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Genome-wide CRISPR/Cas9 knockout screens are revolutionizingmammalian functional genomics. However, their range of

applications remains limited by signal variability from different guide RNAs that target the same gene, which confounds

gene effect estimation and dictates large experiment sizes. To address this problem, we report JACKS, a Bayesian method

that jointly analyzes screens performed with the same guide RNA library. Modeling the variable guide efficacies greatly

improves hit identification over processing a single screen at a time and outperforms existing methods. This more efficient

analysis gives additional hits and allows designing libraries with a 2.5-fold reduction in required cell numbers without sacri-

ficing performance compared to current analysis standards.

[Supplemental material is available for this article.]

CRISPR/Cas9 knockout screens can assess the influence of every
gene’s knockout on any selectable cellular trait in a single assay
(Shalem et al. 2014; Wang et al. 2014). The guide RNA (gRNA) li-
braries used in these experiments typically contain several
gRNAs per gene, each steering the Cas9 protein to inflict a loss-
of-function mutation. Genes required for the selected trait are
mapped by introducing the gRNA library into cells, applying selec-
tion, sequencing the gRNA locus, and processing the data using
methods such as MAGeCK (Li et al. 2014) or BAGEL (Hart and
Moffat 2016).

A central source of confounding in the analysis of screen out-
puts is conflicting evidence from alternative gRNAs targeting the
same gene, caused by different gRNA efficacies (Chuai et al.
2016). This variability has been linked to a range of technical
and biological factors (Bae et al. 2014; Doench et al. 2014;
Sanjana et al. 2014; Moreno-Mateos et al. 2015; Farasat and Salis
2016; Horlbeck et al. 2016), and although several gRNA efficacy es-
timation algorithms have been proposed (Doench et al. 2014,
2016; Wang et al. 2014; Chari et al. 2017; Rahman and Rahman
2017), their predictive ability remains limited (Haeussler et al.
2016; Labuhn et al. 2017). As a result, screens still use five or
more gRNAs per gene, and at least three replicates are recommend-
ed (Ong et al. 2017), rendering the required scale a bottleneck for
systematic assessment of gene function, particularly in short-term
primary cultures and for assessing genetic interactions.

To overcome this issue, we present joint analysis of CRISPR/
Cas9 knockout screens (JACKS), a Bayesian method that models
gRNA efficacies inmultiple screens that use the same gRNA library.
We show that JACKS estimates reproducible gRNA efficacies,
which leads to improvements in gene essentiality quantification
and advances over existing methods. The more efficient inference
allows scaling down library sizes while maintaining competitive
performance.

Results

JACKS models log2 fold changes of gRNA read counts between
treatment and control conditions as a product of treatment-depen-
dent gene essentiality and treatment-independent gRNA efficacy
(Fig. 1A). We obtain approximate posterior probability distribu-
tions for these components, while accounting for experimental
noise (Methods), and can use a negative control set to build a
null distribution of gene essentialities for P-value derivation. In
the evaluations below, we applied JACKS to data from pooled
knockout screens performed with the Yusa v1.0 (Tzelepis et al.
2016; Iorio et al. 2018), Whitehead (Wang et al. 2015, 2017),
Toronto Knockout v1.0 (TKOv1) (Hart et al. 2015), GeCKOv2
(Sanjana et al. 2014; Aguirre et al. 2016), and Avana (Meyers
et al. 2017) gRNA libraries.

JACKS infers reproducible gRNA efficacies by coprocessing

screens that use the same gRNA library

The JACKS model provides estimates of gRNA efficacies, which
match intuition for individual genes. For example, the smaller
changes in representation for KRAS gRNAs 1 and 6 over the course
of multiple cancer cell line screens (Fig. 1A) are appropriately cap-
tured in the differences of the posterior distributions. The esti-
mates are concordant with both screen data derived efficacies
from CERES (Meyers et al. 2017), as well as Doench–Root scores
calculated from gRNA features only (Fig. 1B; Supplemental Fig.
S1; Doench et al. 2016). They are consistent across randomly se-
lected batches of cell lines for gRNAs targeting essential genes de-
fined by Hart et al. (2014) (“Hart essential genes”) and for Hart
nonessential genes (Supplemental Fig. S2). This reproducibility is
Cas9-dependent (Supplemental Figs. S3, S4), suggesting that it
arises from a response to gRNA action, even for known nonessen-
tial genes. Together, these findings support the use of JACKS effi-
cacy values for improved screen analysis.
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Jointly processing screens with JACKS improves gene essentiality

estimates

The gene essentiality estimates from JACKS measure the gene
knockout’s log2 fold change in frequency between control and
treatment conditions, corrected for noise and gRNA efficacy. For
example, as expected, knocking out the KRAS gene was inferred
to have a greater impact on growth in cell lines known to harbor
KRAS driver mutations in the Aguirre data set (Fig. 1A; Aguirre
et al. 2016).

To examine JACKS’ ability to identify screen hits, we ranked
genes by their essentiality and evaluated how well this discrimi-
natesHart essential and nonessential genes.We firstmeasured per-
formance using the 0.2 partial area under the curve (“Ranking
accuracy”; Methods) (Supplemental Fig. S5) and above the curve
(“Ranking error”) metrics; equivalent results were obtained using
alternative thresholds and criteria (Supplemental Figs. S6, S9;
SupplementalTableS1). Increasingthenumberofexperimentspro-
cessed by JACKS fromone to all available screens in each data set re-
duced themedian ranking error by 10%, 10%, 23%, 26%, and11%,
respectively (Fig.1C),withthefirst five to10 linesprovidingthema-
jority of the gains. Improvements were largest for the GeCKOv2
and TKOv1 libraries, likely due to the lower starting performance
of those screens and more variable gRNA efficacy (Doench et al.
2016;Meyers et al. 2017). Similar resultswereobtainedusinganup-
dated set of essential genes (Supplemental Fig. S10).

JACKS outperforms existing single-screen methods

We next compared the performance of JACKS to existing single-
screen analysis methods. We considered averaging the log2 fold

changes of all gRNAs targeting the gene (“MeanFC”), MAGeCK
(Li et al. 2014), BAGEL (Hart and Moffat 2016), ScreenBEAM (Yu
et al. 2016), and PBNPA (Jia et al. 2017). JACKS improved accuracy
for 97%, 99%, 91%, 98%, and 98% of all cell lines tested, respec-
tively, with a 12%, 21%, 9%, 13%, and 16% lower error on average
(Fig. 2A). When applied to data from each cell line separately, the
results for JACKS were comparable to the alternatives (Supplemen-
tal Fig. S11). This shows that although JACKS was designed to
efficiently integrate information across experiments, there is no
downside to using it on a single screen.

JACKS computes the magnitude of a gene’s essentiality. To
derive a P-value for significance testing, we use an empirically de-
rived null distribution based on essentiality scores in a known set
of negative control genes (Methods). A suitable threshold for call-
ing hits can then be selected, for example, by controlling the false-
discovery rate (Benjamini and Hochberg 1995). This is similar to
the approach taken by BAGEL, except that we rely only on the pro-
vision of a negative control set rather than both negative and pos-
itive controls, as the latter is often more difficult to provide in
practice. Using this method, we identify more essential genes
than MAGeCK, BAGEL, ScreenBEAM, and PBNPA in 96%, 92%,
73%, and 90% of screens tested, respectively (Fig. 2B). Without
ground truth, it is difficult to prove that these additional hits are
real. However, we note that the number of findings is strongly cor-
related with a metric of screen quality (Spearman’s R=0.81 for
JACKS, vs. 0.71, 0.60, 0.54, and 0.60 for MAGeCK, BAGEL,
ScreenBEAM, and PBNPA, for number of hits vs. MeanFC ranking
accuracy) (Supplemental Fig. S12), suggesting that JACKS is ex-
tracting additional signal in cases in which such signal is more
likely to be present. Overall, all examined data sets benefited
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Figure 1. Joint analysis of several CRISPR/Cas9 knockout screens. (A) JACKS inferred decomposition of median-normalized log2 fold change (heatmap)
for six gRNAs targeting the KRAS gene (y-axis, GeCKOv2 library) in 25 cancer cell lines from Aguirre et al. (2016) (x-axis). The inferred gRNA efficacies and
gene essentialities (with uncertainty) are displayed to the right and below the heatmap, respectively. Lines with KRAS driver mutations are highlighted in
bold and indicated with an asterisk. (B) Fraction of gRNAs (y-axis) targeting Hart essential genes (Hart et al. 2014) in each range of Doench–Root score
(Doench et al. 2016) (x-axis) for specified ranges of CERES and JACKS inferred gRNA efficacy scores (“X”; colors). Number of gRNAs in each column is
marked above the bar. (C ) Percentage of ranking error (fraction of area above the ROC curve below 0.2 false-positive rate; Methods) decrease (y-axis; me-
dian, quartiles, and 95th deciles marked in box plot) for increasing number of experiments in JACKS model (x-axis) for five different libraries.
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from joint screen analysis for accurate identification of essential
genes.

JACKS assumes common gRNA efficacies but not common

gene essentialities across screens

Two existing methods jointly model outputs from multiple
screens: MAGeCK-MLE (Li et al. 2015) and CERES (Meyers et al.
2017). We could run MAGeCK-MLE on only the smallest, Yusa
v1.0 data set because of large CPU and memory requirements (81
CPU days on four to 23 cores, 75 GB of RAM for 16 screens), and
observed it to offer no improvement over standard MAGeCK
(Fig. 2A). CERES performed equivalently to JACKS on GeCKOv2
data and was more accurate on the Avana data set (0.7% higher
and 8.4% lower median ranking error, respectively) (Fig. 3A).

The CERES model assumes that gene essentiality signals are
not independent across experiments. To evaluate the impact of
this assumption, we introduced five additional screens into both
the GeCKOv2 and the Avana data sets, each containing shuffled
gRNA responses from a randomly selected cell line. CERES was
able to identify essential genes from the randomized data with
high accuracy, whereas JACKS achieved the expected near-random
performance (Fig. 3B). We supplemented JACKS with an option to
make a similar assumption of shared gene essentiality (JACKS [HP],
Methods), and confirmed that this change resulted in comparable
error to CERES on both GeCKOv2 and Avana data (Fig. 3A) and

correspondingly improved the ability to extract signal from the
lines with shuffled data (Supplemental Fig. S13).

Sharing gene effects across screens is beneficial for finding
universal hits but could mask true context-specific signal. To test
this possibility, we examined BRAF essentiality in melanoma, in
which BRAFmutations are predictive of sensitivity to BRAF inhib-
itors (Chapman et al. 2011), and in colon cancer, in which BRAF
mutations are less prevalent and predict only a weak response to
BRAF inhibitors (Prahallad et al. 2012). Accordingly, JACKS’ esti-
mated BRAF essentiality in the Avana data set is large in BRAFmu-
tant melanoma lines, weak in BRAF-mutant colon cancer lines,
and negligible in most other lines (median, −1.39 vs. −0.35 vs.
0.03) (Fig. 3D), regardless of the data set used in estimation.
CERES’ preference for a common gene response alters its estimates
depending on which other lines are selected for coprocessing. The
BRAF essentiality score is lower in mutant melanoma lines when
processedwith all lines compared towhen processedwithmelano-
ma lines alone (median,−0.86 vs.−1.11). Conversely, its essential-
ity is estimated to be larger in other lines when processed together
withmutantmelanoma lines instead of all data (median,−0.36 vs.
−0.11, −0.52 vs. −0.32 and −0.33 vs. −0.19 for nonmutant mela-
noma lines, nonmutant colon lines, and mutant colon lines, re-
spectively) (Fig. 3C). Including melanoma lines with colon
cancer lines in JACKS estimation increases the separation of
BRAF mutants from nonmutants in the colon cancer lines (AUC
0.72 vs. 0.78 in colon only and in colon+melanoma lines),
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Figure 2. JACKS outperforms existing approaches. (A) JACKS outperforms existing alternatives at distinguishing essential genes. Percentage of ranking
error increase (y-axis) compared to JACKS for five to six alternative analysis methods (x-axis) on five different libraries (panels). Every marker represents one
cell line or time point sample; median increase is marked with a dark blue line segment, and estimated distributions are shaded. (B) JACKS identifies more
essential genes comparedwith existingmethods. Number of essential genes identified at a 0.1 false-discovery rate (y-axis) for JACKS and alternative analysis
methods (x-axis). Every marker represents one cell line or time point sample.

Allen et al.

466 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238923.118/-/DC1


suggesting that BRAF mutation status is still predictive in colon
cancer, if only of a much weaker response.

JACKS allows reduced experiment sizes

Finally, we tested if improved analysis methods can be used to re-
duceexperimentsizewithoutcompromisingfindings.First,wecon-
sidered the number of replicate screens.We performed 12 replicate
experiments with the Yusa v1.0 library on the HT29 cell line

(Methods) and combined these with the
above-describedYusav1.0data set,which
contains two to three replicates each for
15 additional cell lines. Identifying essen-
tialgenesfromthreereplicatesofHT29us-
ing JACKS, when coprocessingwith three
replicates from each of the other 15 lines,
outperformed processing of the 12 HT29
replicates in isolation. Similarly, applying
JACKS to just two replicates from HT29
and each of the other lines outperformed
analysis of five HT29 replicates (Fig. 4A).
We then considered whether the gRNA
numbers could similarly be reducedwith-
out sacrificing performance and evaluat-
ed the accuracy of JACKS with specific
numbers (two to 10) of randomly picked
gRNAs for each gene in each of the five li-
braries. Although performance decreased
with reduction of gRNA numbers, just
three randomly selected Avana gRNAs
for each gene and two replicates were
enough to outperform MAGeCK with
three replicates and all five gRNAs (Fig.
4B). Combined, using two replicates and
three gRNAs, would reduce the required
experiment size 2.5-fold, directly impact-
ing the scale and cost of screens.

Discussion

We presented JACKS, a Bayesian model
for joint analysis of screens performed

with the same gRNA library.We showed that JACKS improves iden-
tificationofhits in a single screenbyusing information fromall the
available experiments. As a result, JACKS outperforms existing
analysis methods in the vast majority of lines tested across five dif-
ferent data sets and gRNA libraries and does so without sacrificing
context-specific signal. This allows greatly reduced experiment siz-
eswhile retainingperformance equivalent toMAGeCK, the current
analysis standard. Ability to carry out screens with smaller libraries
and to efficiently analyze them is especially important for some of

BA

Figure 4. JACKS enables reduced screen size and cost. (A) Average JACKS ranking accuracy (y-axis) on HT29 cell line for increasing numbers of copro-
cessed cell lines (x-axis), and different number of technical replicates (colors). Two hundred cell lines were randomly sampled for each point on the graph
and results averaged. As a reference, the samemetric is plotted in increasing numbers of HT29 replicates (y-axis) processed by JACKS without the other cell
lines (dashed lines). (B) JACKS ranking accuracy (y-axis) for increasing numbers of gRNAs (x-axis) from five different libraries (panels) using two replicates per
cell line, compared to MAGeCK used on all five gRNAs and all available (two to four per cell line) replicates (dashed line). Box plot as in Figure 1C.
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Figure 3. Assuming similar gene essentiality across experiments biases results. (A)Methods that assume
similar gene essentialities across cell lines perform favorably compared to JACKS. Percentage of ranking er-
ror increasecompared to JACKS (y-axis) forCERES (yellow)and JACKSwithahierarchical prior (HP) (red) for
theGeCKOv2 andAvana libraries.Markers and shading as in Figure 2A. (B) CERES identifies essential genes
from randomdata. Ranking accuracy of CERES (x-axis) compared to JACKS (y-axis) on cell lines (individual
markers) from the Avana (blue) and GeCKOv2 (green) libraries, as well as five randomized experiments
(yellowand redmarkers) included for comparison. Dashed line, y= x. (C) CERES’preference for a common
gene response across cell lines results in more similar scores for differentially essential genes, whereas
(D) JACKSmaintains differential signal between cell lines. CERES (C) and JACKS (D) gene essentiality scores
for the BRAF gene in melanoma and colon cancer cell lines (colors) when processed with selections of cell
lines (panels) from the Avana data set, grouped by BRAFmutation status (shading and patterns).
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themost interesting applications, such asmapping genes in prima-
ry cells that canonly be obtained in limitednumbers andpropagat-
ed for a short time, or in genetic interaction screens, in which
controlling the scale of experiments is one of the central issues.

The parameters inferred by JACKS are useful for interpreting
screen results. We found that the estimated gRNA efficacies were
reproducible across cell lines both for nominally essential and
for nonessential genes. This indicates that effects of even small
magnitude, if consistent across many experiments, can be used
for inference. The posterior distribution of a gene’s essentiality
can be used to derive a point estimate of knockout effect in the
screen or also to assign a probability of positive or negative effect.
However, we found that ranking genes by probability gives poorer
performance (Supplemental Fig. S14) than ranking by effect size as
it unduly favors genes with effects that are reproducibly different
from zero, but only small in size.

Copy number variation has been shown to play a role for es-
sential gene inference from CRISPR/Cas9 screens (Aguirre et al.
2016; Meyers et al. 2017; Iorio et al. 2018; Wu et al. 2018) and is
modeled in CERES. Although JACKS does not account for this sig-
nal distortion, the experiments described here should be indepen-
dent of copy number effects. JACKS can be used in combination
with CRISRPcleanR (Iorio et al. 2018) or other preprocessingmeth-
ods that remove these effects.

Recompiling published data sets and rerunning a full analysis
for each new screen may be prohibitive for many in practice. We
have precomputed gRNA efficacies for these existing libraries,
which can be used to process a single screen to achieve equivalent
performance to the full JACKS model (Pearson’s r2 > 0.99)
(Supplemental Fig. S15). These are available at https://github
.com/felicityallen/JACKS/tree/master/reference_grna_efficacies.

Methods

Joint analysis of CRISPR-Cas9 knockout screens (JACKS)

We define the observed log2 fold change of the ith guide targeting
the gth gene in the lth treatment condition as yg,i,l, where this val-
ue is computed as the mean across median-normalized replicate
measurements as follows:

yg,i,l = 1
RT

∑RT

r=1

Tg,i,l,r − 1
RC

∑RC

r=1

Cg,i,r .

Here, Tg,i,l,r= log2(tg,i,l,r+32)−median(T:,:,l,r) and Cg,i,r= log2(cg,i,r+
32)−median(C:,:,r) are log-transformations of the raw read counts
tg,i,l,r and cg,i,r for the rth replicates in the treatment and control
samples, respectively, and the median functions operate over all
guides across all genes in each respective replicate; RT and RC are
the number of replicates in those respective samples. The pseudo-
count of 32 is added as a prior that prevents strong signals due to
low library representation. This is a softer alternative to the more
common practice (e.g., Hart et al. 2017) of removing all gRNAs
with less than 30 reads.

We model yg,i,l as a Gaussian distribution

P(yg,i,l|xg,i, wg,l, tg,i,l) = N (yg,i,l; xg,iwg,l, t−1
g,i,l),

where

• wg,l � N (mw, s
2
w) is the condition-dependent gene effect of the

gth gene in the lth treatment condition, where μw and s2
w are

set to 0 and 1000, respectively, reflecting a weak prior (average
change, 0; standard deviation of change over 32 in log2 scale)
that is constant across conditions.

• xg,i � N (mx, s
2
x ) is the condition-independent gRNA efficacy of

the ith guide targeting the gth gene. A stronger prior is specified,
withmx = s2

x = 1 to reflect the prior belief thatmost gRNAswork
moderately well, as well as to prevent overfitting. Scaling xg,i up
by a constant factor andWg,l down by the same factor results in
an identical optimization. So tomake themodel identifiable, the
means of the approximate posteriors of x are normalized during
inference within each gene, such that their median-emphasized
average is one, according to

1
Ng

∑Ng

i=1

E xg,i
( )+median E xg,:

( )( )− 1
2
max E xg,:

( )( )− 1
2
min E xg,:

( )( )( )
= 1,

whereNg is the number of gRNAs targeting gene g, and xg,: refers
to all efficacies for gene g. Thismedian-emphasized average is in-
tended to select an appropriate reference point for w that ac-
counts for all observations for each gene but up-weights the
median and down-weights the extremes.

• τg,i,l∼Γ(ag,i,l, bg,i,l) is the precision of yg,i,l, which uses a nonpara-
metric approach to assign an empirical Bayes prior that accounts
for themean-dependent variabilityof the log2 countvalueswith-
in the replicate measurements of both the treatments and con-
trols. This provides a data-driven and computationally feasible
alternative to the parametric approach ofmodeling counts using
a negative binomial distribution, as used in MAGeCK (Li et al.
2014). Given that, in general, only two to four replicate screens
are performed, direct empirical estimates of these variances are
poor. Consequently, we instead compute a smoothed mean-de-
pendent estimate of this empirical variance based on all gRNAs
in each condition and then assign the priors on τg,i,l as follows:

1. Compute the mean and variance over replicates for all medi-
an-normalized log counts in each treatment and control sam-
ple, that is, the means and variances of Tg,i,l,: and Cg,i,:, where
“:” in the subtexts denotes all replicate measurements.

2. Sort these mean–variance pairs by their mean value.
3. Apply a simple moving average filter to the variance values

such that each estimated variance becomes ameanof the em-
pirical variances of either (800 gRNAs or 1% of the total num-
ber of gRNAs, whichever is smaller) with closest mean in that
cell line (or control), with an additional correction that en-
sures monotonicity in the relationship (scanning from high-
est mean; any steps lower are held constant). Denote these
estimated variances for each treatment and control measure-
ment as ŝ2

T,g,i,l and ŝ2
C,g,i, respectively.

4. Assign the prior parameters for τg,i,l, ag,i,l= κ and
bg,i,l = k(ŝ2

T,g,i,l + ŝ2
C,g,i), where κ determines the strength of

the prior (we used κ=0.5), which assigns an expected vari-
ance of yg,i,l as ŝ2

T,g,i,l + ŝ2
C,g,i, the sum of the estimated treat-

ment and control variances.

Variational inference is used to infer the posterior distribu-
tions of x, w, and τ. The closed form update equations for the pos-
terior distributions of each variable are

Qxg,i � N

mx

s2
x
+

∑
l

t∗g,i,lyg,i,lEw[wg,l]

1
s2
x
+
∑
l

t∗g,i,lEw[w2
g,l]

,
1

1
s2
x
+
∑
l

t∗g,i,lEw[w2
g,l]

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠,

Qwg,l � N

mw

s2
w
+

∑
l

t∗g,i,lyg,i,lEx[xg,i]

1
s2
w
+
∑
l

t∗g,i,lEx[x2g,i]
,

1
1
s2
w
+
∑
l

t∗g,i,lEx[x2g,i]

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠,

Qtg,i,l � G(ag,i,l + 0.5, bg,i,l + 0.5b∗
g,i,l),
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where

b∗
g,i,l = Et

−[(yg,i,l − xg,iwg,l)
2] = y2g,i,l − 2yg,i,lEx[xg,i]Ew[wg,l]+ Ex[x2g,i]Ew[w2

g,l],

t∗g,i,l = Et[tg,i,l] =
aN,m̂g,l

+ 0.5

bN,m̂g,i,l
+ 0.5b∗

g,i,l
.

To determine P-values, JACKS requires a set of negative
control genes or gRNAs. These can be known nonessential
genes (in the context of growth screens) or control guides
known to cut only in unimportant genomic regions (e.g., non-
coding regions). We compute P-values for all treatment condi-
tions simultaneously by:

1. Randomly selecting any gene from the library used to run the
screen, and setting N to be the number of gRNAs targeting
this gene in the library.

2. Randomly selecting N gRNAs from the full set of negative con-
trols, call this set of gRNAs a negative pseudogene.

3. Repeat steps 1 and 2 to generate 2000 negative pseudogenes.
4. Run JACKS inference to compute ŵg,lE[wg,l] values for each of

these pseudogenes (from the normalized per-gRNA fold chang-
es already computed within JACKS).

5. For each individual treatment condition, compute a nonpara-
metric distribution Φl(wg,l) over the 2000 ŵg,l values using the
gaussian kde function from scipy.stats (http://www.scipy.org/,
accessed December 12, 2018).

6. For each ŵg,l value in the full JACKS results of all genes, the
P-value is PrFl (wg,l , ŵg,l) and is computed numerically using
the integrate_box_1d method within gaussian_kde.

The resampling of gRNAs from the control set makes the
method more robust to mislabeled control genes. For example,
Hart nonessential genes were originally defined by a lack of mea-
sured RNA expression (Hart et al. 2014); however, a small propor-
tion of these gRNAs show a strong growth effect in some screens,
whichdistorts thenull distribution. Resampling the gRNAs spreads
these errors across genes such that their effect on any one gene is
less pronounced.

Classification of Hart essential genes on pooled knockout screens

The five genome-wide pooled CRSIPR/Cas9 knockout screen data
sets used here were compiled from data in Koike-Yusa et al.
(2014), Hart et al. (2015), Wang et al. (2015, 2017), Aguirre et al.
(2016), Meyers et al. (2017), and Iorio et al. (2018). The compiled
sets are listed on figshare (see Data Access) with complete instruc-
tions for recompilation in the respective README files. We used
the core essential genes and nonessential gene sets defined by
Hart et al. (2014), using siRNA and expression data, restricted to
those that were targeted by guides within each library. Although
an updated set of essential genes was defined in Hart et al. (2017),
these definitions use data from the Yusa v1.0, Whitehead, and
TKO data sets. To avoid circularity, we could therefore only use
this set to assess performance on the GeCKO and Avana data sets
and saw similarly improved performance over other methods
with this set (Supplemental Fig. S10).

We evaluated performance using the 0.2 partial area under
the curve (0.2 pAUC; “ranking accuracy”) and equivalent above
the curve (0.2 pAAC; “ranking error”) metrics (Fig. 2A; Supplemen-
tal Fig. S3). AUCSs are robust measures commonly used to assess
the ability of a method to distinguish between two categories;
the partial aspect focuses this metric on the more relevant part
of the curve where the false-positive rate is below 20%.
Equivalent results were obtained using other thresholds (0.1
pAUC, full AUC) and performance criteria (recall at fixed false-

discovery rate, false-positive rate at fixed recall, delta AUC [essen-
tial vs. all genes AUC−nonessential vs. all genes AUC]) (Supple-
mental Figs. S6–S9; Supplemental Table S1). All metrics were
calculated directly from the receiver operator curve returned by
the roc function in scikit-learn (Pedregosa et al. 2011) applied to
the estimated gene essentiality measures.

Comparisons with other methods

Scripts used to run all other methods are available on GitHub and
in the Supplemental Material (see Data access). Input formats for
each method were inconsistent, and so the data were reformatted
for compatibility. MeanFC was computed using a custom script
that computed the mean median-normalized log2 fold changes
across replicates for each gRNA as done in JACKS (described above)
and then assigned each gene a score equal to themean of this value
across all gRNAs targeting that gene. The MAGeCK (Li et al. 2014)
v0.5.7 test command was used to runMAGeCK, and the mle com-
mand was used to run MAGeCK MLE (Wu et al. 2018). BAGEL
(Hart and Moffat 2016) v0.91 was slightly modified to take a
mean of the control samples (when multiples were available) be-
fore computing the fold changes, because BAGEL otherwise ex-
pects a single control measurement. ScreenBEAM 1.0.0 was run
in R 3.4.0 (R Core Team 2018) using all recommended defaults
for NGS processing. Ranking accuracy results use the B output,
whereas sets of essential genes were determined using the P-value
output. PBNPA 0.0.3 was run using R 3.4.0 (R Core Team 2018)
with all recommended defaults, except that the P-value and FDR
thresholds were set to 10.0 and 100.0, respectively, to deactivate
them, so that all genes results were recorded. The negative P-value
outputs were used for all presented results. CERES v0.0.0.9 was run
with λg=0.561 for Avana and λg=0.681 for GeCKOv2 as recom-
mended inMeyers et al. (2017).We note that in CERES, λg controls
the extent to which common gene responses across cell lines are
favored, and so altering this valuewould alter the results presented
here. However, as deciding a correct value for this parameter with-
out overfitting to the test at hand is nontrivial, we relied on the
published recommended values selected for these same data sets
and did not attempt to optimize this further.We believe this is rep-
resentative of general usage of this program in the absence of alter-
native guidance, but note that this may be a worthwhile area for
future exploration.

Concordance and reproducibility of gRNA efficacy values

Weused the Rule-Set 2 scores fromDoench et al. (2016) (“Doench–
Root scores”), which provide a sequence-based prediction of gRNA
efficacy. Concordance between these scores and JACKS gRNA effi-
cacy estimates was assessed similarly to the method previously de-
scribed by Meyers et al. (2017), by binning gRNAs by their
Doench–Root scores and then looking for increased fractional rep-
resentation of those gRNAs deemed to have higher x value in high-
er scoring Doench–Root bins. Unlike in Meyers et al. (2017), we
restricted this analysis to gRNAs targeting Hart essential genes as
we did not expect JACKS (or CERES) to derive any meaningful
gRNA efficacy information from genes with no screen activity.

Reproducibility estimates for JACKS gRNA efficacy values
were obtained by running JACKS on the Avana batch 0 and batch
1 data sets separately. We computed JACKS gRNA efficacy esti-
mates (E[x]), for those gRNAs targeting Hart essential genes, on
100 randomly selected sets of N cell lines from each batch, where
N=1, 3, 5, 8, 10, 15, 20, 25, and 30. We then computed the
Spearman’s correlation coefficient between the two estimates for
each set to obtain a distribution of correlations.
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Additional Yusa v1.0 screens

Previously unpublished screens using the Yusa v1.0 library in
HT29, CO205, HuPT4, SW1990, A375 (Supplemental Table S2),
and an additional HT29 line without Cas9 (Supplemental Table
S3), were performed using the same screening protocol as in
Iorio et al. (2018).

Construction of random line data

To generate the five randomly shuffled cell lines for the GeCKOv2
(Supplemental Table S4) andAvana (Supplemental Table S5) librar-
ies, we randomly selected three replicates for each line from exist-
ing replicates in other lines. For each of those replicates, we
computed the log2 median-normalized fold changes as in JACKS
method and then randomly shuffled those fold changes across
all guides. The fold changes were then converted back to raw
counts, accounting for the control values of their reassigned
gRNAs. The script used to create these lines is included as
Supplemental Code.

JACKS with hierarchical prior (HP)

To create a version of JACKS that favors similar gene essentialities
across cell lines, we added a hierarchical prior (HP), setting the pri-
or mean μw and variance s2

w on wg,l to the current estimated mean
of E[wg,l] across all cell lines and to three times the current estimat-
ed variance of E[wg,l], respectively, at each update step in the vari-
ational inference. This encourages each wg,l to be more similar to
that in the other lines, with the effect being stronger when there
is a more consistent response across lines.

Compilation of BRAF mutant and wild-type cell lines

BRAF mutation status for cell lines in the Avana data set were ob-
tained from the Cancer Cell Line Encyclopedia data portal
(Barretina et al. 2012). Cell lines selected for themelanoma and co-
lon cancer sets were those that were either BRAFwild-type or BRAF
mutant but which did not have amplifications or deletions in the
BRAF gene to avoid issues with copy number differences in com-
parisons between JACKS and CERES.

Random sampling to assess the impact of number of cell lines,

replicates, and gRNAs

To investigate the effect of increasing the number of cell lines cop-
rocessed by JACKS (Fig. 1C) for a given cell line under test, we boot-
strap sampled (with replacement) the requisite number of other
cell lines, randomly selecting two replicates from each. We ran
JACKS on each set sampled in this manner and recorded the
gene scores for the cell line under test. We repeated this 200 times
for each test cell line and condition, computing the average rank-
ing accuracy (0.2 partial AUC score) across repetitions for each test
cell line. The box plots in Figure 1C show the distribution of these
mean scores across cell lines. The same procedure was used to as-
sess the effect of the number of replicates in the Yusa v1.0 HT29
data (Fig. 3A), except that the test line was always HT29, and the
number of replicates was also altered. This procedure was also
used to assess the impact of reducing the number of gRNAs (Fig.
3B), except that the full set of cell lines was used in all samples,
and the random sampling was instead taken (without replace-
ment) on the available gRNAs for each gene.

Data access

JACKS is available under an MIT license at www.github.com/
felicityallen/JACKS in Python, with user documentation at

https://github.com/felicityallen/JACKS/blob/master/jacks/README
.md. Data and results of analysis from this study are available
at https://www.doi.org/10.6084/m9.figshare.6002438 and as
Supplemental Code.
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