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Lectin Complement Pathway in Emphysema

To the Editor:

The most common genetic cause of emphysema and chronic
obstructive pulmonary disease (COPD) is AAT (alpha-1 antitrypsin)
deficiency (AATD) (1). The risk of lung disease in AATD is
associated with decreased levels of circulating AAT, a proteinase
inhibitor with high affinity for neutrophil-derived serine proteases
such as elastase (2, 3). Identification of additional proteases targeted
by AAT may provide further insight into the pathogenesis of
emphysema. Our work suggests that AAT targets a protease involved
in complement activation, MASP-2 (MBL [mannose-binding lectin]-
associated serine protease 2). Some of the results of these studies have
been previously reported in the form of an abstract (4).

In contrast to other MASP-1 or -3 isoforms, MASP-2 alone is
sufficient to initiate the lectin pathway within the complement system,
a network of zymogen enzymes (C1–C9) activated by auto- or
enzymatic cleavage (Figure 1A) (5). Whereas its main function is to
form the membrane attack complex (C5–C9) that is critical for
pathogen killing, the complement has been recently implicated in
sterile inflammation and autoimmunity (5). Although the role of the
lectin complement pathway in COPD pathogenesis is understudied,
emerging reports point to complement activation (C4 and C3) in
sera of patients with COPD and AATD (6, 7), and in lungs of mice
in models of cigarette smoke (CS)-induced emphysema (8).

In this study, we investigated whether MASP-2 and the lectin
pathway are activated in COPD and AATD plasma and lung tissue.

Samples were obtained from subjects with COPD (n = 38, age =
646 10 yr, 21 men, FEV1% predicted = 456 27), AATD (n = 47)
off AAT augmentation therapy (AATD-off, n = 30, age = 676 9 yr,
18 men, FEV1% predicted = 736 32) or on augmentation therapy
(AATD-on, n = 17, age = 586 14 yr, 8 men, FEV1% predicted =
336 11), and healthy never-smokers (n = 23, age = 406 8.5 yr,
5 men). Subjects with active infections in the past 3 months were
excluded. The subjects’ smoking status was recorded as active
smoker, ex-smoker, never smoker, or unknown (the latter group was
excluded from multivariate analyses). Statistical analyses were
performed in R and Prism (GraphPad Software). Deidentified
plasma samples were obtained from Leiden University (n = 8),
Hannover University (n = 15), the Medical University of South
Carolina (n = 24), and National Jewish Health (n = 62), and lung
samples were obtained from the Lung Tissue Research Consortium
and Hannover University. The institutional review board at National
Jewish Health approved the study as exempt human subjects
research.

Plasma MASP-2 levels in subjects with COPD (1,1356 670
ng/ml), AATD-off (1,1766 541 ng/ml), or AATD-on (1,0856 428
ng/ml) were significantly increased compared with those in healthy
volunteers (521.56 179 ng/ml) (Figure 1B). MASP-2 levels were
not significantly different between males and females (1,3266
1,153 ng/ml vs. 8876 568 ng/ml; P = 0.051, t test) or among never-
smokers, ex-smokers, and active smokers with COPD (9836 590
ng/ml vs. 1,1546 653 ng/ml vs. 1,2056 33 ng/ml, respectively;
P = 0.53, Kruskal-Wallis test). The downstream product of MASP-2
proteolytic activity, the cleaved C4a fragment (expressed relative to
total C4) was also elevated in COPD (2.336 1.1) and AATD-off
(3.256 2.6), but not AATD-on (1.446 0.6), plasma compared
with that from healthy individuals (0.966 0.7) (Figure 1C). Plasma
MASP-2 tended to be positively associated with C4a levels (r = 0.24,
P = 0.06). MASP-2 immunostaining in the airways and lung
parenchyma was markedly increased in subjects with COPD of any
severity, as defined by Global Initiative for Chronic Obstructive
Lung Disease criteria (Figures 2A–2C). Interestingly, lower-
molecular-weight MASP-2 isoforms (z65 and z50 kD), indicative
of MASP-2 activation, were primarily present in COPD and AATD
lungs, rather than in control lungs (Figure 2D).

Our data suggest that MASP-2 levels and activity are increased
in subjects with COPD and AATD. The marked effect of AAT
augmentation therapy on the abundance of C4a fragments
generated, rather than on the MASP-2 levels, suggests that AAT
inhibits MASP-2’s activity rather than its expression.

Our study has several limitations, including the small size of our
groups and differences in demographics (with a predominance of
young age and females in the control group), smoking status (fewer
ex-smokers in the AATD-off group), and disease severity (milder
COPD in the AATD-off group). Our statistical analyses did not
include clinical covariates (e.g., treatment strategy and exacerbation
frequency) and were not powered to investigate a relationship
between MASP-2 and clinical markers of disease severity. For
example, in multivariate linear regression models controlled for age,
sex, AAT augmentation, and smoking status, MASP-2 was inversely
associated with FEV1% predicted (b =20.0056) and DLCO% predicted
(b =20.0049), but it made a statistically insignificant contribution to
the models (P= 0.06 and 0.16, respectively). Also, we did not evaluate
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Figure 1. Lectin pathway’s MASP-2 levels and C4a/total C4 ratios in plasma. (A) Simplified schematic depicting the classical, lectin, and alternative
complement pathways. Activation of the lectin pathway requires MASPs binding to MBL to then cleave C4 and C2, to form C4bC2a convertase.
The classical pathway also generates C4bC2a convertase via a different proteolytic cascade. The alternative pathway generates C3bBbP convertase,
consisting of C3, factor B, and properdin. All three pathways cleave C3 and lead to the formation of the terminal complement C5–C9 complex known
as membrane attack complex (MAC). (B and C) Circulating MASP-2 levels (B) and C4a/total C4 ratios (C) measured by ELISA (HycultBiotech and
MyBiosource, respectively) in healthy subjects (H), subjects with chronic obstructive pulmonary disease (COPD), and subjects with alpha-1 antitrypsin
(AAT) deficiency (AATD) off (AATD-off) or on (AATD-on) AAT augmentation therapy. Data are shown as mean6 1 SD. Kruskal-Wallis, Dunn’s multiple
comparisons, *P, 0.05, **P, 0.01, ***P, 0.001, and ****P, 0.0001 versus H or AATD-off. MASP-2 =MBL-associated serine protease 2; MBL =
mannose-binding lectin; ns = not significant.
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the contribution of the classical pathway to C4 cleavage in this study.
We plan to study the contribution of individual pathways to C3a
and terminal complement activation during CS exposure using
mice deficient in classical (C1q2/2), lectin (MASP-22/2), or
alternative (fD2/2) pathways.

Despite its limitations, to our knowledge, our study provides
the first evidence that MASP-2 and the lectin complement pathway
are activated in COPD and may be a target for AAT antiprotease
activity. Although AAT has the highest inhibitory activity against
neutrophil elastase, it also inhibits other proteases, such as the
metalloproteinases and caspase-3 and -6 (9, 10). AAT antiprotease
activity is weakened by alterations of protein conformation due to
genetic (e.g., the single point mutation PiZZ) or posttranslational
(e.g., CS-induced oxidation) modifications (2, 11). Because
individuals with diminished AAT antiprotease activity are at risk
for systemic and pulmonary inflammation and injury (12), our
results suggest that excessive MASP-2–driven C4 activation may
play an important role in terminal complement signaling via
the membrane attack complex or intracellular injury pathways
activated by C4a docking on structural cells. The higher MASP-2
levels and activation in COPD lungs not only corroborate our
results in plasma but also suggest that, in addition to its activation
in sera, MASP-2 may be activated in situ, a concept that was
recently investigated in models of ischemic myocardial and kidney
injury and in lung epithelial cells (13–15). Our findings indicate
that COPD, similarly to other conditions associated with excessive
complement activation (e.g., immune complex–mediated
vasculitis), may benefit from studies of MASP-2– and complement-
targeted therapies. n
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