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Abstract
The human hippocampus can be subdivided into subfields with unique functional properties and

differential vulnerability to disease or neuropsychiatric conditions. Identifying genes that confer

susceptibility to such processes is an important goal in developing treatments. Recent advances

in automatic subfield segmentation from magnetic resonance images make it possible to use

these measures as phenotypes in large-scale genome-wide association studies. Such analyses

are likely to rely largely on standard resolution (~1 mm isotropic) T1-weighted images acquired

on 3.0T scanners. Determining whether the genetic architecture of subfields can be detected

from such images is therefore an important step. We used Freesurfer v6.0 to segment hippo-

campal subfields in two large twin studies, the Vietnam Era Twin Study of Aging and the Human

Connectome Project. We estimated heritability of subfields and the genetic overlap with total

hippocampal volume. Heritability was similar across samples, but little genetic variance remained

after accounting for genetic influences on total hippocampal volume. Importantly, we examined

genetic relationships between subfields to determine whether subfields can be grouped based

on a smaller number of underlying, genetically independent factors. We identified three genetic

factors in both samples, but the high degree of cross loadings precluded formation of genetically

distinct groupings of subfields. These results confirm the reliability of Freesurfer v6.0 generated

subfields across samples for phenotypic analyses. However, the current results suggest that it

will be difficult for large-scale genetic analyses to identify subfield-specific genes that are dis-

tinct from both total hippocampal volume and other subfields using segmentations generated

from standard resolution T1-weighted images.
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1 | INTRODUCTION

The hippocampus is a medial temporal lobe structure that plays a criti-

cal role in relational encoding (Shimamura, 2010), episodic memory

retrieval (Tulving & Markowitsch, 1998), and spatial navigation

(Burgess, Maguire, & O'Keefe, 2002). Alterations in hippocampal

structure or function have been implicated in a variety of diseases and

psychiatric conditions such as Alzheimer's disease (AD) (Sabuncu

et al., 2011), schizophrenia (Harrison, 2004), temporal lobe epilepsy

(Blumcke et al., 2013), posttraumatic stress disorder (Logue et al.,

2018), and depression (Schmaal et al., 2016). Changes in hippocampal

volume are also observed during normal aging (Fjell et al., 2014).

Although often treated as a unitary structure in magnetic reso-

nance imaging (MRI) studies, the hippocampus is composed of multi-

ple subfields with distinct structural and functional properties

(Amaral & Witter, 1989; Bakker, Kirwan, Miller, & Stark, 2008; de Flo-

res et al., 2017; Lacy, Yassa, Stark, Muftuler, & Stark, 2011; Leal &

Yassa, 2015; Mankin, Diehl, Sparks, Leutgeb, & Leutgeb, 2015; Small,

Schobel, Buxton, Witter, & Barnes, 2011; Witter, Wouterlood,

Naber, & Van Haeften, 2000). These subfields include the cornu

ammonis fields (CA1, CA2, CA3, and CA4), the dentate gyrus (DG),

and the subiculum (Duvernoy, 2005). Some prior research has found

that subfields are differentially associated with AD and mild cognitive

impairment (La Joie et al., 2013; Mueller et al., 2010; Wolk et al.,

2017; Yassa et al., 2010), schizophrenia and bipolar disorder (Baglivo

et al., 2018; Cao et al., 2017; Haukvik et al., 2015; Ho et al., 2017;

Mathew et al., 2014; Tannous et al., 2018), PTSD (Wang et al., 2010),

and normal aging (Krogsrud et al., 2014; Yassa, Mattfeld, Stark, &

Stark, 2011). Twin studies have shown that hippocampal volume is

under significant genetic influence, with estimates of heritability rang-

ing from 45 to 64% (Blokland, de Zubicaray, McMahon, & Wright,

2012; Kremen et al., 2010). Large-scale consortia have used hippo-

campal volume as a quantitative trait in genome-wide association ana-

lyses (GWAS), identifying novel genes associated with this structure

(Bis et al., 2012; Hibar et al., 2015; Hibar et al., 2017; Stein et al.,

2012). Identifying the specific genes that confer susceptibility to dis-

ease processes may facilitate development of new treatments. Given

the structural and functional heterogeneity demonstrated by hippo-

campal subfields, it is reasonable to postulate that each subfield may

have distinct genetic influences and that some subfields may contrib-

ute more or less to the overall genetic variation in total hippocampal

volume.

Recent studies have examined the heritability of subfields gener-

ated by automatic segmentation techniques and have found that, for

the most part, these regions are under significant genetic influence

(Greenspan, Arakelian, & van Erp, 2016; Patel et al., 2017; Whelan

et al., 2016). However, a few important questions remain. First,

although the genetic correlation between subfields and total hippo-

campal volume have been examined, it is critical to directly test

whether this correlation is significantly different from 1.0. In other

words, are there independent genetic influences on these structures

that are not captured by simply assessing the hippocampal formation

as a whole? Second, are subfields genetically distinct from each other?

Identifying subfield-specific genes would require that these genes are

not in common with the total hippocampal volume or other subfields.

If subfields are not all genetically distinct, can we identify groupings of

subfields that are genetically independent? The genetic relationship

between different subfields has not previously been examined. Thus,

the degree to which this segmentation scheme is delineating regions

belonging to a small set of genetically distinct factors is unknown. If

individual subfields or groupings of subfields provide additional

genetic information beyond that of the total hippocampus, they would

represent useful targets for further genetic analyses. If not, then total

hippocampal volume may be the best phenotype for genetic analysis

as it can be reliably and efficiently captured by various image proces-

sing software packages. Determining the genetic architecture of hip-

pocampal subfields may therefore indicate that: (a) each subfield

represents a genetically distinct feature; (b) subfields can be grouped

based on a smaller number of underlying, genetically independent fac-

tors; or (c) all subfields are associated with a single underlying genetic

factor. Answering these questions will help to inform large-scales

GWAS by determining the feasibility of identifying specific genes

associated with individual subfields that may confer differential vul-

nerability to disease, cognitive deficits, or neuropsychiatric disorders.

Reliable and accurate segmentation of these small structures

poses a significant technical challenge. Although several manual tech-

niques to delineate these subfields have been proposed (as compared

in Yushkevich et al., 2015), these techniques are labor intensive, sus-

ceptible to rater bias, and not scalable to large cohort studies. Recent

advances in automatic segmentation methods provide a potential

opportunity for more consistent and reproducible measurements of

hippocampal subfields (Chakravarty et al., 2013; Iglesias et al., 2015;

Pipitone et al., 2014; Van Leemput et al., 2009). The Freesurfer soft-

ware package (Fischl, 2012) is widely used and includes an automated

method to delineate hippocampal subfields. Updates to Freesurfer

v6.0 have improved the reliability of the subfield segmentations

(Iglesias et al., 2015), and may represent a compelling method to gen-

erate quantitative phenotypes for imaging genetics consortia such as

ENIGMA (Thompson et al., 2014; Whelan et al., 2016) or CHARGE

(Psaty et al., 2009). It is important to note that studies utilizing manual

marking techniques often collect high-resolution T2-weighted images

acquired perpendicular to the body of the hippocampus (Yushkevich

et al., 2015). Given the relative rarity with which such scans are col-

lected, large-scale multisite projects may be limited to 3.0T high field

resolution (~1 mm isotropic) T1-weighted images. Although automated

methods such as the one included with Freesurfer will accept such

images, the authors have warned that the resulting segmentations

may be largely influenced by the ex vivo 7.0 T ultra-high field resolu-

tion atlas (0.13 mm isotropic) that guides the automatic segmentation.

Thus, it is important to determine whether subfields automatically

segmented from commonly acquired images (T1-weighted, ~1 mm iso-

tropic) represent useful phenotypes for a genetic analysis.

Here, we defined hippocampal subfields using Freesurfer v6.0 in

two large imaging studies: the Vietnam Era Twin Study of Aging

(VETSA) and the Human Connectome Project (HCP). Both studies

included twin pairs in very different age ranges, making it possible to

decompose variance into genetic and environmental influences using

biometrical twin models. The HCP data are somewhat higher resolu-

tion than the VETSA data (0.7 mm2 vs. 1 mm2 in-plane resolution),
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which also allows use to assess the impact of these differences on

estimates of heritability. We examined whether the genetic architec-

ture of subfields is consistent across studies, and the extent to which

unique genetic influences can be detected in 3.0T standard resolution

T1-weighted images.

2 | METHODS

2.1 | Vietnam Era Twin Study of Aging

2.1.1 | Participants

Participants were from the VETSA project (Kremen et al., 2006; Kre-

men, Franz, & Lyons, 2013). VETSA participants comprise a national,

community-dwelling sample of male–male twins who are similar to

American men in their age range with respect to health and lifestyle

characteristics based on Center for Disease Control and Prevention

data (Schoenborn & Heyman, 2009). All participants served in the mili-

tary service sometime between 1965 and 1975, but nearly 80%

reported no combat exposure. The study was approved by the Institu-

tional Review Boards at the University of California, San Diego

(UCSD), Boston University, and the Massachusetts General Hospi-

tal (MGH).

Of the 447 individuals that underwent MRI scanning in wave 2 of

the VETSA, data from 41 individuals were excluded due to incomplete

data acquisition or poor quality (e.g., movement, artifacts, etc.), result-

ing in a final sample of 406 for this study. The sample had a mean age

of 61.8 years (range 56–66; SD = 2.6), was primarily Caucasian

(88.4%) and had a mean education of 13.8 years (SD = 2.1). The twin

models were based on 89 monozygotic (MZ) pairs, 63 dizygotic

(DZ) pairs, and 102 unpaired individuals (i.e., participants whose co-

twin either was not scanned or whose data were not useable).

2.1.2 | VETSA image acquisition

Images were acquired at two sites, UCSD (n = 256) and MGH

(n = 164). At UCSD, images were acquired with a GE 3T Discovery

750× scanner (GE Healthcare, Waukesha, WI) with an eight-channel

phased array head coil. The imaging protocol included a sagittal 3D

fast spoiled gradient-echo T1-weighted volume (TE = 3.164 ms, TR =

8.084 ms, TI = 600 ms, flip angle = 8�, pixel bandwidth = 244.141,

field of view [FOV] = 256 × 192, in-plane resolution = 1 × 1 mm2,

slice thickness = 1.2 mm, slices = 172). At MGH, images were

acquired with a Siemens Tim Trio, (Siemens, Washington, DC) with a

32-channel head coil. The imaging protocol included a 3D

magnetization-prepared rapid gradient-echo (MPRAGE) T1-weighted

volume (TE = 4.33 ms, TR = 2,170 ms, TI = 1,100 ms, flip angle = 7�,

pixel bandwidth = 140, FOV = 256 × 256, in-plane resolution = 1 ×

1 mm2, slice thickness = 1.2 mm, slices = 160). Members within twin

pairs were scanned on the same MRI scanner and pairs of each zygos-

ity type were equally represented at both sites. Thus, heritabilities and

genetic correlations will be unaffected by the scanner differences.

2.1.3 | VETSA image processing

Cortical reconstruction and volumetric segmentation of VETSA data

were performed with the Freesurfer v6.0 (http://surfer.nmr.mgh.

harvard.edu/) (Dale, Fischl, & Sereno, 1999; Fischl et al., 2002; Fischl,

van der Kouwe, et al., 2004; Fischl, Sereno, & Dale, 1999). Briefly, this

involves correction of distortion due to gradient nonlinearity (Jovicich

et al., 2006), removal of nonbrain tissue using a hybrid watershed/sur-

face deformation procedure (Segonne et al., 2004), intensity normali-

zation (Sled, Zijdenbos, & Evans, 1998), rigid registration into standard

orientation with 1 mm isotropic voxel size, segmentation of the sub-

cortical white matter and deep gray matter volumetric structures

(Fischl et al., 2002; Fischl, Salat, et al., 2004), tessellation of the gray

matter white matter boundary, automated topology correction (Fischl,

Liu, & Dale, 2001; Segonne, Pacheco, & Fischl, 2007), and surface

deformation following intensity gradients to optimally place the gray/

white and gray/cerebrospinal fluid borders at the location where the

greatest shift in intensity defines the transition to the other tissue

class (Dale et al., 1999; Fischl & Dale, 2000).

2.2 | Human Connectome Project

2.2.1 | HCP participants

Preprocessed structural data from the HCP 1200 Subjects Data Release

were downloaded from ConnectomeDB (https://db.humanconnectome.

org; Marcus et al., 2011). The HCP is a large-scale consortium with the

aim of investigating structural and functional properties of the human

brain. The study has recruited 1,200 healthy adults, which includes both

twin and nontwin siblings (for details, see Van Essen et al., 2013). Only

same-sex MZ and DZ twin pairs were included in the current study and

processed images were reviewed for quality, resulting in a final sample

size of 556 individuals. The sample had a mean age of 29.3 years (range

22–36; SD = 3.4), was majority female (60.8%), was primarily Caucasian

(82.4%) and had a mean education of 15.0 years (SD = 1.8). The twin

models were based on 146 MZ pairs, 81 DZ pairs, and 104 unpaired

individuals (i.e., participants whose co-twin either was not scanned or

whose data were not useable).

2.2.2 | HCP image acquisition

Images were acquired at Washington University with a Siemens 3T

Skyra scanner with a 32-channel head coil. The imaging protocol

included a 3D MPRAGE T1-weighted volume (TE = 2.14 ms, TR =

2,400 ms, TI = 1,000 ms, flip angle = 8�, GRAPPA = 2, pixel band-

width = 210, FOV = 224 × 224, in-plane resolution = 0.7 × 0.7 mm,

slice thickness = 0.7 mm, slices = 256). For more details, see https://

www.humanconnectome.org/storage/app/media/documentation/

s1200/HCP_S1200_Release_Appendix_I.pdf on the HCP website.

2.2.3 | HCP image processing

T1-weighted structural images were processed with the HCP minimal

preprocessing pipeline which uses a combination of FSL (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012) and Freesurfer v5.3

(Fischl, 2012) tools. These methods are described in detail in Glasser

et al. (2013) and processing scripts are available from https://github.

com/Washington-University/Pipelines/releases. Briefly, obtaining

subcortical segmentations involves gradient distortion correction,

skull-stripping, bias field correction, registration to MNI space, and

automated segmentation of subcortical structures (Fischl et al., 2002).
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2.3 | Hippocampal subfield segmentation

Automated hippocampal subfield segmentation was performed using

the revised procedure available in Freesurfer v6.0 (Iglesias et al.,

2015). A probabilistic atlas was built from a combination of 7.0T ultra-

high field resolution (0.13 mm isotropic) ex vivo MRI images used to

delineate hippocampal subfields as well as a separate data set of

in vivo T1-weighted MRI scans of the whole brain (1 mm isotropic)

used to delineate surrounding structures. Twelve subfields are

included in the atlas: CA1, CA2/3, and CA4, presubiculum, parasubicu-

lum, subiculum, fimbria, hippocampal fissure, molecular layer (ML),

granule cells of the DG (GC-DG), hippocampal amygdala transition

area (HATA), and the hippocampal tail. Segmentations were visually

checked for quality and statistical outliers were further examined to

verify accuracy.

2.4 | Statistical analysis

Previous work from our group found no significant differences of

genetic influences on hippocampal volume across hemispheres (Eyler

et al., 2011; Eyler et al., 2014; Kremen et al., 2010). To verify that this

was also the case for individual subfields, we directly examined the

genetic correlation between left and right subfields. We found com-

plete genetic overlap (rg = 1.0) between subfields from each hemi-

sphere (see Supporting Information for details on analysis and

Table S1 for results). Therefore, bilateral averages were generated for

all volumes. All analyses, both univariate and multivariate, were per-

formed using the raw data application of the maximum-likelihood-

based structural equation modeling software OpenMx v2.7.12 (Boker

et al., 2011; Neale et al., 2016). Prior to twin analysis, measures from

VETSA data were adjusted by regressing out the effects of age and

MRI scanner (one for each site); measures from HCP data were

adjusted by regressing out the effects of age and gender. All measures

were then standardized with a z-transform (separately for each study).

2.4.1 | Analysis of genetic and environmental influences
on hippocampal subfields

To determine the relative influence of genetic and environmental fac-

tors on hippocampal subfields, we fit univariate biometrical models

(also referred to as ACE models) for each subfield (Figure 1a) (Neale &

Cardon, 1992). In the classical twin design, the variance of a pheno-

type is decomposed into additive genetic (A) influences, common or

shared environmental (C) influences (i.e., environmental factors that

make members of a twin pair similar to one another), and unique envi-

ronmental (E) influences (i.e., environmental factors that make mem-

bers of a twin pair different from one another, including measurement

error). Additive genetic influences are assumed to correlate perfectly

(1.0) between MZ twins because they are generally genetically identi-

cal. DZ twins, on the other hand, share on average 50% of their segre-

gating DNA, and are therefore assumed to correlate .50 for additive

genetic influences. The shared environment, by definition, correlates

FIGURE 1 Path diagrams of twin models. (a) Univariate ACE model used to test heritability (a2) of each subfield. (b) Bivariate ACE model used to

test genetic (rg) and environmental (rc and re) correlations between whole hippocampal volume and each hippocampal subfield. (c) Bivariate
Cholesky decomposition, which is a reparameterization of the bivariate ACE. Parameter a22 represents the genetic variance of each subfield after
accounting for genetic covariance with the whole hippocampus. (d) Independent pathway model of (a). Al parameters represent latent genetic
factors and As parameters represent residual A variance. Residual genetic variance was constrained to zero when nonsignificant
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1.0 between both members of a twin pair, regardless of their zygosity,

and because nonshared environments (E) are, by definition, uncorre-

lated, E includes measurement error. The proportion of the overall

variance in a phenotype that is attributable to additive genetic influ-

ences is the narrow-sense heritability (a2/[a2 + c2 + e2]). This model-

ing assumes mean and variance homogeneity both within twin pairs

and across zygosity. Prior to analysis, mean and variance homogeneity

was satisfied at each region. The full ACE model was used for both

univariate and multivariate analyses.

To determine whether there were any differences in heritability

estimates between samples, we ran a multiple group model which

included data from both HCP and VETSA. This model simultaneously

estimates A, C, and E components for each group as described above.

Significant differences in heritability between samples are tested by con-

straining estimates of additive genetic influences (A) to be equal across

groups. A significant change in fit indicates that heritability is different

between groups, and conversely, a nonsignificant change in fit indicates

heritability estimates are not significantly different between groups.

2.4.2 | Analysis of genetic overlap between total
hippocampus and hippocampal subfields

To examine the degree of genetic overlap between total hippocampal

volume and the volume of each hippocampal subfield, we conducted a

set of bivariate ACE models. When extended beyond the univariate case,

the twin design can further decompose the covariance between pheno-

types into genetic and environmental components. Doing so allows for

the estimation of genetic and environmental correlations between vari-

ables representing the degree of shared genetic and shared environmen-

tal variance, respectively (Figure 1b). Correlations were determined to be

significantly different from 0 or 1 by examining 95% confidence intervals

(CIs). A correlation with an upper bound of 1 indicates that there are no

independent genetic influences between two phenotypes. This model

also estimates genetic influences that are specific to each subfield after

accounting for the genetic influences on total hippocampal volume

(Figure 1c). We chose the bivariate modeling method over examining

heritability of an adjusted phenotype that is calculated by residualizing

subfield volumes for total hippocampal volume (e.g., Greenspan et al.,

2016). The latter approach assumes proportional contributions to the

phenotypic covariance from the A, C, and E components of total hippo-

campal volume. However, these contributions are not necessarily pro-

portional, and the bivariate twin model allows for that possibility.

2.4.3 | Factor analysis of genetic influences on
hippocampal subfields

We fit a set of multivariate twin models to elucidate the genetic and

environmental relationships among each of the hippocampal subfields.

This model comparison analysis proceeded in a stepwise fashion. First,

we fit the full multivariate ACE Cholesky, which included all subfields,

to serve as the comparison model for all subsequent models. The mul-

tivariate ACE Cholesky provides a saturated representation of the

genetic and environmental relationships among the variables, and is

therefore ideal for comparing competing representations of the

genetic factor structure. Second, we conducted separate tests to

determine if the A, C, or E covariance between subfields could be set

to zero. A significant reduction in model fit would indicate that they

cannot be set to zero and that there is significant covariance between

subfields for that variance component.

Third, we fit common pathway models (Kendler et al., 1987; McAr-

dle & Goldsmith, 1990). The common pathways model assumes a single

underlying latent phenotype accounts for the genetic and environmental

covariation among measures in which the phenotypic covariance is

equally apportioned into genetic and environmental components for all

combinations of variables. None of the common pathway models pro-

vided a good fit to the data, and they are not discussed further.

Fourth, we fit independent pathway models separately for the A

and E variance components (Figure 1d presents an example of an inde-

pendent pathway model of genetic variance). The independent path-

ways model assumes that the genes and environments influencing

covariation among measures operate directly on each variable through

independent genetic and environmental pathways. The covariation

between different pairs of variables can be due, in differing parts, to

genetic and environmental influences. The genetic and environmental

factor structure can thus be tested separately from one another so that

they are not forced to adhere to the same factor pattern. Independent

pathway models were fit with respect to one variance component at a

time (i.e., the genetic factor structure was tested first, followed by the

unique environment) with saturated models that impose no structure

for the remaining components. For example, we fit a series of models

with a factor structure for the genetic component (A), but saturated

models of common (C) and unique environment (E).

Fifth, to determine the optimal factor model, we started with six fac-

tors (the maximum number at which the model was identified, repre-

sented as parameters Al at the top of Figure 1d), and proceeded to drop

factors until we found the model with the smallest number of factors

that: (a) did not result in a significant change in fit compared to the model

previous (e.g., the comparison between a model with n factors and one

with n + 1 factors), and (b) did not result in a significant decrement in fit

relative to the full ACE Cholesky. Once the optimal number of factors

was identified, we tested the significance of the residual/variable-specific

A parameters (genetic covariance specific to each individual subfield,

represented as parameters Asn at the bottom of Figure 1d). Nonsignifi-

cant residual A parameters were constrained to zero, which allows the

latent independent genetic pathway factors to capture more of the total

genetic variance. Finally, to simplify the factor structure, we performed

Varimax rotation on the factor loading matrix and fixed all loadings

<0.1–0. We then refit the resulting model and fixed all nonsignificant

loadings (as determined by 95% CIs) to zero to obtain a final model.

Evaluation of model fit was performed using the likelihood-ratio

chi-square test (LRT), which is calculated as the difference in the −2

log-likelihood (−2LL) of a model relative to that of a comparison

model. Significance of individual model parameters was determined

by examining 95% CIs.

3 | RESULTS

3.1 | Heritability of hippocampal subfields

MZ and DZ cross-twin correlations, as well as the genetic and envi-

ronmental variance components are presented in Table 1. The degree
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to which MZ twins (who share 100% of their segregating DNA) are

more highly correlated than DZ twins (who share, on average, 50% of

their segregating DNA) can be used to determine heritability via the

ACE univariate biometrical modeling approach describe above. In

VETSA, univariate estimates of twin correlations of hippocampal sub-

fields in MZ twins ranged from 0.55 in the hippocampal fissure to

0.85 in CA1. Correlations between DZ twins ranged from −0.01 in the

fimbria to 0.44 in the subiculum. Estimates of MZ twin correlations in

HCP data ranged from 0.60 in the hippocampal fissure to 0.89 in the

ML. Corresponding DZ correlations ranged from 0.12 in the hippo-

campal fissure to 0.43 in the presubiculum, fimbria, and HATA. Vol-

ume was significantly heritable in all subfields for both data sets,

except for the hippocampal fissure in VETSA. Among these, VETSA

maximum likelihood estimates of narrow sense heritability of subfields

ranged from 0.57 in the fimbria to 0.84 in CA1, and HCP heritability

estimates ranged from 0.37 in the HATA to 0.89 in the ML. Multiple

group models did not show a significant change in fit when heritability

estimates were constrained to be equal across groups. That is, esti-

mated heritability was comparable across samples for all subfields.

Estimates of common environmental variance (c2) were nonsignificant

in all subfields of both studies. These estimates were zero for most

regions in both studies, with a small number ranging from 0.10 to

0.34. However, this variance component was retained in the model to

avoid inflating estimates of heritability.

3.2 | Genetic relationship between total
hippocampal volume and subfields

Phenotypic, genetic, and unique environmental correlations from the

bivariate analysis of total hippocampal volume and individual subfields

are presented in Table 2. Phenotypic correlations between total hip-

pocampal volume and subfields were all significant in both studies.

These correlations ranged from 0.30 in the subiculum and 0.93 in the

ML in VETSA; correlations in the HCP ranged from 0.50 in the fimbria

to 0.97 in the ML.

Genetic correlations provide a measure of the shared genetic

influence between two traits. In general, genetic correlations with

total hippocampal volume were high and, in many cases, did not differ

from 1.0. This suggests that there is a high degree of overlap between

the genetic influences on the total hippocampus and each individual

TABLE 1 Univariate ACE model for hippocampal subfields. Maximum likelihood estimates and 95% CIs for within pair correlations, additive

genetic (a2), shared/common environmental (c2), and unique environmental (e2) influences. Estimates are presented separately for the VETSA,
and HCP

Subfield rMZ rDZ a2
Standardized variance components

95% CI c2 95% CI e2 95% CI

VETSA

Hippocampal tail 0.70 0.30 0.73 (0.41, 0.80) 0.00 (0.00, 0.29) 0.27 (0.20, 0.38)

Subiculum 0.77 0.44 0.78 (0.43, 0.84) 0.00 (0.00, 0.32) 0.22 (0.16, 0.31)

CA1 0.85 0.34 0.84 (0.62, 0.88) 0.00 (0.00, 0.21) 0.16 (0.12, 0.23)

Hippocampal fissure 0.55 0.32 0.40 (0.00, 0.63) 0.10 (0.00, 0.48) 0.50 (0.37, 0.65)

Presubiculum 0.78 0.33 0.78 (0.52, 0.84) 0.00 (0.00, 0.24) 0.22 (0.16, 0.30)

Parasubiculum 0.73 0.14 0.71 (0.53, 0.79) 0.00 (0.00, 0.14) 0.29 (0.21, 0.41)

ML 0.82 0.37 0.83 (0.62, 0.87) 0.00 (0.00, 0.19) 0.17 (0.13, 0.24)

GC-DG 0.81 0.39 0.81 (0.52, 0.86) 0.00 (0.00, 0.27) 0.19 (0.14, 0.27)

CA3 0.83 0.33 0.81 (0.62, 0.86) 0.00 (0.00, 0.18) 0.19 (0.14, 0.26)

CA4 0.80 0.40 0.80 (0.51, 0.85) 0.00 (0.00, 0.27) 0.20 (0.15, 0.28)

Fimbria 0.60 −0.01 0.57 (0.36, 0.69) 0.00 (0.00, 0.14) 0.43 (0.31, 0.60)

HATA 0.64 0.26 0.58 (0.14, 0.68) 0.00 (0.00, 0.39) 0.42 (0.32, 0.54)

HCP

Hippocampal tail 0.83 0.42 0.84 (0.58, 0.88) 0.00 (0.00, 0.26) 0.16 (0.12, 0.21)

Subiculum 0.88 0.29 0.86 (0.69, 0.89) 0.00 (0.00, 0.18) 0.14 (0.11, 0.18)

CA1 0.85 0.28 0.85 (0.67, 0.89) 0.00 (0.00, 0.18) 0.15 (0.11, 0.19)

Hippocampal fissure 0.60 0.12 0.57 (0.35, 0.67) 0.00 (0.00, 0.19) 0.43 (0.33, 0.54)

Presubiculum 0.80 0.43 0.70 (0.40, 0.84) 0.10 (0.00, 0.39) 0.20 (0.16, 0.27)

Parasubiculum 0.72 0.35 0.59 (0.25, 0.77) 0.11 (0.00, 0.43) 0.30 (0.23, 0.38)

ML 0.89 0.32 0.89 (0.70, 0.91) 0.00 (0.00, 0.19) 0.11 (0.09, 0.15)

GC-DG 0.86 0.28 0.86 (0.71, 0.89) 0.00 (0.00, 0.15) 0.14 (0.11, 0.18)

CA3 0.74 0.29 0.75 (0.49, 0.81) 0.00 (0.00, 0.24) 0.25 (0.19, 0.33)

CA4 0.85 0.25 0.85 (0.70, 0.88) 0.00 (0.00, 0.14) 0.15 (0.12, 0.20)

Fimbria 0.61 0.43 0.51 (0.18, 0.73) 0.14 (0.00, 0.43) 0.35 (0.27, 0.45)

HATA 0.73 0.43 0.37 (0.07, 0.75) 0.34 (0.00, 0.61) 0.29 (0.22, 0.37)

95% CI = corrected 95% confidence intervals; CA = cornu ammonis; GC-DG = granule cells of the dentate gyrus; HATA = hippocampal amygdala transi-
tion area; HCP = Human Connectome Project; ML = molecular layer; rDZ = correlation between dizygotic twins; rMZ = correlation between monozygotic
twins; VETSA = Vietnam Era Twin Study of Aging.
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subfield. In VETSA, genetic correlations between total hippocampal

volume and the subfields ranged from 0.33 in the parasubiculum to

0.99 in the GC-DG. The 95% CIs included 1.0 (meaning that the

genetic correlation was not distinguishable from unity) in six of these

regions: CA1, CA4, hippocampal fissure, ML, GC-DG, and HATA.

Equivalently, examining the Aresidual term demonstrates that only half

of the subfields have any significant unique genetic variance after

accounting for the genetic covariance with total hippocampal volume.

Genetic correlations in the HCP between total hippocampal volume

and subfields range from 0.55 in the parasubiculum to 0.98 in the

ML. The 95% CIs in two of these regions did not differ from 1.0, with

the upper bounds of another seven being greater than 0.90.

Unique environmental correlations with total hippocampal vol-

ume were significant in all regions except the fimbria in both studies,

and the hippocampal fissure in the HCP. In the VETSA, these values

ranged from 0.22 in the parasubiculum to 0.81 in the ML. Significant

environmental correlations in the HCP ranged from 0.24 in the para-

subiculum to 0.93 in the ML.

No regions of interest showed any significant common environment

covariance between measures in either study. However, as noted

before, we retained the common environment variance component in all

further models to avoid inflating estimates of genetic variance.

3.3 | Factor analysis of hippocampal subfields

The omnibus test fixing A covariances (but not variances) to zero

resulted in a significant change of fit in both samples (VETSA: LRT =

134.86, Δdf = 66, p < .001; HCP: LRT = 188.71, Δdf = 66, p < .01).

These results indicate that there is significant genetic covariance

between subfields. We also found evidence for significant unique

environmental covariance, but not common environmental influences

(see Table 3 for results).

We fit a set of independent pathway models to determine

whether there were a smaller number of latent factors that can be

used to generate genetically distinct groupings of subfields. In VETSA,

a model with three latent genetic factors satisfied both of our selec-

tion criteria by providing a good fit relative to the (a) Cholesky

(LRT = 25.54, ΔDF = 33, p = .82) and (b) to the four-factor model

(LRT = 17.17, Δdf = 9, p = .05). Table 3 provides a summary of model

fit indices.

TABLE 2 Relationships between whole hippocampal volume and hippocampal subfields from bivariate ACE model. Maximum likelihood

estimates and 95% CIs for phenotypic (rp), additive genetic (rg), and unique environmental (re) correlations between total hippocampal volume and
specific hippocampal subfields. Residual genetic variance (Aresidual) after accounting for whole hippocampal volume is presented and corresponds
to path a22 in Figure 1c. Estimates are presented separately for the VETSA, and HCP. Common environment correlations were nonsignificant and
are not shown

Subfield rp 95% CI rg 95% CI re 95% CI Aresidual 95% CI

VETSA

Hippocampal tail 0.67 (0.60, 0.72) 0.68 (0.47, 0.83) 0.63 (0.49, 0.74) 0.39 (0.21, 0.50)

Subiculum 0.78 (0.73, 0.81) 0.81 (0.67, 0.89) 0.64 (0.50, 0.74) 0.26 (0.15, 0.33)

CA1 0.90 (0.88, 0.92) 0.95 (0.90, 1.00) 0.78 (0.69, 0.85) 0.08 (0.00, 0.13)

Hippocampal fissure 0.47 (0.38, 0.54) 0.51 (−1.00, 1.00) 0.32 (0.13, 0.48) 0.28 (0.00, 0.47)

Presubiculum 0.57 (0.49, 0.64) 0.62 (0.42, 0.80) 0.43 (0.25, 0.58) 0.49 (0.26, 0.62)

Parasubiculum 0.30 (0.20, 0.40) 0.33 (0.10, 0.56) 0.22 (0.01, 0.41) 0.64 (0.44, 0.82)

ML 0.93 (0.92, 0.95) 0.98 (0.95, 1.00) 0.81 (0.73, 0.87) 0.03 (0.00, 0.08)

GC-DG 0.87 (0.84, 0.89) 0.99 (0.91, 1.00) 0.75 (0.65, 0.83) 0.01 (0.00, 0.13)

CA3 0.70 (0.64, 0.75) 0.76 (0.63, 0.92) 0.55 (0.39, 0.68) 0.34 (0.12, 0.45)

CA4 0.86 (0.83, 0.89) 0.98 (0.89, 1.00) 0.74 (0.64, 0.82) 0.03 (0.00, 0.16)

Fimbria 0.31 (0.22, 0.41) 0.46 (0.21, 0.76) 0.05 (−0.16, 0.25) 0.45 (0.20, 0.64)

HATA 0.56 (0.48, 0.63) 0.71 (0.36, 1.00) 0.50 (0.34, 0.64) 0.26 (0.00, 0.47)

HCP

Hippocampal tail 0.61 (0.54, 0.66) 0.63 (0.49, 0.71) 0.42 (0.28, 0.55) 0.51 (0.37, 0.61)

Subiculum 0.87 (0.85, 0.90) 0.92 (0.88, 0.96) 0.56 (0.43, 0.66) 0.13 (0.06, 0.17)

CA1 0.92 (0.90, 0.93) 0.94 (0.91, 0.96) 0.80 (0.73, 0.85) 0.10 (0.07, 0.13)

Hippocampal fissure 0.47 (0.40, 0.54) 0.86 (0.59, 1.00) 0.06 (−0.10, 0.22) 0.14 (0.00, 0.41)

Presubiculum 0.77 (0.73, 0.81) 0.84 (0.74, 0.94) 0.48 (0.35, 0.60) 0.21 (0.06, 0.30)

Parasubiculum 0.55 (0.48, 0.61) 0.55 (0.31, 0.71) 0.24 (0.08, 0.39) 0.32 (0.11, 0.48)

ML HP 0.97 (0.97, 0.98) 0.98 (0.97, 0.99) 0.93 (0.90, 0.95) 0.04 (0.02, 0.04)

GC-DG 0.92 (0.90, 0.93) 0.94 (0.91, 0.96) 0.77 (0.70, 0.83) 0.10 (0.07, 0.13)

CA3 0.71 (0.66, 0.76) 0.76 (0.66, 0.85) 0.56 (0.43, 0.66) 0.31 (0.19, 0.39)

CA4 0.89 (0.87, 0.91) 0.92 (0.89, 0.96) 0.71 (0.62, 0.78) 0.12 (0.07, 0.16)

Fimbria 0.50 (0.43, 0.57) 0.60 (0.39, 0.93) 0.14 (−0.03, 0.30) 0.30 (0.03, 0.51)

HATA 0.71 (0.66, 0.76) 0.85 (0.67, 1.00) 0.38 (0.23, 0.51) 0.10 (0.00, 0.29)

95% CI = corrected 95% confidence intervals; CA = cornu ammonis; GC-DG = granule cells of the dentate gyrus; HATA = hippocampal amygdala transi-
tion area; HCP = Human Connectome Project; ML = molecular layer; VETSA = Vietnam Era Twin Study of Aging.
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We next examined the residual genetic variance (As parameters in

Figure 1d) on each subfield to determine which of these parameters

could be trimmed from the model. We were able to fix the residual

genetic variance to 0 on all subfields except for the parasubiculum

without resulting in a significant change in fit compared to the ACE

Cholesky (LRT = 41.36, Δdf = 44, p = .59) or the full three-factor

model (LRT = 15.82, Δdf = 11, p = .15). Next, to identify a simpler

factor structure, we performed Varimax rotation on the genetic factor

matrix from this trimmed three-factor model and refit the model with

any loadings of 0.1 or less constrained to zero. This resulted in a non-

significant change in fit relative to the full three-factor model

(LRT = 16.48, Δdf = 13, p = .22). To further simplify the structure, we

then constrained any nonsignificant loadings to 0. However, we were

not able to identify a truly simple structure, as four subfields main-

tained cross-loadings with multiple factors (although loadings on fac-

tor 3 were nonsignificant for all subfields except the hippocampal tail).

In addition, the parasubiculum did not significantly load onto any of

the factors. See Figure 2a for the final model and Table S2

(Supporting Information) for factor loadings.

In the HCP, a model with three latent genetic factors also pro-

vided a good fit relative to: (a) the Cholesky (LRT = 30.57, Δdf = 33,

p = .59); and (b) the four-factor model (LRT = 14.42, Δdf = 9, p = .05).

Table 4 provides a summary of model fit indices.

We next examined the residual genetic variance (As in Figure 1d)

on each subfield for the HCP data. These intervals were nonsignificant

(i.e., included 0) for all subfields except the hippocampal tail, parasubi-

culum, and HATA. Fixing these parameters to 0 resulted in a nonsig-

nificant change in fit relative to the ACE Cholesky (LRT = 45.17,

Δdf = 42, p = .34) and the full three-factor model (LRT = 14.6, Δdf =

9, p = .10). As with the VETSA data, to identify a simpler factor struc-

ture, we performed Varimax rotation on the genetic factor matrix and

refit the model with any loadings of 0.1 or less constrained to zero.

This resulted in a nonsignificant change in fit relative to the full three-

factor model (LRT = 15.75, Δdf = 11, p = .15). However, we were

unable to simplify the factor structure any further. None of the load-

ings on factor 2 was individually significant, whereas all loadings on

factors 1 and 3 were significant, and six subfields maintained cross-

loadings with multiple factors. Note that, while no loadings on factor

2 were significant, this factor could not be dropped without a signifi-

cant change in model fit. See Figure 2b for the final model and

Table S2 (Supporting Information) for factor loadings.

4 | DISCUSSION

Heritability estimates for most subfields obtained from univariate twin

models ranged from 0.51 to 0.89, consistent with previous studies

(Greenspan et al., 2016; Patel et al., 2017; Whelan et al., 2016). The

hippocampal fissure measured in the VETSA data was the sole region

to demonstrate nonsignificant heritability. A previous study found this

subfield to have much lower test–retest reliability (Whelan et al.,

2016), which could explain the low heritability estimate. The samples

included in the present study differed in age, sex, scanner manufac-

turer, scan sequences, and image resolution. Although hippocampal

subfields were segmented with Freesurfer v6.0 in both data sets, ini-

tial structural preprocessing was carried out with different versions

(VETSA: Freesurfer v6.0; HCP: Freesurfer v5.3). However, heritability

estimates did not significantly differ across samples, and the genetic

factor structures identified in each sample were broadly similar. Thus,

TABLE 3 Model fit summaries of multivariate ACE and independent pathway models: VETSA data. Models tested to identify genetic relationship

between subfields in the VETSA sample. For omnibus tests of a given variance component (A, C, or E), the covariance (but not variance) was
constrained to zero while the covariance of the remaining variance components was estimated freely. The independent pathways
section presents results of the model identification procedure. All models except the one-factor model provided a good fit relative to the ACE
Cholesky. While there was no significant reduction in fit between the four- and three-factor models, the comparison of the three- versus
two-factor models resulted in a significant reduction in fit, indicating that the three-factor solution provided the best model for further testing

Model Estimated parameters −2LL df ΔLL Δdf p

Omnibus tests of covariance

ACE Cholesky 246 7,008.06 4,626 – – –

ACE no A covariance 180 7,142.92 4,692 134.86 66 0

ACE no C covariance 180 7,026.17 4,692 18.11 66 1

ACE no E covariance 180 8,882.51 4,692 1874.45 66 0

Independent pathway models of A

ACE Cholesky 246 7,008.06 4,626 – – –

Ind. path. A six factors 243 7,009.62 4,635 1.56 9 1

Ind. path. A five factors 235 7,011.14 4,642 3.08 16 1

Ind. path. A four factors 226 7,016.43 4,650 8.37 24 1

Ind. path. A three factors 216 7,033.59 4,659 25.54 33 0.82

Ind. path. A two factors 205 7,053.31 4,669 45.26 43 0.38

Ind. path. A one factor 193 7,089.09 4,680 81.03 54 0.01

Independent pathway models of A (three vs. two factors)

Ind. path. A three factors 216 7,033.59 4,659 – – –

Ind. path. A two factors 205 7,053.31 4,669 19.72 10 0.03

−2LL = −2 log-likelihood; df = degrees of freedom; LRT = likelihood-ratio chi-square test; p = significance of the LRT; VETSA = Vietnam Era Twin Study
of Aging.

ELMAN ET AL. 1535



the subfield measures appear to represent reliable phenotypes across

studies that are robust to differences in image acquisition parameters

of T1-weighted images of the magnitude tested here (0.7 mm2

vs. 1 mm2 in-plane resolution), as well as demographic and preproces-

sing differences between these data sets. Taken together, these

results suggest that hippocampal subfields as delineated by Freesurfer

v6.0 represent reliable measures that may be useful in large-scale phe-

notypic analyses by consortia such as ENIGMA or CHARGE.

Although previous studies have examined the genetic correlations

between subfields and total hippocampal volume (Greenspan et al.,

2016; Patel et al., 2017), here we focus on determining whether sig-

nificant genetic variance remains after accounting for the total hippo-

campal volume. Genetic correlations between total hippocampus and

subfields were very high (>0.90), and the upper 95% CIs included 1 in

some cases (Table 2). In addition, the genetic correlations were very

similar between samples and the CIs were highly overlapping, thus we

do not consider the differences in point estimates to be meaningful.

Put another way, the residual genetic variance was quite low after

accounting for genetic variance attributable to the whole hippocampal

volume. This genetic overlap should not come as a surprise, as the

total hippocampal volume is composed of the subfields. Overlapping

genetic influences likely reflect genes related to structural properties

of cells common the entire hippocampal formation. However, our

findings are important in that they indicate that in standard 3.0T stan-

dard resolution T1-weighted images; hippocampal subfield volumes do

not provide substantial additional genetic information beyond what is

can be detected from measures of total hippocampal volume.

Our estimates of residual genetic influence on hippocampal sub-

fields after accounting for shared genetic influences on total

hippocampal volume are somewhat lower than what has been

reported previously (Greenspan et al., 2016). This is likely due to dif-

ferences in the approaches one can take to estimate residual genetic

variance. A common approach is to residualize the phenotype of inter-

est by regressing out another phenotype. In this case, hippocampal

subfield volumes would be residualized for total hippocampal volume.

Regressing out the phenotypic variance of the total hippocampal vol-

ume from each subfield assumes proportional contributions to the

phenotypic covariance based on the A, C, and E estimates of total hip-

pocampal volume. Our results indicate that this assumption does not

hold, as additive genetic influences constitute a much higher propor-

tion of the phenotypic covariance than do common or environmental

influences (see Tables 1 and 2). Thus, regressing out phenotypic vari-

ance may not sufficiently remove the proper amount of genetic vari-

ance, and can result in higher estimates of residual variance. The

bivariate Cholesky approach does not make this assumption. Instead,

it directly estimates the proportions of genetic and environmental var-

iance and covariance such that shared genetic influences can be more

accurately controlled for. When we follow the residual approach, heri-

tability estimates are higher and similar to previously reported herita-

bility estimates (Greenspan et al., 2016). The same logic applies to

approaches that create a ratio of each subfield to the total hippocam-

pal volume. Heritability estimates of subfield ratios are almost identi-

cal to those resulting from the residual approach. However, we

believe that the results obtained from the bivariate Cholesky provide

more precise estimates of residual genetic variance.

The lack of distinct genetic influences on each subfield coupled

with the low image resolution relative to subfields' volumes leads to a

logical follow-up question: are there combinations of subfields that

FIGURE 2 Independent pathway model of genetic variance. In the three-factor model, we fit a factor structure on the genetic component (A),

but saturated models of common (C) and unique environmental (E). Al parameters represent latent genetic factors and As parameters represent
residual A variance. Significant loadings only are shown along the paths from latent genetic factors to hippocampal subfields. (a) Final model for
the VETSA sample. (b) Final model for the HCP sample
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reflect a smaller number of genetically distinct regions that could be

used in future genetic analysis? This requires determining the genetic

relationship between subfields themselves, something that has not

previously been explored. We fit an independent pathways model that

attempts to find a smaller number of genetically independent factors

comprising subfields with high degrees of genetic overlap. If geneti-

cally independent factors can be identified, these could represent new

targets for genetic association studies. The results indicate that an

underlying genetic architecture can be detected to a certain extent.

For the most part, these genetic factors seem to reflect the CA fields

plus DG in one factor, and medial subfields including the fimbria and

subiculum-related structures in the second factor. Internal layers such

as the ML and GC-DG exhibited loadings on both of these factors,

likely due to their adjacent position to structures in each of these fac-

tors and small size. The third factor was much less clear, although it

should be noted that the three-factor solution did provide a signifi-

cantly better fit relative to a two-factor solution. Although this general

pattern of segregation was apparent when we examined models with

different numbers of genetic factors, we were not able to find a simple

factor structure. That is, no set of genetically distinct factors emerged.

There were many cross loadings, reflecting a large amount of shared

genetic variance between subfields. Unfortunately, the overlap

between genetic factors precludes our ability to identify combinations

of subfields that would represent independent genetic factors.

A GWAS of hippocampal subfields was conducted using standard

3.0T resolution T1-weighted sequences segmented with Freesurfer

6.0 (van der Meer et al., 2018). This analysis found 15 significant loci,

eight of which had not previously been associated with the hippocam-

pus. However, all of the loci that were significantly associated with

subfields were also associated with either the total hippocampal vol-

ume or other subfields. Of the loci that were not associated with the

total hippocampal volume, all but one was associated with the hippo-

campal tail. The hippocampal tail is not a subfield per se, but rather an

umbrella label assigned to the posterior portion of the hippocampus

where it is difficult to define reliable subfields (Iglesias et al., 2015).

Thus, we do not believe the results of this GWAS are inconsistent

with our conclusions. The detection of additional loci associated with

the hippocampus is certainly an important finding, and these results

indicate that a rough division of the hippocampal structure into ante-

rior and posterior regions may be useful for further genetic analysis.

However, the high degree of genetic covariance among subfields in

our sample suggests that it will be difficult for future studies that use

standard T1-weighted sequences to detect genes that are distinct

from both the total hippocampal volume and neighboring subfields.

Taken together, these findings suggest that there is little indepen-

dent genetic variation specific to hippocampal subfields when using

the automated Freesurfer segmentation method on standard 3.0T res-

olution T1-weighted sequences. This is consistent with a warning by

the authors of the algorithm that, in these cases, segmentation is

largely driven by atlas priors. Thus, caution is warranted when using

such data in genetic association analyses. The HCP data are acquired

with an in-plane resolution of 0.7 mm2, which does fall within the

upper end of the range typically acquired for manual and automated

segmentation protocols (Wisse, Biessels, & Geerlings, 2014). How-

ever, important anatomical features such as the “dark band” separat-

ing CA fields from the DG are not visible in T1-weighted scans as they

are in T2-weighted scans (Wisse et al., 2017). Thus, inclusion of higher

resolution T2-weighted images is likely necessary to extract more

TABLE 4 Model fit summaries of multivariate ACE and independent pathway models: HCP data. Models tested to identify genetic relationship

between subfields in the VETSA sample. For omnibus tests of a given variance component (A, C, or E), the covariance (but not variance) was
constrained to zero while the covariance of the remaining variance components was estimated freely. The independent pathways
section presents results of the model identification procedure. All models except the one-factor model provided a good fit relative to the ACE
Cholesky. While there was no significant reduction in fit between the four- and three-factor models, the comparison of the three- versus
two-factor models resulted in a significant reduction in fit, indicating that the three-factor solution provided the best model for further testing

Model Estimated parameters −2LL df ΔLL Δdf p

Omnibus tests of covariance

ACE Cholesky 246 8,635.54 6,426 – – –

ACE no A covariance 180 8,824.25 6,492 188.71 66 0

ACE no C covariance 180 8,669.35 6,492 33.81 66 1

ACE no E covariance 180 11,299.3 6,492 2,663.75 66 0

Independent pathway models of A

ACE Cholesky 246 8,635.54 6,426 – –

Ind. path. A six factors 243 8,638.17 6,435 2.63 9 0.98

Ind. path. A five factors 235 8,641.62 6,442 6.07 16 0.99

Ind. path. A four factors 226 8,651.69 6,450 16.15 24 0.88

Ind. path. A three factors 213 8,666.11 6,459 30.57 33 0.59

Ind. path. A two factors 205 8,687.65 6,469 52.11 43 0.16

Ind. path. A one factor 193 8,717.5 6,480 81.96 54 0.01

Independent pathway models of A (three vs. two factors)

Ind. path. A three factors 213 8,666.11 6,459 – – –

Ind. path. A two factors 205 8,687.65 6,469 21.55 10 0.02

−2LL = −2 log-likelihood; df = degrees of freedom; HCP = Human Connectome Project; LRT = likelihood-ratio chi-square test; p = significance of the
LRT; VETSA = Vietnam Era Twin Study of Aging.
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precise genetic parcellations, and such data should be sought for the

purposes of large-scale GWAS of subfields. While it is possible that

there truly is little genetic influence specific to individual subfields, it

is also possible that another segmentation scheme or approach may

delineate more genetically distinct regions on standard resolution T1-

weighted images. To this point, there is an international effort by the

Hippocampal Subfields Group to develop harmonized segmentation

protocols (Wisse et al., 2017), and the recommendations of this group

should be considered carefully when choosing data sets appropriate

for further genetic analysis.

Given the variability in development, function, and differential

susceptibility to disease, there is ample reason to further investigate

the hippocampus at the level of subfields (Amaral & Witter, 1989;

Leal & Yassa, 2015; Small et al., 2011; Witter et al., 2000). Thus far,

manual tracings of the subfields on high-resolution images acquired

for this specific purpose remain the gold standard (de Flores et al.,

2015; Yushkevich et al., 2015). Yet it does appear that automated

subfield segmentation on standard resolution images can be useful in

phenotypic analyses, as multiple studies find subfields defined in this

way are differentially affected by aging and disease (Haukvik et al.,

2015; Iglesias et al., 2016; Krogsrud et al., 2014; Kurth, Cherbuin, &

Luders, 2017; Pereira et al., 2013). Thus, automated segmentation

methods are important tools that can lower the barriers to studying

disease and age-related phenomena at the subfield level in large-scale

studies and for researchers who may not otherwise have the

resources to generate manual segmentations. In the present study,

the high heritabilities of hippocampal subfields in two different sam-

ples suggest that automated segmentation methods provide reliable

estimates of subfield volumes across age groups and acquisition

parameters. On the other hand, our results suggest that little addi-

tional information about the genetic underpinnings of hippocampal

volume is likely to be gained by examining individual subfields auto-

matically segmented on 3.0T standard resolution T1-weighted images

rather than the hippocampus as a whole.
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