ies of nucleolar size and function during aging (Buchwalter and
Hetzer 2017; Tiku et al. 2017).

Overall, it is notable that CpGs identified in this small∼13 kb
segment of the genome is as good a predictor of age asmethylation
changes monitored across the entire genome. From a practical per-
spective, clocks based on non-rDNA sites are harder to calibrate

B

A C

D

Figure 4. The ribosomal rDNAm clock is conserved between distantly
related taxa. (A) Phylogenetic tree of seven vertebrate species with the
number of homologous CpGs in each species (relative to human).
(B) Interspecific mouse-canid clock models built using homologous
CpGs in the rDNA yielded significantly better performance than those
built using homologous genome-wide CpGs. Here, the model is trained
in one species and applied to the other species. The fit is measured as
the correlation coefficient (ρ) between rDNAm age and chronological
age in the testing species. (C) Homologous CpGs from the rDNA show
conserved age association (ρage) between mice and canids (ρ=0.49, P=
1.88 ×10−6). (D) Homologous CpGs elsewhere in the genome show age
association that is weakly correlated between mice and canid (ρ=0.09,
P=7.01 ×10−16).
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because the sites are scattered across the genome and harder to
generalize because the sites are not evolutionarily conserved. We
envision that rDNAm clocks could be uniquely useful to ascertain
age in natural populations for which information on chronologi-
cal age is not available or is too scarce to enable the calibration
of species-specific methylation aging models. The rDNAm clock
is not only efficiently developed and calibrated within species
with chronological data, such as human and mouse, but it could
also be efficiently applied to a diversity of species and nonmodel
organisms in the wild, those which lack chronological data.

Methods

rDNA sequences

The consensus 45S rDNA sequences of human, mouse, rat, chick-
en, and frog were from GenBank (accession numbers: U13369.1,
BK000964.3, NR_046239.1, KT445934.2, and X02995.1, respec-
tively). To obtain the rDNA sequences of chimpanzee, canid,
and zebrafish, we used BLAT (https://genome.ucsc.edu/cgi-bin/
hgBlat) (Kent 2002) to map human rDNA against their genome as-
semblies (panTro5, canFam3, and danRer11). Specifically, the
ChrUn_NW_015976995v1 contig in chimpanzee (18S: 7807–
9675, 5.8S: 6583–6739, and 28S: 283–5419; minus strand), the
ChrUn_JH373485 contig in canid (18S: 22624–24492, 5.8S:
20599–20755, and 28S: 14596–18348; minus strand), and Chr 5:
820,041–826,807 in zebrafish (18S: 824921–826807, 5.8S:
824487–824644, and 28S: 820041–824135; minus strand) were
found with the highest similarities and selected. The downloaded
sequences of human and mouse were further modified. Specifi-
cally, we moved the promoter (the last 500 bp in the GenBank ac-
cession) to be upstream of the transcribed regions (making a
contiguous segment with promoter, 5′-ETS, 18S, ITS1, 5.8S, ITS2,
28S, and 3′-ETS).

Identifying homologous CpG sites between species

For the rDNA, we only considered the three mature rRNA regions
(18S, 5.8S, and 28S). For each region, we used ClustalW (http
://www.genome.jp/tools-bin/clustalw) (Thompson et al. 1994) to
align the sequences of pairs of species, and the homologous CpG
sites were identified by applying the Perl module Bio::AlignIO.
To remove potential error due to misalignment, we further filtered
the sites by requiring the two flanking nucleotides (immediately
upstream of and downstream from each CpG) also being identical
for the considered species. To obtain genome-wide homologous
CpGs, we applied the UCSC liftOver chain file, which contains
alignment information between genomic assemblies, and the
pslMap tool (http://hgdownload.soe.ucsc.edu/admin/exe/linux
.x86_64/) to convert the coordinates between two species. We
again examined the local context of each CpG and similarly re-
quired the two flanking nucleotides to be identical.

Genomic regions

Mouse genes from Ensembl (Aken et al. 2017) release 90 were used
to identify exon, intron, and promoter regions. For each gene, the
region from 1000 bp upstream of to 500 bp downstream from the
transcription start sitewas considered its promoter. The location of
CpG islands, and repetitive elements including Alu (B elements),
L1, L2, andMIR, were downloaded fromUCSC Table Browser (un-
der CpG islands and RepeatMasker tracks, respectively) (Smit et al.
2016; Tyner et al. 2017). The processed chromatin peaks of
H3K27me3 and H3K4me3 modifications of megakaryocyte
cells were from the Gene Expression Omnibus (GEO) database

(accessionnumbers: GSM946523 andGSM946527).We converted
the peaks from mm9 to mm10 using the UCSC liftOver
tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Information
of ultraconserved elements (UCE) were downloaded from http://
ccg.vital-it.ch/UCNEbase (Dimitrieva and Bucher 2013). CpGs
along the entire genome and in each of these classes were in-
dividually correlated with age (Spearman’s rank correlation) using
the Petkovich data set (Petkovich et al. 2017). Differences of
correlation coefficients among classes were determined with
Wilcoxon rank-sum tests.

Description of sequencing data

Our analyses of rDNA methylation rely on whole-genome or re-
duced representative bisulfite sequencing (WGBS or RRBS) data
sets. Methylation arrays that are widely used, for example, the
Illumina Infinium BeadChips (450K and 27K), do not currently
contain probes that ascertain methylation states of the rDNA
loci. The compiled data sets are described below and in
Supplemental Table S1. The Petkovich data set (Petkovich et al.
2017) includes 255 samples: (1) 153 samples of C57BL/6 mice
from 18 age stages ranging from 0.67 to 35 mo, and 10 B6D2F1
strain mice with two age stages; (2) 20 samples of C57BL/6 and
12 B6D2F1 mice subjected to calorie restriction; (3) 25 samples
from two slow-agingmousemodels (whole-body growth hormone
receptor knockout (Ghr KO) and the snell dwarf, and their respec-
tive wild-types controls); and (4) six fibroblasts of lung and kidney
(three from each) from 10-wk-old mice, and the six iPSC lines de-
rived from them. Except for fibroblasts and iPSC cells, whole blood
was used for RRBS in all the other samples. The Stubbs data set
(Stubbs et al. 2017) includes 62 RRBS samples from four tissues
(cortex, heart, liver, and lung) of C57BL/6-BABR mice at four age
stages (1, 14, 27, and 41 wk). The Hahn data set (Hahn et al.
2017) includes liver WGBS of C3B6F1 female mice that were 5
and 26mo old, each with three AL and three CR samples (CR start-
ed at 12 wk old). The canid data set (Janowitz Koch et al. 2016) in-
cludes 45 dogs (0.4 to 14 yr old) and 35 wolves (0.5 to 7 yr old) of
both sexes. The WGBS of human skin samples include sun-ex-
posed and sun-protected epidermal tissues from six adult donors
(Vandiver et al. 2015). The sun-exposed sample of the 83-yr-old
donor was identified as an outlier. The WGBS of human embryo
stem cells (H1), and B lymphocyte cells (GM12878) were down-
loaded from the ENCODE portal (https://www.encodeproject
.org) (Sloan et al. 2016). GM12878 was derived from a mother
with unknown age and then immortalized.

Processing sequencing data sets

After evaluating sequencing quality using FastQC v0.11.5 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), we used
Trim Galore! v0.4.4 (https://www.bioinformatics.babraham.ac
.uk/projects/trim_galore/) to trim the 3′ adaptors as well as low
quality bases (BAQ<20). The “‐‐rrbs” option was used for RRBS
reads to remove the filled-in bases. We then used Bismark
v0.16.3 (Krueger and Andrews 2011), which invokes Bowtie 2
v2.3.1 (Langmead and Salzberg 2012) to map the bisulfite
sequencing reads onto the rDNA reference sequences of each spe-
cies (with default parameters). The methylated and unmethylated
reads were counted using the “bismark_methylation_extractor”
script (with optional parameters “-p ‐‐no_overlap ‐‐CX
‐‐bedGraph ‐‐gzip ‐‐cytosine_report”). For the canid data set we
mapped the reads to the ChrUn_JH373485 contig. To examine
whether reads derived from other genomic regions were incorrect-
ly mapped onto the rDNA reference, we realigned the rDNA
mapped reads from the mouse data sets onto the mouse genome,
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with the modified BK000964.3 sequence included. We observed
that >99% of the reads can be specifically realigned onto
BK000964.3 as well as a homologous segment on Chromosome
17 (Supplemental Fig. S2A–C), which can be masked. Overall, pro-
tocol mapping choices were made to maximize computational ef-
ficiency. Estimates of rDNA methylation were not sensitive to
whether the rDNA mapping step was conducted separately or in
conjunction with genome mapping. For instance, mapping the
RRBS reads of samples from the Petkovich data set (Petkovich
et al. 2017) to the rDNA or to the genome (with rDNA) yielded
virtually identical estimates of rDNA methylation (Spearman’s
correlation, median=0.99, range: 0.96–0.99). Thus, rDNA meth-
ylation is consistently estimated regardless of whether one maps
reads to the rDNA only or to the assembly. For the human data
sets, we similarly remapped human rDNA reads onto a custom-
ized version of hg19, which included the modified U13369.1
but with the scaffold GL000220.1 removed. We used hg19
because the assembled locations of 45S rDNA are known in this
assembly (scaffold GL000220.1 and the segment Chr 21:
9,815,921–9,838,532), whereas the rDNA is more scattered and
less well presented on GRCh38. We observed that >98% of hu-
man rDNA reads can be specifically realigned onto U13369.1
and the above segment on Chromosome 21 (Supplemental Fig.
S2D,E). For the canid data set, we observed ∼94.68% (ranging
from 92.49% to 98.27%) rDNA reads specifically remapped on
to ChrUn_JH373485 (Supplemental Fig. S2F). The relatively lower
specificity for the canid rDNA reads is likely because of the much
less well-assembled genome with several contigs containing rDNA
fragments. Overall, the analyses support that almost all of the
rDNA mapped reads are indeed from the rDNA sequence. We
also separately mapped the reads to mouse (mm10) or canid
genomes (canFam3) using Bismark to obtain the methylation of
genomic CpGs.

Examination of batch effects

Petkovich et al. (2017) explored batch factors and suggested no
perceptible effects on the methylation of genome-wide CpGs.
Here, we further examined whether batch effects can be observed
for rDNA CpGs. This data set includes three confounding vari-
ables: adaptor numbers, library numbers, and flow cells. Because
library numbers are almost linearly correlated with flow cells, we
instead only considered adaptor numbers and library numbers.
We first adopted the linear mixed-effects model method from
Petkovich et al. (2017). That is, in a linear mixed-effects model,
age and methylation level (of each CpG site) are the response
and fixed independent variable, and the confounding factors are
random effects. The coefficient of each CpG is then compared
with that from a simple linear model, in which age and methyla-
tion are the response and independent variable. Indeed, the two
coefficients are highly correlated (Spearman’s ρ=0.94, P<2.2 ×
10−16) (Supplemental Fig. S2G). Moreover, as has been suggested
(Petkovich et al. 2017), there is certain redundant anti-correlation
between library number (flow cell) with age.We also observed that
younger mice tend to have larger library numbers, but those mice
older than 10 mo had a rather random distribution (ρ=−0.07, P=
0.5).We then only usedmice older than 10mo to estimate the cor-
relation of each CpG with age, and the newly calculated coeffi-
cients were compared with those calculated using mice from all
age stages. As a result, we observed a very strong correlation be-
tween these two coefficients (ρ= 0.83, P< 2.2 ×10−16) (Supplemen-
tal Fig. S2H), only with the newly calculated ones having slightly
smaller values (possibly due to the reduced sample size and age
range). Together, these analyses suggested inconsequential, if
any, batch effects on the results.

Building the rDNA age clock models

The rDNAmage clockmodels were built by using the elastic-net re-
gression algorithm implemented in the glmnet library (Friedman
et al. 2010) in R (RCore Team2017). Thismethod appliesmultivar-
iate linear regression with the predict and response variables being
the methylation levels of CpGs and the logarithm transformed
age, respectively. In addition, the model exerts extra constraint
on the coefficients of predict variables by adding penalty to the co-
efficients using the combination of lasso and ridge regulation
methods. Specifically, for the set of n mice and p CpG sites, the
model finds the set of coefficients, β, that canminimize the follow-
ing term:
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Here, xij is the methylation level of ith mouse at jth CpG; and
yi is the log transformed age of ith mouse. Moreover, λ>0 is a tun-
ing parameter that regulates the overall penalty against the coeffi-
cients, and 0<α<1 represents a compromise between ridge (α=0)
and lasso (α=1). In themodeling process, αwas set to 0.5 (Horvath
2013; Petkovich et al. 2017), and λ was chosen through 10-fold
cross-validation following the one-standard-error rule, for exam-
ple, the value one standard error larger than the one that minimiz-
es the mean cross-validated error.

For the models applied within the mouse samples, we first
randomly split the 153 control-fed C57BL/6 mice samples into
two equal subsets and built two models each using one subset
for training and the other one for testing. The feature selection na-
ture of the method makes it possible to pick a subset of CpGs to
build the model (the rest have coefficients of 0). However, repeat-
ing the training process using even the same samples is likely to
yield different combinations of CpGs, since the number of input
CpGs are much larger than the sample size. To account for such
stochasticity, we iterated the division-training-testing procedure
for 10,000 times to see how well the method works on average.
As in previous methylation clocks (Horvath 2013; Petkovich
et al. 2017), the best-fitted model contains some CpGs with low
weight or low ρage. It is not entirely clear why including these
CpGs with low age correlation helps the clock accuracy
(Supplemental Table S3), but they have emerged in all models.

To build models that apply interspecifically, we selected ho-
mologous CpGs that have enough reads mapped (≥6 for genomic
CpGs and ≥50 for rDNA CpGs) in all samples of both species. The
training and testing were processed similarly as within species.
Noticing the vast differences in life-span and developmental
pace for distinct species, the correlation between rDNAm age
and chronological age could be more suitable to evaluate the per-
formance of the model than MAE. When necessary, we scaled the
predicted values to obtain the rDNAm ages in the testing species.
Specifically, we used the following formula:

rDNAm age = P − Q0.05

s
.

Here, P is the predicted value of a sample; and Q0.05 is the 5%
quantile of P. Moreover, s is the scale factor:

s = Q0.95 −Q0.05

Agemax − Agemin
,

with Q0.05 being the 95% quantile of P, and Agemax and Agemin

being the maximum and minimum chronological ages of the
testing samples.
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