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Abstract
Objective
To determine whether altered metabolic profiles represent a link between atrial dysfunction
and cardioembolic (CE) stroke, and thus whether underlying dysfunctional atrial substrate may
contribute to thromboembolism risk in CE stroke.

Methods
A total of 144 metabolites were measured using liquid chromatography–tandem mass spec-
trometry in plasma samples collected within 9 hours of stroke onset in 367 acute stroke patients.
Stroke subtype was assigned using the Causative Classification of Stroke System, and CE stroke
(n = 181) was compared to non-CE stroke (n = 186).Markers of left atrial dysfunction included
abnormal atrial function (P-wave terminal force in lead V1, PTFV1 >4,000 μV·ms), left atrial
enlargement on echocardiography, and frank atrial fibrillation on ECG. Stroke recurrence risk
was assessed using CHADS2 and CHA2DS2-VASc scores. Associations between metabolites
and CE stroke, atrial dysfunction, and stroke recurrence risk were evaluated using logistic
regression models.

Results
Three tricarboxylic acid metabolites—succinate (odds ratio [OR] 1.71, 95% confidence in-
terval [CI] 1.36–2.15, p = 1.37 × 10−6), α-ketoglutarate (OR 1.62, 95%CI 1.29–2.04, p = 1.62 ×
10−5), and malate (OR 1.58, 95% CI 1.26–1.97, p = 2.57 × 10−5)—were associated with CE
stroke. Succinate (OR 1.36, 95% CI 1.31–1.98, p = 1.22 × 10−6), α-ketoglutarate (OR 2.14, 95%
CI 1.60–2.87, p = 2.08 × 10−8), and malate (OR 2.02, 95% CI 1.53–2.66, p = 1.60 × 10−7) were
among metabolites also associated with subclinical atrial dysfunction. Of these, succinate was
also associated with left atrial enlargement (OR 1.54, 95% CI 1.23–1.94, p = 1.06 × 10−4) and
stroke recurrence based on dichotomized CHADS2 (OR 2.63, 95% CI 1.68–4.13, p = 3.00 ×
10−6) and CHA2DS2-VASc (OR 2.43, 95% CI 1.60–3.68, p = 4.25 × 10−6) scores.

Conclusions
Metabolite profiling identified changes in succinate associated with CE stroke, atrial dysfunc-
tion, and stroke recurrence, revealing a putative underlying link between CE stroke and energy
metabolism.
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Atrial fibrillation (AF) has a well-established link to stroke risk,
where blood stasis in the left atrium leads to thrombus formation
and subsequent embolism.1,2 However, recent evidence indicates
that thismodelmay not account for the entirety of elevated stroke
risk, and underlying atrial dysfunction in the absence of frank
fibrillation may be a contributing cause.1 Several atrial abnor-
malities modify the risk of stroke in AF, including atrial dilation,
mechanical dysfunction of the left atrial appendage, fibrosis, en-
dothelial dysfunction, and myocyte dysfunction.1,3 Some of these
atrial abnormalities can lead to changes in the P-wave terminal
force in leadV1 (PTFV1) on ECG. Recent studies have identified
elevated PTFV1 as a marker of atrial dysfunction linked to
stroke.1,4–7 Left atrial enlargement has also been shown to be
independently associated with stroke.8–13 Furthermore, cardio-
vascular risk factors captured by the CHADS2 and CHA2DS2-
VASc scores highlight comorbid risk factors that further augment
stroke risk in patients with underlying AF.14–16

Atrial dysfunction is mediated by several processes—including
atrial electrical dysfunction, neurohormonal change, and
inflammation—all associated with shifts in atrial energy ho-
meostasis.17 Accordingly, changes in myocardial energy metab-
olism have been directly linked to AF.18–21 These findings raise
the possibility that altered energy metabolism may partially me-
diate the complex structural and physiologic changes underlying
atrial dysfunction. However, the link between energymetabolites
and cardioembolic (CE) stroke risk has not been previously
investigated. In this study, we applied targeted metabolite pro-
filing to test the hypothesis that altered energy metabolism may
represent a link between atrial dysfunction and CE stroke.

Methods
Patient characteristics
Patients were enrolled in the Specialized Programs of Trans-
lational Research in Acute Stroke (SPOTRIAS) biorepository.
The repository enrolled patients age 18 years or greater who
presented with symptoms consistent with ischemic stroke within
9 hours of stroke onset between January 2007 and April 2010.
For this nested case-control study, patients were eligible if the
NIH Stroke Scale (NIHSS) score was ≥1 and they were enrolled
at the Partners Healthcare SPOTRIAS sites (Massachusetts
General Hospital and Brigham and Women’s Hospital).

Standard protocol approvals, registrations,
and patient consents
This study was approved by the Partners Healthcare In-
stitutional Review Board. All patients or surrogates provided
informed consent.

Stroke subtype
Stroke subtyping was based on the Causative Classification of
Stroke System (CCS), which uses epidemiologic, diagnostic, and
clinical data to determine classification of 5 different stroke
subtypes (cardio-aortic embolism, small artery occlusion, large
artery atherosclerosis, other causes, and undetermined causes).22

Atrial dysfunction assessment
PTFV1 was determined on admission ECGs as previously
described.4,5,23 Briefly, PTFV1 was calculated as the product
of the amplitude (in μV) and the duration (in ms) of the
second p-wave deflection (p’) in lead V1. The PTFV1 value
was dichotomized at >4,000 μV·ms, which is the commonly
defined threshold for left atrial abnormality.4,24,25 The pres-
ence of AF was assessed and recorded on ECGs. The size of
the left atrium was obtained from transthoracic echocardio-
gram reports, from studies performed during the hospitali-
zation for the index stroke. The anterior–posterior dimension
was used to determine left atrial enlargement, which was
defined as any value outside the echocardiography laboratory
normative range, and corresponded to 39 mm or more.

Stroke recurrence risk
CHADS2 and CHA2DS2-Vasc scores were used to categorize
risk of recurrent stroke in patients with AF14,15 and un-
determined etiologies.16 CHADS2 was calculated as the sum
of congestive heart failure, hypertension, age ≥75, diabetes
mellitus (each 1 point), and ischemic stroke or TIA (2
points). CHA2DS2-Vasc was scored as the sum of congestive
heart failure, hypertension, vascular disease (myocardial in-
farction or peripheral artery disease), diabetes mellitus (each 1
point), sex (female 1 point, male 0 points), age (65–74 one
point, ≥75 two points), and ischemic stroke or TIA (2 points).
We dichotomized CHADS2 into 0 vs ≥1 and CHA2DS2-VASc
into 0–1 vs ≥2 based on prior studies.26,27 CHADS2 and
CHA2DS2-VASc were scored and analyzed in patients with
CE and undetermined etiologies (n = 249) since these scores
have been validated for stroke recurrence risk only in these
stroke subtypes.14–16

Metabolite profiling
EDTA blood samples were collected and immediately
centrifuged to separate cellular material from plasma. Fasting
blood samples were collected at admission (corresponding to
7.1 ± 3.3 hours after last seen well time), and collection oc-
curred throughout the 24-hour cycle. Aliquots of plasma were
frozen on dry ice and stored at −80°C until analysis. Thirty
microliters of plasma was mixed with 70 μL of ice cold ace-
tonitrile: methanol (75:25; v:v) containing deuterated

Glossary
AF = atrial fibrillation; aOR = adjusted odds ratio; CCS = Causative Classification of Stroke System; CE = cardioembolic; CI =
confidence interval; cOR = crude odds ratio; HPLC = high-performance liquid chromatography; NIHSS = NIH Stroke Scale;
OR = odds ratio; PTFV1 = P-wave terminal force in lead V1;QQQMS = triple-quadrupole mass spectrometry; SPOTRIAS =
Specialized Programs of Translational Research in Acute Stroke.
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internal standards (25 μM thymine-d4 [Sigma-Aldrich,
St. Louis, MO], 10 μM inosine-15N4 [Cambridge Isotope
Laboratories, Tewksbury, MA], 25 μM phenylalanine-d8
[Cambridge Isotope Laboratories], and 10 μM valine-d8
[Sigma-Aldrich]). After vortexing, the protein precipitates
were centrifuged at 20,000g at 4°C for 15 minutes and the
supernatants were transferred to glass vials with inserts
(MicroSolv, Eatontown, NJ).

Plasma extracts were analyzed using a high-performance liq-
uid chromatography (HPLC) system by hydrophilic in-
teraction chromatography on a 2.1 × 100 mm 3.5 μmXBridge
Amide column (Waters, Milford, MA) followed by targeted
triple-quadrupole mass spectrometry (QQQ MS) detection
in both positive and negative polarity modes, using our pre-
viously established method.28 Briefly, the chromatography
system consisted of a 1290 Infinity autosampler and 2 1290
HLPC binary pumps, connected to a 6495 QQQ MS (Agi-
lent, Santa Clara, CA). Mobile phase A was 95:5 (v:v) water:
acetonitrile with 20 mM ammonium acetate and 20 mM
ammonium hydroxide (pH 9.5). Mobile phase B was aceto-
nitrile. Ammonium acetate, ammonium hydroxide, and
HPLC grade solvents were purchased from Fisher Scientific
(Hampton, NH).

Two XBridge Amide columns were run in parallel using
alternating column regeneration, with one column devoted
to metabolites with negative ionization character, hence
negative polarity detection, and the second column for
positive polarity detection. Peak integration for metabolite
quantification was carried out using MassHunter QQQ
Quantitative Analysis software (Agilent). Peaks were quality
checked and normalized to human pooled plasma samples
that were interspersed at regular intervals every 10 injec-
tions, using standard procedures.28,29

Statistical analysis
Baseline characteristics were expressed as mean ± SD for
normally distributed continuous variables, or as median with
interquartile range for ordinal variables or continuous variables
showing deviation from normality. Binary variables were rep-
resented as frequency and percentage. Differences between
binary variables were analyzed using χ2 testing as appropriate.
Continuous variables were compared between groups using
Student t test for normally distributed data andWilcoxon rank-
sum for nonparametric data.

To identifymetabolites associatedwithCE stroke, cardio-aortic
embolic etiology (based on CCS criteria) was compared to
large vessel, small vessel, other, and undetermined stroke
subtypes combined. A Bonferroni-corrected p value threshold
of 3.47 × 10−4 was used to adjust for 144 metabolite associa-
tions. Raw metabolite peak area values were normalized to
a human healthy pooled plasma reference standard, such that
all values were converted to a ratio relative to healthy human
pooled plasma. In order to standardize the effect sizes for the
regression models, we log-transformed and unit standardized

each metabolite separately. This allows the meaningful com-
parison of effect sizes (i.e., odds ratios [ORs]) between
metabolites. Multivariable logistic regression models were then
developed that adjusted for univariable significant metabolites
(α-ketoglutarate and malate) and risk factors (age, sex, con-
gestive heart failure, history of stroke, and NIHSS). We did not
adjust for AF since this was one of our major outcomes of
interest and AF is known to have a strong association with CE
stroke.

Logistic regression models were also used to determine
metabolites associated with severity of atrial dysfunction
(i.e., PTFV1 <4,000 μV·ms, PTFV1 >4,000 μV·ms, ECG-
identified AF, and echocardiogram-identified left atrial
enlargement). Ordinal logistic regression models were ex-
amined for adherence to the proportional odds assumption
where appropriate. CHADS2 and CHA2DS2-Vasc scores
were each stratified into clinically relevant thresholds16

(CHADS2 ≥1 and CHA2DS2-Vasc ≥2), and metabolite
associations were tested using logistic regression. Statistical
analysis was performed using STATA SE 12.0 (College
Station, TX).

Data availability
Investigators may request access to the data used in the
analysis by contacting the corresponding author to submit
a proposal. Primary data for reasonable requests will be made
available in accordance with local institutional review board
and institutional data transfer agreements.

Results
Clinical characteristics
Of 522 enrolled patients, 141 patients were excluded because
a baseline plasma sample was not available for analysis, and 14
patients were excluded due to incomplete CCS stroke subtyping
information. The final study cohort consisted of 367 patients
whose clinical characteristics are presented in table 1, comparing
CE stroke subtype patients (n = 181) to other subtype etiologies
(large artery: 70, small vessel: 29, undetermined: 68, and other:
19). The etiologic subtype assignments within the study cohort
were similar to the main cohort. CE stroke patients were ap-
proximately 6 years older, more likely to be female, had a higher
baseline NIHSS score, and were less likely to have a prior stroke
compared to stroke patients without CE origin. As expected,
patients with CE stroke were more likely to have a diagnosis of
AF and congestive heart failure.

Elevated TCA cycle intermediates are
associated with CE stroke
Admission plasma samples were analyzed by high-throughput
metabolite profiling.28 Figure 1A summarizes the effect size
for all analytes in relation to the individual p values. Following
Bonferroni correction for multiple hypothesis testing, 3
metabolites were significantly associated with CE stroke, in-
cluding succinate (OR 1.71, 95% confidence interval [CI]
1.36–2.15, p = 1.37 × 10−6), α-ketoglutarate (OR 1.62, 95%CI
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1.29–2.04, p = 1.62 × 10−5), and malate (OR 1.58, 95% CI
1.26–1.97, p = 2.57 × 10−5; figure 1B). Table S1 (doi.org/10.
5061/dryad.n08c0t7) provides a complete list of all metabo-
lite associations including effect size and p values.

To determine which metabolites were independently associ-
ated with CE stroke, we developed multivariable models. The
unadjusted OR of succinate for CE stroke was 1.71 (95% CI
1.36–2.15, p < 0.001) and 1.71 (95% CI 1.12–1.99, p = 0.008)
after adjusting for the TCA cycle metabolites α-ketoglutarate
and malate. Succinate was still an independent metabolite
after adjusting for other variables significant in univariable
analysis (age, sex, congestive heart failure, and history of
stroke; adjusted OR [aOR] 1.48, 95% CI 1.11–1.97, p =
0.008). Following the addition of NIHSS to the model, suc-
cinate remained an independent predictor of CE stroke (aOR
1.36, 95% CI 1.01–1.83, p = 0.045). Examining receiver op-
erating characteristic analysis, the area under the curve was
0.660 for succinate and CE stroke.

Atrial dysfunction and AF share a similar
metabolite signature
Emerging data suggest that impaired atrial function, or car-
diopathy, predicts future AF30,31 and incident stroke.1,3 To
further explore this hypothesis, we next assessed for metab-
olites significantly associated with atrial dysfunction (table 2),
where atrial function was categorized into normal atrial
function, abnormal atrial function, and frank AF. Significant
metabolites included several TCA cycle intermediates, in-
cluding α-ketoglutarate (OR2.14, 95%CI 1.60–2.87, p = 2.08 ×
10−8), aconitate (OR 2.13, 95% CI 1.52–2.99, p = 1.19 × 10−6),
malate (OR 2.02, 95% CI 1.53–2.66, p = 1.60 × 10−7),
and succinate (OR 1.86, 95% CI 1.42–2.41, p = 1.22 × 10−6).
Some of these analytes did not demonstrate a proportional
effect size (OR) across each level of atrial dysfunction, and
accordingly, the increase was more pronounced in AF (figure
2A). In contrast, other metabolites including pseudouridine
and kynurenine demonstrated a graded, stepwise increase
across the spectrum of atrial dysfunction and AF (table 2 and
figure 2B). A complete list of all metabolite associations is
provided in table S2 (doi.org/10.5061/dryad.n08c0t7).

Table 1 Characteristics of patients with and without
cardioembolic (CE) stroke

Characteristic
CE stroke
(n = 181)

Non-CE stroke
(n = 186) p Value

Age, y 73 ± 15 66 ± 14 <0.001

Female sex 84 (46.4) 67 (36.0) 0.04

NIHSS 6 (3–14) 5 (2–11) 0.05

DWI volume 4.8 (0.5–22.4) 4.6 (0.6–18.3) 0.50

Medical history

AF 95 (52.5) 17 (9.1) <0.001

CAD 50 (27.6) 55 (29.6) 0.68

CHF 26 (14.4) 14 (7.7) 0.04

DM 42 (23.2) 39 (21.0) 0.61

HL 83 (45.9) 97 (52.2) 0.23

HTN 136 (75.1) 132 (71.0) 0.37

MI 15 (8.3) 29 (15.6) 0.82

PVD 9 (5.0) 14 (7.5) 0.31

Stroke 30 (16.6) 47 (25.3) 0.04

TIA 13 (7.2) 22 (11.8) 0.13

Abbreviations: AF = atrial fibrillation; CAD = coronary artery disease; CHF =
congestive heart failure; DM = diabetes mellitus; DWI = diffusion-weighted
imaging; HL = hyperlipidemia; HTN = hypertension; MI = myocardial in-
farction; NIHSS = NIH Stroke Scale; PVD = peripheral vascular disease.
Values are mean (± SD), median (interquartile range), or frequency (%).

Figure 1 Comparisons among metabolites in cardioembolic and noncardioembolic stroke patients

(A) The geometric mean ratio of each metabolite in cardioembolic cases vs noncardioembolic cases is plotted against the respective p value. The dotted line
represents the Bonferroni-corrected p value threshold for 144 metabolites (p ≤ 3.47 × 10−4). The red dots highlight metabolites exceeding the Bonferroni
threshold. (B) Odds ratios (ORs) and 95% confidence intervals (CIs) (in standardized units) for metabolites associated with cardioembolic stroke at the
Bonferroni-corrected p value.
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To confirm the associations were independent of age, multi-
variable logistic regression demonstrated that α-ketoglutarate
(OR 1.97, 95% CI 1.46–2.65, p = 8.59 × 10−6), aconitate (OR
1.67, 95%CI 1.19–2.34, p = 2.61 × 10−3), malate (OR 1.73, 95%
CI 1.29–2.31, p = 2.24 × 10−4), and succinate (OR 1.59, 95% CI
1.21–2.09, p = 8.69 × 10−4) were all associated with atrial dys-
function. To further confirm the link between energy metabo-
lism and atrial dysfunction, we explored the relationship between
TCA metabolites and left atrial enlargement, and found an as-
sociation only with succinate (OR 1.54, 95% CI 1.23–1.94, p =
1.06 × 10−4), but not with α-ketoglutarate, aconitate, or malate
(table S3, doi.org/10.5061/dryad.n08c0t7).

Succinate is associated with stroke risk scores
We reasoned that if candidate metabolites linked to atrial
dysfunction were relevant to stroke risk, then the same

metabolites should also be associated with CHADS2 and
CHA2DS2-VASc scores, which are used to stratify the risk
of stroke. Associations with dichotomized CHADS2 and
CHA2DS2-VASc scores identified succinate, kynurenine, and
gluconate as predictors of elevated stroke risk that were in
common with both scores (table 3). After adjustment for age,
both succinate and gluconate remained an independent pre-
dictor for both scores, but kynurenine did not. When exam-
ining the CHADS2 and CHA2DS2-VASc across the full range
of the respective scales, there was a stepwise increase for each
metabolite (figure 3), including succinate (common OR
[cOR] 1.71, 95% CI 1.35–2.18, p = 3.85 × 10−6) and kynur-
enine (cOR 1.57, 95% CI 1.25–1.98, p = 1.02 × 10−4) for the
CHADS2 scale and for the CHA2DS2-VASc scale (succinate:
cOR 2.08, 95% CI 1.59–2.73, p = 8.32 × 10−9; kynurenine:
cOR 1.58, 95% CI 1.24–2.00, p = 1.37 × 10−4). The full listing
of metabolite associations with CHADS2 and CHA2DS2-
VASc are presented in tables S4 and S5 (doi.org/10.5061/
dryad.n08c0t7).

Discussion
In this study, we sought to identify circulating metabolites
associated with CE stroke. We found that changes in TCA
cycle intermediates were independently associated with CE
stroke. We further identified TCAmetabolites associated with
markers of atrial dysfunction. Finally, we found an over-
lapping signature in association with stroke risk, as reflected
by the CHADS2 and CHA2DS2-Vasc classification schema.
Among these findings, succinate was the common alteration
linking CE stroke, atrial dysfunction, and risk stratification.

Taken together, our findings have implications for under-
standing AF-associated thromboembolism. Notably, several
lines of evidence suggest that rhythm alterations alone may
not fully account for the risk of stroke attributed to AF.1

Accordingly, the causal relationship between AF and stroke
may be more complex than originally appreciated. In support
of this notion, rhythm-control therapy does not reduce the
risk of stroke in AF,32 and conversely, lone AF in otherwise
healthy individuals does not always impart an elevated risk of
stroke.33 Recent evidence further highlights that AF episodes
are often temporally dissociated from thromboembolism.34,35

These observations imply that AF-related blood stasis may
not be the only mechanism that leads to CE stroke.1,36 Im-
paired underlying atrial function has been proposed as an
alternative explanatory model for AF-associated stroke risk.1,3

In this context, our TCAmetabolite findings in CE stroke and
in atrial dysfunction are consistent with the concept that atrial
cardiopathy may represent a spectrum of atrial dysfunction
contributing to stroke risk. However, it is important to note
that our findings do not specifically support a causal link
between succinate and CE stroke or atrial dysfunction.

The TCA signature is also noteworthy given the metabolic
demands of myocardium. In the healthy heart, mitochondrial

Table 2 Metabolites associated with atrial dysfunction

Metabolite cOR
95% CI
lower

95% CI
upper p Value

α-Ketoglutaratea 2.14 1.60 2.87 2.08E-08

Aconitatea 2.13 1.52 2.99 1.19E-06

Malatea 2.02 1.53 2.66 1.60E-07

Kynurenine 1.96 1.56 2.45 8.55E-10

Succinatea 1.86 1.42 2.41 1.22E-06

Ornithinea 1.85 1.39 2.47 5.90E-06

Hippurate 1.83 1.48 2.28 1.02E-08

Kynurenic acid 1.66 1.33 2.07 3.11E-06

Taurocholic acid 1.65 1.33 2.05 3.21E-06

Trimethylamine-N-oxide 1.61 1.29 2.01 4.25E-06

Homogentisic acid 1.58 1.28 1.95 9.96E-06

Glyceric acid 1.54 1.24 1.92 5.91E-05

1- And 3-methylhistidine 1.53 1.25 1.88 2.59E-05

Cystamine 1.52 1.23 1.89 4.84E-05

Pseudouridine 1.51 1.21 1.87 7.12E-05

Argininosuccinate 1.51 1.22 1.85 4.09E-05

Taurochenodeoxycholic acid 1.50 1.22 1.85 9.22E-05

2-Hydroxyglutaric acid 1.49 1.21 1.84 1.09E-04

Pantothenic acid 1.50 1.21 1.85 1.32E-04

Quinolinic acid 1.49 1.20 1.86 1.87E-04

Xanthosine 1.48 1.19 1.84 2.49E-04

Allantoin 1.47 1.18 1.83 2.83E-04

Orotic acid 1.43 1.17 1.75 2.85E-04

Abbreviations: AF = atrial fibrillation; CI = confidence interval; cOR = common
odds ratio.
a Did not meet proportional odds assumption. Odds ratio represents odds
of AF vs non-AF.
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oxidative phosphorylation provides the majority (>95%) of
energy, with substrates provided by fatty acid oxidation and
entry into the TCA cycle.37 In the diseased myocardium, in-
cluding dilated cardiomyopathy, increased concentrations of
TCA cycle intermediates have been identified in patients’
plasma.38 Similar findings have been reported in a dogmodel of
AF, where the propensity for sustained AF correlates with the
cellular energetic state of the atrium.39 Moreover, in patients
with AF after cardiac surgery, succinate dehydrogenase activity
was significantly impaired relative to those who remained in
sinus rhythm.18,19 Further, succinate dehydrogenase is the only
enzyme shared by the electron transport chain and the TCA

cycle; in cardiac myocytes, this link between substrate utiliza-
tion and the electron transport chain has been reinforced by
experiments showing that mitochondrial rate reserve re-
spiratory capacity (the ability of mitochondria to increase ATP
production as demand increases) was abolished by the absence
of succinate dehydrogenase activity.40,41 Our metabolite find-
ings in AF and stroke also converge on succinate as a leading
candidate metabolite. We further acknowledge that while
changes in energy metabolism are reported in other stroke
mechanisms such as carotid plaque rupture and small vessel
disease, alterations in those conditions do not involve the TCA
cycle.42–44

Figure 2 Metabolite differences in atrial dysfunction and atrial fibrillation

(A) TCA cycle metabolites demonstrate in-
creased accumulation with atrial fibrillation
compared with normal and abnormal atrial
function, including succinate (p < 1.22 × 10−5) and
α-ketoglutarate (p < 2.08 × 10−8). Normal atrial
function was defined as P-wave terminal force in
lead V1 (PTFV1) <4,000 μV·ms and abnormal atrial
function as PTFV1 >4,000 μV·ms. (B) Non-TCA cy-
cle metabolites associated with cardioembolic
stroke demonstrated a graded increase across
the spectrum of atrial dysfunction, including
kynurenine (p < 8.55 × 10−10) and pseudouridine
(p < 7.12 × 10−5).

Table 3 Metabolites associated with recurrent stroke risk scores

Metabolite
CHADS2, OR
(95% CI)

CHADS2
p value

CHA2DS2-VASc,
OR (95% CI)

CHA2DS2-VASc
p value

Gluconate 2.64
(1.72–4.05)

1.11E-06 3.21 (2.06–5.00) 3.04E-09

Succinate 2.63
(1.68–4.13)

3.00E-06 2.43 (1.60–3.68) 4.25E-06

Kynurenine 1.97
(1.35–2.89)

2.63E-04 2.26 (1.55–3.29) 5.02E-06

Taurocholic
acid

1.97
(1.34–2.89)

3.13E-04 — —

Threonine 0.49
(0.32–0.75)

3.41E-04 — —

Hippuric acid — — 2.22 (1.55–3.17) 4.16E-06

Quinolinic acid — — 2.07 (1.32–3.24) 1.79E-04
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Left atrial remodeling leads to progressive electrical and
structural changes that further perpetuates AF, and is ac-
companied by changes in energy metabolism.21,45,46 While
our findings corroborate a link between energy metabolism
and AF, our analysis cannot distinguish whether AF or CE
stroke causes TCA cycle alterations, whether TCA cycle
changes contribute to atrial remodeling, or whether accu-
mulation of TCA cycle intermediates is associated with other
factors that cause AF. Nevertheless, our findings support the
abnormal atrial substrate model of CE stroke.1 It is also no-
table that our findings are consistent with a biologically
plausible gradient in atrial dysfunction, which raises the pos-
sibility that improving myocardial energetics may help at-
tenuate CE stroke risk. In this regard, aggressive risk factor
modification in patients with AF can reverse adverse atrial
remodeling.47

The strengths of our study include the large number of patients,
the detailed phenotyping, and measurement of metabolites
using a recently developed metabolomics platform28; however,
limitations of our study should be noted. We studied samples
from stroke patients in the acute setting, and our results are
not generalizable to community-dwelling individuals. Addi-
tional research would be needed to determine whether succi-
nate or other TCA metabolites are predictors of incident CE
stroke or of recurrent stroke events in a population-based
study. We also did not have a separate cohort in which to
validate our findings. In addition, we evaluated the risk of stroke
recurrence in patients with CE and undetermined etiologies
using the CHADS2 and CHA2DS2-Vasc scores; however,

it should be noted that these widely validated scores have
modest discriminating ability for ischemic stroke.48–54 Future
study is necessary to determine whether succinate measure-
ments would be useful in diagnosing occult or paroxysmal AF
that would obviate the need for long-term cardiac monitoring.
Whether succinate could help risk stratify embolic stroke of
uncertain source would also require further study in future
prospective cohorts.

Alterations in TCA cycle intermediates—and particularly
succinate—suggest an underlying metabolic link among atrial
dysfunction, CE stroke, and CE stroke risk. Future studies
that focus on incident stroke risk are needed to confirm these
findings and determine whether metabolite profiling may
identify an important role for succinate in mediating or pre-
dicting stroke.

Study funding
This study was supported by NIH R01 DK081572 (R.E.G.),
NIH K23 NS076597 (W.T.K.), AHA 14GRNT19060044
(W.T.K.), and NIH R01 NS099209 (W.T.K.).

Disclosure
S. Nelson, Z. Ament, and Z. Wolcott report no disclosures
relevant to the manuscript. R. Gerszten is funded by NIH
DK081572, DK112340, HL132320, and HL133870. W. Kim-
berly is funded by NIHNS099209 and AHA 17CSA33550004,
has received research support from Remedy Pharmaceuticals,
and receives research support from Biogen Idec. Go to Neu-
rology.org/N for full disclosures.

Figure 3Metabolites altered in cardioembolic stroke and atrial dysfunction are also associated with stroke recurrence risk
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and (B) with CHA2DS2-VASc scores.
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