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Abstract

The Alzheimer’s Disease Sequencing Project (ADSP) performed whole genome sequencing 

(WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype calling 
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of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was performed 

centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control (QC) Working 

Group applied QC protocols to project-level variant call format files (VCFs) from each pipeline, 

and developed and implemented a novel protocol, termed “consensus calling,” to combine 

genotype calls from both pipelines into a single high-quality set. QC was applied to autosomal bi-

allelic SNVs and indels, and included pipeline-recommended QC filters, variant-level QC, and 

sample-level QC. Low-quality variants or genotypes were excluded, and sample outliers were 

noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 67 parent-

offspring pairs, and MIs were used to establish additional genotype-specific filters for GATK calls. 

After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK and 14.5% of 

Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants were 

concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; the 

remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC excluded 

~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel genotypes were 

concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, respectively; and ~0.29% 

of discordant genotypes were. The final WGS consensus dataset contains 27,896,774 SNVs and 

3,133,926 indels and is publicly available.
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Introduction

While genome-wide association studies (GWAS) have successfully identified thousands of 

common genetic variants associated with hundreds of complex diseases and traits, next-

generation sequencing (NGS) technologies aim to widen the scope and ability of genomic 

studies to identify the genetic underpinnings of disease. Unlike array-based GWAS 

genotyping, NGS technologies, which include whole genome sequencing (WGS) and whole 

exome sequencing (WES), are able to comprehensively capture genotypes for both common 

and rare single nucleotide variants, insertion-deletion polymorphisms, and even structural 

variants that may contribute to disease risk. By capturing all sequence within targeted 

regions, NGS may facilitate identification of causal variants rather than merely associated 

variants. It achieves a substantial gain in base-pair coverage of the genome compared to 

high-density GWAS array genotyping, a multi-fold increase in read depth compared to 

traditional Sanger sequencing, and a much lower per-base cost.1

Both WGS and WES genotype calling can be affected by a variety of types of errors or 

sources of bias, such as sample swaps and low call rates that can alter the quality of 

genotypes used in analyses and thus affect the ability of analyses to detect associations with 

disease. Quality issues that are unique to sequencing assays can arise at multiple steps in the 

process. During the library preparation and sequencing phases, these include low quality 

reads resulting from duplications, unfavorable base composition of the amplified sequence, 

inclusion of tag (adapter/barcode) sequences into reads; as well as read contamination from 
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external sources, such as bacteria in DNA samples used for sequencing.2 At the alignment 

phase, quality issues can arise from alignment to duplicated genomic regions or repeat-rich 

regions, and require assessments of read depth, mapping quality, insert size and the number 

of discordantly mapped paired reads3. Issues at these phases can only be remedied by 

appropriate experimental design and use of sensitive bioinformatic tools. At the variant-

calling level, quality issues include elevated numbers of novel non-synonymous SNPs or 

excesses of ‘private’ variants (within individual samples), allelic read ratio biases (causing 

true homozygotes to be called as heterozygotes), and low-quality calls based on low read 

depths. While a number of QC software packages and protocols exist for the cleaning at the 

raw data phase2,4,5 and at the alignment phase,6 few tools or protocols exist7 at the variant-

calling/post-variant-calling phase. For this reason, a novel QC protocol, including the 

development of a consensus-calling approach to integrate genotype calls from multiple 

pipelines, was developed for WGS data in the Alzheimer Disease Sequencing Project 

(ADSP).

The ADSP is a collaboration between the National Institutes on Aging (NIA) and the 

National Human Genome Research Institute (NHGRI), with data contributions from the 

Alzheimer Disease Genetics Consortium (ADGC) and the neurology working group of the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, 

and sequencing contributions from the Large Scale Sequencing and Analysis Centers 

(LSSACs) at Baylor University, the Broad Institute and Washington University-St. Louis. 

The ADSP was initiated to identify both protective and risk genetic variants for Alzheimer 

Disease (AD) [MIM: 104300], a devastating neurodegenerative disorder characterized by 

progressive loss of cognitive function. The ADSP generated WGS on 584 individuals from 

111 large, multiplex late onset AD families to detect risk variants having large effect on 

familial forms of AD. Raw data processing, map alignment, and variant calling were 

performed by both the Broad Institute, which called variants using the GATK-

HaplotypeCaller package,8–10 and the Baylor College of Medicine Human Genome 

Sequencing Center , which called variants using the Atlas V2 pipeline.11

The ADSP QC protocol integrated QC strategies from multiple sources including the 

CHARGE consortium QC protocol,12 prior sequencing study experiences of ADGC and 

CHARGE investigators, GWAS QC approaches, and proprietary QC recommendations for 

the Atlas V2 and GATK-HaplotypeCaller genotype calling pipelines. The final protocol 

included 1) independent QC of each variant calling set, 2) comparison of the QCed calls 

from each pipeline, and 3) implementation of a consensus calling protocol to remove 

discordant calls and integrate genotypes called in only one pipeline, resulting in a single set 

of SNV and indel genotypes for analysis.

Here we discuss the workflow and implementation of this novel QC protocol and consensus 

calling approach on WGS autosomal SNV and indel data in the ADSP. We demonstrate 

improved quality of SNV and indel genotype data after pipeline-specific QC filtering and 

show further improvements in quality through higher concordance of genotype calls and 

lower rate of Mendelian inconsistencies by combining genotype calls from two calling 

pipelines compared to using calls from only one pipeline.
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Subjects and Methods

Subjects

The ADSP family study spans seven cohorts. Detailed description of the study design has 

been published elsewhere.13–15 In brief, 1,100 multiplex AD families were screened to 

identify 111 high priority families consisting of more than three AD cases with limited 

presence of the APOE ε4 allele and other known pathogenic variants (e.g., APP, PSEN1/2). 

All subjects selected for sequencing had either genome-wide or exome chip SNV genotype 

data available.

A total of 584 subjects were selected for sequencing from these pedigrees. Three subjects 

were sequenced in replicate at all three sequencing centers, adding six more samples, for a 

total of 590 samples. Six samples were dropped because of sequencing quality issues, 

including one with low DNA concentration, three with poor GWAS concordance, and two 

with low-quality sequence data. Of the remaining 584 samples from 578 unique subjects, 12 

samples were resequenced due to issues with reagents. These family data included 

individuals of European American, African American, and Caribbean Hispanic ancestry, and 

members of a large multi-generational pedigree with high burden of AD from a Dutch 

isolate16 (Table S1).

Whole genome sequencing methods

Genomic DNA from whole blood, frozen brain, or fibroblasts was sent to one of three 

LSSACs: Broad Institute Genomics Service (Broad), Baylor College of Medicine Human 

Genome Sequencing Center (Baylor), and McDonnell Genome Institute at the Washington 

University in St. Louis (WashU). The breakdown of samples sequenced by each of three 

centers is shown in Table S1. Illumina WGS technology was used at all three centers. 

Library preparation and sequencing protocols details are provided in the Supplementary 

Materials (Text S1; Table S2).

Whole genome alignment and variant genotype calling

After sequencing, Broad and Baylor performed alignment and variant calling on all whole 

genomes from all three LSSACs. Genome alignment at Broad was performed using the 1000 

Genomes version of the GRCh37/hg19 build, while alignment at Baylor was performed 

using the GRCh37-lite version. Broad and Baylor subsequently applied two variant genotype 

callers, GATK-HaplotypeCaller V2.6 and Atlas V2, respectively, to the sequencing data. 

Additional details regarding genome alignment are provided in Table S2, while a detailed 

description and workflow characterizing variant genotype calling in GATK and Atlas are 

described in Text S2.

Pre-QC sample checking

Concordance checking between high-density genotyping chip-based genotype data (either 

GWAS or exome chip) was performed by the sequencing centers prior to implementing the 

QC protocol. Samples with a concordance rate of <80% between chip genotype data and 

sequence were removed from subsequent QC and analysis. The final QCed genotype set 

includes only a single set of sequence genotypes for the three replicated subjects, 
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specifically the data generated by the sequencing center to which other members of the 

subjects’ pedigrees were originally allocated. Finally, only data for subjects that were 

successfully called in both Atlas and GATK pipelines were carried forward to QC.

Familial relationships between samples were evaluated via the software suite PBAP 

(Pedigree-based analysis pipeline)17 using selected sets of ~5,000–6,000 high frequency 

(MAF>0.05) variants from the GWAS arrays to obtain maximum likelihood estimates of 

pairwise IBD sharing coefficients. Relative pairs with coefficient estimates that deviated 

strongly from expectation based on the reported familial relationships were flagged but not 

excluded prior to QC.

Checking for Mendelian inconsistencies (MIs) between related individuals was performed in 

67 parent-offspring pairs that were sequenced within the ADSP pedigrees using Pedcheck 

software or R scripts.18 This was done prior to QC to establish baseline rates of MIs within 

each pipeline and after QC in order to quantify the improvement in data quality following 

the implementation of QC filters. Given that only biallelic variants were considered and no 

trios (with both parents) were available, MIs could only be detected when the parent and 

offspring were homozygotes for different alleles (depicted in Figure S1). Because the 

incorrect genotype in each pair could not be established, genotypes involved in MIs were not 

excluded from QCed datasets.

Pipeline-specific quality control

SNV and indel genotypes were QCed independently, although the same protocol was 

applied to each variant type. QC was applied to biallelic autosomal SNVs and indels; any 

variants with more than two alleles were removed from the data set prior to other QC steps 

and are not addressed in the current study. Three levels of QC were applied: (a) pipeline-

specific ‘primary’ QC (i.e., sequencing center-recommended filtering); (b) standardized 

variant-level QC; and (c) sample-level QC.

Figure 1 depicts all components of the QC protocol. For pipeline-specific primary QC, Atlas 

V2 genotype calls were first evaluated at a genotype-level. Genotypes that had a low read 

depth (DP <10) or an out-of-range allelic read ratio (VR/DP ≤0.75 or VR/DP ≥0.25 for 

heterozygous genotypes, where VR and DP are referent allele and overall read depths, 

respectively) were set to missing. Next on the variant level, any variants with low mapping 

score (MS) (in the VCF’s “INFO” field, MS <0.8) and any variants with completely missing 

genotypes were flagged/excluded as failed variants. GATK-HaplotypeCaller primary QC 

was applied at the variant level, excluding any variants that were not flagged as “PASS” by 

the VQSR algorithm, thus excluding variants outside the 95% sensitivity tranches (i.e., the 

lowest 5% of recalibrated quality scores).

After primary QC, variant-level QC was applied to the remaining variants in the Atlas and 

GATK VCFs. Variant filters (exclusions) were applied in the following order: 1) 

monomorphic; 2) high missing rate (≥20%); 3) high read depth (>500 reads); and 4) extreme 

heterozygosity (>5 SD from mean z-score across all variants). For step #4, we evaluated 

excess heterozygosity empirically in lieu of testing for departure from Hardy-Weinberg 

equilibrium (HWE) due to concerns about the potentially biasing effects of familial 
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relationships on variance estimation and consequently on the P-value. Instead, a score 

statistic approach was applied across all sequenced individuals except members of the Dutch 

Isolate pedigrees, and this approach is described in the Supplement (Text S3).

After implementation of variant-level QC, within-individual quality metrics were estimated, 

and the distributions of these metrics were assessed to exclude potential outliers. Among 

these metrics were: (1) counts of singleton/doubleton variant calls to identify an excess of 

private variants; (2) genotype missingness rate (per individual) > 0.2; (3) Transition/

Transverion (Ti/Tv) ratio outliers [for SNVs only]; (4) heterozygosity-to-homozygosity ratio 

(across all within-individual genotypes); and (5) mean read depth (across all within-

individual genotypes). Samples with genotype missingness rate >0.2 were excluded and 

samples were examined as potential outliers if their values for any of the other criteria were 

greater than 6 SD from the mean value based on ethnic group. Three groups were defined: 

European American, Dutch Isolate, and Caribbean Hispanic

Concordance matching

Once primary and variant-level filtering were completed, genotypes were compared between 

the two QCed VCFs. Table 1 contains the concordance codes (“CS”) derived for comparing 

the genotypes. In addition, a concordant set of genotype calls in which only genotypes 

present and concordant between the two QCed calling pipelines was created.

Consensus Calling

The ‘concordant’ dataset contains high-certainty genotype calls that were identical in the 

two variant calling pipelines, but it did not allow inclusion of high-quality variants called in 

only one pipeline. To arrive at a single set of genotype calls that includes high-quality 

variants from each of the two variant calling pipelines, several approaches for consensus 

calling were explored. While methods for QC and reconciliation of variant calls from 

multiple calling algorithms have been developed and evaluated elsewhere,19–21 these 

methods did not enable the inclusion of certain filtering criteria we sought to implement and 

did not generate QC annotation at the variant-level that preserved all metrics from multiple 

callers. Additionally, they were not yet extensible implemented for indel variants, and to 

adapt these pipelines to perform these functions would have required extensive 

modifications or substantial additional scripting. The ADSP protocol described here was 

implemented on two platforms: first via R and Perl scripting in Linux for all SNV data, and 

then via SQL commands within a Hadoop Hive database system for indels. The steps of the 

consensus calling protocol are detailed in Box 1.

Examination of MIs in the genotype data after pipeline-specific QC identified a pattern of 

higher MI rates among variants called only in GATK compared to those called only in Atlas 

and those called in both pipelines, suggesting that additional genotype-level filtering for 

these variants was warranted. As exploration of genotype-specific QC metrics in the ADSP 

data identified GQ (“Genotype Quality”) as an informative filter to reduce MI rate, GQ 

filtering thresholds were implemented to remedy the higher rate of MIs in GATK data. The 

use of GQ as a filter here is supported by several prior studies that identified the utility of 

GQ in reducing MI rate22,23 and improving the quality of other metrics.24–26 Analyses to 
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identify the genotype-specific GQ exclusion thresholds characterized are described in the 

Supplement (Text S4).

Post-consensus calling variant-level QC

After the consensus calling process, variant-level QC filters were applied again to remove 

variants that now failed these criteria after consensus calling. These included the previous 

variant-level QC filtration steps: 1) excluding monomorphic variants; 2) excluding variants 

with missing rate ≥20%; and 3) excluding variants with extreme heterozygosity. After this 

final variant-level QC, individual sample statistics were also recomputed to assess quality 

after consensus calling.

Post-processing

QCed data were reformatted as both PLINK binary-format files (*.bed, *.bim, *.fam) and as 

annotated VCFs, all containing only QC-passing variants. VCF releases included QC 

annotation (Table S3) on all variants indicating their final disposition (whether they were 

dropped in pipeline-specific QC, failed consensus calling or post-consensus QC, or whether 

they passed all QC stages).

Evaluation of post-QC data quality through full pedigree Mendelian inconsistency 
evaluation

A summary measure from family-based genotype imputation was used to evaluate the 

variant-call pipelines. The full pedigree structures coupled with the existing GWAS data 

allowed use of imputation success of the WGS data in the context of GWAS markers as a 

proxy for genotype-call quality. This extended our ability to check for genotype quality 

beyond the limited case of parent-offspring pairs, which can identify errors only when there 

is homozygosity for different alleles in the two individuals (the parent-offspring pairs). The 

concept underlying this approach to genotype imputation is that, with the exception of rare 

de-novo mutations, real variants are inherited, and therefore high-quality called genotypes 

should show greater Mendelian consistency (MC) with pedigree inheritance vectors (IVs)27 

than lower-quality called genotypes. We computed the MC probabilities within pedigrees 

and averaged these across pedigrees to obtain the “Imputation Rate” for each WGS position. 

Higher values of the imputation rate are indicative of higher quality called genotypes. The 

imputation rate was estimated by sampling IVs at the positions of each of the variants, 

conditional on the complete pedigree structure and sampled IVs at the positions of SNPs 

from the GWAS panels, followed by pedigree-based imputation28 from the WGS data. 

Details of the computation are provided in the Supplement (Text S5/Table S4). We computed 

the imputation rate for each of four categories of variants: (1) the 25,531,054 variants that 

initially passed QC in both pipelines, keeping the “concordant-only” genotypes at these 

variant positions [all non-concordant genotypes set to missing]; (2) the “consensus-only” 

2,365,720 variants that passed QC in either the Atlas or GATK pipelines but not both; (3) the 

1,241,253 variants that passed QC in only the Atlas pipeline; and (4) the 1,124,467 variants 

that passed QC in only the GATK pipeline. These last two categories represent each of the 

mutually exclusive variant sets that together represent the “consensus-only” category. We 

focused our evaluation on averages across all pedigrees with exactly h observed 

heterozygotes per pedigree, with h=1– 4. This controls for variant allele frequency, which 
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affects ease of successful family-based imputation because imputation is easier when there 

are fewer heterozygotes in a pedigree.

ADSP QC Pipeline Availability

The ADSP QC Pipeline is implemented in Perl and runs on the command line, with 

parameters of the QC run, including filtering thresholds, input/output directories, and 

reporting rules specified in a separate “control” (parameter) file. The Perl script, sample 

control file, sample ‘fam’ file, and accompanying documentation, are all available at https://

www.niagads.org/adsp/ADSP_QC_Script. All formatting modifications performed on the 

VCF files during the QC process have been documented in the updated VCF header, 

ensuring the readability of these files by any program using the VCF v4.0 format.

Results

Comparisons of replicate samples across sequencing centers

The average pair-wise concordance rate between replicate samples prior to any QC, for the 

three replicates sequenced at all three centers, was 99.49% (ranging from 99.46% to 

99.53%) for the GATK pipeline and 98.60% (ranging from 98.54% to 98.71%) for the Atlas 

pipeline. All three subjects showed similar patterns of between-replicate concordance, 

suggesting that the discrepancy of average concordance rates might be attributable to 

differences in calling pipeline rather than DNA quality. For comparison, we also examined 

the genotype concordance rate between two different unrelated subjects and found the 

average concordance rate was 91.52% for the GATK pipeline and 90.62% for the ATLAS 

pipeline. Both were significantly lower than the concordance rate of the same subject as 

expected. All comparisons of replicates are described in Text S6, and concordance counts 

are shown in Tables S5 and S6.

WGS SNV and Indel QC on 578 family-based samples

The vast majority of QCed genotype calls, ~91%, were concordant between the two sets of 

VCFs. Table 1 contains the counts of all genotypes in each concordance category, as well as 

definitions of each category. Among SNVs, primary QC of Atlas-generated SNV genotype 

data removed 2,605,141 low-quality variants (8.32%), while primary QC of GATK-

generated SNV genotypes removed 3,493,548 low-quality variants (11.51%). For indels, 

primary QC among Atlas-generated genotypes removed 224,979 variants (5.85%) of low 

quality, and among GATK-generated indels removed 1,353,892 variants (27.82%). Once 

primary QC was completed, genotypes were compared between the two QCed VCFs.

Table 2 provides counts for the QC filtering of SNVs and indels at each step of variant-level 

QC (implemented after primary QC) as applied to Atlas and GATK VCFs. Overall, pipeline-

specific QC filtering excluded an additional 1,932,851 SNVs (6.17%) from Atlas-generated 

SNV genotype data and 141,192 SNVs (0.46%) from GATK-generated SNV genotype data. 

QC filtering excluded 1,289,564 indels (30.91%) from Atlas and 362,593 indels (7.45%) 

from GATK. While most filtration steps excluded variants in both pipelines, it is notable that 

due to differences in processing of the BAMs by the centers, no variants with high read 

depth were identified among the GATK SNV or indel genotypes.
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For both SNVs and indels, a higher proportion of MIs was observed among GATK SNVs 

and indels (0.01087% and 0.08%, respectively) than among Atlas (0.00392% for SNVs and 

0.02% for indels). This rate was highest among variants that were called only in the GATK 

VCF. For example, after pipeline-specific QC the MI rate for WGS SNVs was 0.12% for 

variants called only by GATK and 0.01% for variants called only by Atlas. A similar pattern 

among pipeline-unique variants was seen for indels (0.15% vs 0.04%). MIs in each VCF 

were counted but the genotypes implicated in the inconsistencies were retained. Table 3 

provides a summary of MI rates from the pipeline specific QCed GATK and Atlas VCFs. 

Given the MI rates observed per parent-offspring pair (Figure 2), the sequence information 

appeared to be consistent with the relationships specified among the sequenced subjects in 

the pedigree files.

Table 4 provides the number of variants removed at each filtering step for the second round 

of post-consensus variant level QC. While pipeline-specific QC previously removed variants 

of low quality from the individual call sets, this second round of QC excluded variants that 

appeared low quality after consensus calling (e.g., after the exclusion of discordant 

genotypes, etc.). The frequency of concordant and pipeline-unique genotypes after 

consensus calling is summarized in Table 5. Table 6 provides the final number of variants 

and genotypes in the consensus WGS genotype sets.

Mendelian inconsistencies were evaluated again in the final consensus genotype sets. 

Employing the consensus protocol reduced the MI rate among the variants called only by 

GATK from 0.12% to 0.02% in the SNVs and from 0.15% to 0.04% in the indels (see Table 

3), providing evidence that the calls remaining in the consensus genotype set are likely 

higher quality.

Data quality after implementation of QC and consensus calling

Most variants had extremely high imputation rates, with higher rates in the concordant than 

the consensus-only call sets (Figure 2, Table S4). The median imputation rate for variants 

was >0.995 for all configurations evaluated, and imputation rates at the lowest quartile were 

still high, ranging from 0.927 to 0.964 depending on the number of sequenced heterozygotes 

per pedigree. Even the very low fifth percentile achieved reasonably high imputation rates: 

for the concordant variants, imputation rates ranged from 0.762 to 0.848, while the 

consensus-only variant rates were 0.553–0.7 for families with 2–4 sequenced heterozygotes. 

A low imputation rate of 0.167 was found only for the consensus-only variants for families 

with a single heterozygote among the sequenced subjects. These observations suggest that 

the WGS genotypes are of high quality, overall, with only a small fraction that may have 

unusually high genotyping rates.

Genotypes in the concordant variant call set were of higher quality than those in the 

consensus call set. This inference is derived from the observation that imputation rates were 

higher, at all percentiles, for the concordant than consensus genotypes. The difference in 

quality between call sets was most extreme for variants heterozygous in only one sequenced 

subject (Figure 2A), with rapid attenuation of the difference with increasing numbers of 

heterozygotes per pedigree. Figure 2 panels A and B show results for the extremes of 

heterozygotes examined per pedigree. Intermediate results were obtained (not shown) for the 
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remaining situations examined. The fraction of variants that had a 0% imputation rate (failed 

imputation) was also consistent with higher quality genotypes for the concordant variants. 

The fraction of concordant variants that failed imputation was a low 0.003–0.004 and was 

effectively independent of the number of heterozygotes per family. In contrast, for the 

consensus variants, the imputation failure rate was higher, and was a function of the number 

of heterozygotes per pedigree, decreasing monotonically from rates of 0.032 to 0.006 with 

increasing numbers of heterozygotes from one to four.

Genotypes in the consensus-only call set appeared to be of higher quality when derived from 

the GATK than the Atlas pipeline. The difference between the results for the two individual 

pipelines was most apparent in the case of single heterozygotes per pedigree, with the 

difference between pipelines particularly evident in the lowest tail of the distribution (Figure 

2C-D). For variants with multiple heterozygotes per pedigree the differences between the 

two pipelines were minimal (Figure 2B). It is worth noting that of the variants that were in 

the consensus-only call set, the fraction of variants called by Atlas that could be found in the 

1000 Genomes data29 (13.2%) was lower than the equivalent fraction for GATK (37.5%). 

Correspondingly there were lower allele frequencies for the Atlas variants than the GATK 

variants, with 55% and 50% of variants, respectively, below a 1000 Genomes EUR sample 

minor allele frequency of 0.05.

Sample-level QC findings

Tables 7 and 8 present sample-level QC metrics, stratified by ethnicity and sequencing 

center, respectively. Few samples were flagged as outliers for sample-level QC metrics, 

suggesting high overall quality of all samples after QC. These samples were not excluded.

Figures S2 and S3 depict the distribution of heterozygosity for WGS samples after QC and 

consensus calling. Five members within one family were initially reported as European 

samples showed excess heterozygosity relative to other European samples, but were within 

the range of excess heterozygosity observed among Caribbean Hispanic samples (Figure 

S4). Later examination of clinical records found that the five samples were actually of 

African ancestry, and these were reclassified and co-analyzed with Caribbean Hispanic 

samples. The mean sample-specific genome-wide Ti/Tv ratio was 2.12 for all ethnic groups 

and sequencing centers (see Figures S2C and S3C and Tables 7 and 8). Whole genome 

sequencing is expected to have a Ti/Tv ratio of 2.10 for known variants9 and the consensus 

called variants fall at that expected threshold. Text S6 provides additional details on within-

sample comparisons of three replicates done at each of the sequencing centers.

Discussion

In the largest sequencing effort to date to discover rare genetic variation playing a direct role 

in AD, the ADSP has generated WGS data on 578 subjects from 111 multiplex AD families. 

Maximizing the potential to reveal true associations and minimizing potential false-positive 

findings requires comprehensive and rigorous quality control of sequence data prior to any 

analysis. In order to provide a consistent high-quality dataset, the QC working group of the 

ADSP developed and implemented a novel QC protocol that generated a concordant 

genotype set and a consensus genotype set from two variant calling pipelines. These QCed 
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datasets are available via the database of Genotypes and Phenotypes (dbGaP) and the NIA 

Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) portal and include PLINK 

binary files and VCF files containing only genotypes that passed QC and QC annotation 

files containing information on all variants regardless of pass/fail status. Use of these 

standardized QCed datasets will also facilitate comparison across analyses by different 

research groups, efficiencies that are important to aid in the discovery of AD-related genetic 

factors. It is anticipated that this information will streamline future in silico replication using 

ADSP data. The availability of these datasets will increase efficiency in the use of the ADSP 

data by precluding the need for each authorized investigator to perform QC.

Among the most useful features for data users in this QC process is the creation of 

‘companion’ files, or QC annotation files. These files provide a dataset-specific reference 

guide containing information on all variants and genotypes called by either pipeline 

regardless of whether the variants passed or failed and include the pass/fail status for all 

original called variants after QC filters are applied. This detailed information (Table S3) on 

the disposition of all variants serves multiple purposes. Firstly, it provides a detailed record 

of all quality issues identified during the QC process, improving reproducibility of the 

process. Secondly, it allows for comprehensive examinations of widely agreed-upon QC 

filters and their downstream effects on data quality; by utilizing annotation that identifies all 

QC criteria for which a variant fails independently of order of implementation, authorized 

investigators can know the effects of applying any QC filters in any desired order before 

applying them. Thirdly, the QC annotation can be used to confirm that the QC process has 

been implemented correctly, as recorded values of metrics on failing variants should be 

consistent with exclusion criteria. Finally, these files explain why variants of interest may be 

missing from the QCed data. Typically, information on variants that are removed is not 

recorded, and which QC criteria a variant may fail are subject to the order of QC filter 

implementation. Notably, our approach identifies all QC criteria a variant may fail, which 

makes it independent of QC filter implementation order and fully reproducible.

One of the strengths of the study, yet one that provided the biggest challenge for QC, was 

the use of multiple variant-calling pipelines (Atlas and GATK). Different variant-calling 

algorithms have been developed and the strengths and weaknesses of each are not well 

documented. Elucidating specific conditions (e.g., what type of variant or sequencing 

method) under which each algorithm performs optimally is beyond the scope of the current 

study. The current goal was to use the information from the two calling pipelines to generate 

a set of consistently high-quality genotypes to facilitate the discovery of AD-related genetic 

variants. The concordant data set includes genotypes from variants that were called by both 

pipelines, met all filtering criteria, and were identical between the two pipelines. For SNVs 

and indels, 91% and 56% of genotypes, respectively, were concordant between the two 

pipelines. These concordant calls represent our highest-confident genotype set. The quality 

of these concordant calls was further supported by the lower MI rate and higher mean GQ 

levels relative to discordant calls.

The concordant genotype set does not, however, take advantage of unique strengths of the 

two calling algorithms applied and may be overly conservative. To address this issue, a 

consensus protocol was developed that incorporates variants called by only one of the 
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pipelines. For WGS SNVs and indels, a larger number of variants uniquely called by GATK 

compared to Atlas were included in the consensus sets. Examination of MI indicated that 

after implementation of the pipeline-specific QC filters that the GATK-only variants might 

be more error prone than variants called only in Atlas or by both pipelines. This is likely 

driven by the fact that the pipeline-specific QC protocol for Atlas included both genotype-

specific and variant-specific filtering, whereas the pipeline specific QC protocol for GATK 

included only variant-specific filtering, following sequencing center recommendations. 

Implementation of a GQ filter on genotypes within variants called only by GATK improved 

the quality as measured by MI rate. The final consensus genotype datasets include the 

genotypes that were concordant in both pipelines, and additionally include high-quality 

genotypes from variants called in only one of the two pipelines. While concordant variants 

are of generally higher quality than the high-quality genotypes called in only one pipeline, it 

should be noted that calling criteria or artifacts in one pipeline may lead to true causal 

variants being missed in that pipeline, and this approach maximizes the number of high-

quality variants retained to improve the likelihood of identifying causal variants in a dataset.

The Mendelian consistency rate in family-based imputation was used to compare the quality 

of genotype calls when two calling algorithms were implemented. A first question addressed 

was whether use of two pipelines resulted in improved quality of variants called relative to 

use of only a single pipeline; a second was whether there was a difference in the quality of 

variants called between the two individual pipelines. Although not specifically designed for 

the purpose used here, the MC rate during pedigree-based imputation makes use of results of 

other ongoing computations (e.g., generation of inheritance vectors in pedigrees and MI 

frequency) and was sufficient to address the two questions of interest. These results suggest 

that the genotypes called identically in both pipelines were of higher quality than calls from 

a single pipeline. While the consistency rate was slightly higher for variants called only by 

GATK compared to those called only by Atlas, this difference was very small and overall 

quality after pipeline-specific QC was high for both Atlas- and GATK-generated genotypes.

The QC protocol implemented on the ADSP WGS data is generalizable to other large-scale 

sequencing studies. While the protocol implemented for this study utilized data-driven 

thresholds and hence specific values (e.g., GQ thresholds or heterozygosity score statistic 

threshold) that may not translate to other studies, the pipeline protocol simplifies 

determination of these threshold for each novel dataset, tailoring the pipeline to the unique 

characteristics of the dataset and allowing for easy implementation. This protocol offers a 

paradigm for other studies to develop their own metrics and, under the condition of using 

multiple genotype calling pipelines, an approach not previously applied to large NGS 

datasets. As more sequencing studies are conducted, the potential for universal guidelines 

may be feasible, and many features of the ADSP pipeline, such as QC filtering on multiple 

criteria in parallel, have been designed with adaptability to future guidelines in mind. For 

example, the pipeline was constructed to allow for the assessment of HWE using tests that 

assume independence of observations are part of the variant-level QC if most or all samples 

in the dataset are unrelated or using empirical thresholds with an excess heterozygosity 

statistic as was done here with family data. It should be noted that in population-based 

datasets, assessments of quality would be unable to utilize MI checking unless some 

informative relative pairs are included in sequencing to examine this quality; alternative 
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quality assessments could be applied to similar effect, including genotype concordance 

between sequence and GWAS data by strata of GQ values, concordance among unfiltered 

variants across replicate samples, etc.

This work also highlights the value of utilizing information available prior to sequencing, 

including identification of parent-offspring pairs and high-density genotyping chip data. 

Even though identification of MIs is limited with biallelic variants, the change in MI rate 

with different genotype sets provided important information on genotype quality. Inclusion 

of relative pairs for QC may be useful even if the main study design is based on unrelated 

cases and controls. Similarly, the availability of GWAS data for sample validation was also 

important, both in determining quality of sequence genotypes through concordance checks, 

and in characterizing between-sample relatedness and population substructure with a high 

quality subset of GWAS genotypes. For these reasons, the availability of additional data 

from sequenced samples, such as relatedness information and the availability of other 

independent genetic resources, should be considered when prioritizing samples for 

sequencing and/or designing sequencing projects.

In summary, the ADSP has generated high-quality QCed WGS datasets by developing and 

implementing a novel QC protocol that integrates calls from both the Atlas and GATK 

variant calling algorithms. This approach provides a model for QC for other large-scale 

sequencing studies. The distribution of these carefully QCed high-quality WGS SNV and 

indel genotype sets, shared via the Database for Genotypes and Phenotypes (dbGaP), will 

provide an important public resource for untangling the genetic etiology of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

AD Alzheimer’s disease

QC Quality Control

LSSAC Large-Scale Sequencing and Analysis Center

Broad Broad Institute Genomics Service

Baylor Baylor College of Medicine Human Genome Sequencing Center

WashU Washington University-St. Louis McDonnell Genome Institute

WGS whole genome sequencing

WES whole exome sequencing

indel insertion-deletion variants

VCF variant control format

MI Mendelian inconsistency
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MC Mendelian consistency

GWAS genome-wide association study

VR referent allele read depth

DP overall read depth

MS mapping score

GQ genotype quality score

Ti/Tv Transition/Transversion

CS concordance code
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Box 1. Steps and implementation hierarchy of the consensus calling 
process. Concordance code (“CS”) definitions are detailed in Table 1.

 Consensus Calling Filter  Final Variant Disposition

  1) All genotypes in remaining variants that were concordant 
between the two QCed sets of VCFs (CS = “00”, “11”, or “22”) Include in the final consensus set

  2) Variants in which a different alternate allele was called 
between the two QCed sets of VCFs. (CS = “33”) Exclude from all datasets

  3) All genotypes that were discordant between the two QCed sets 
of VCFs. (CS = “01”, “02”, “10”, “12”, “20” or “21”) Set genotypes to missing

  4) All genotypes that were present only in the QCed Atlas V2 
VCFs (but were missing in the QCed GATK-HaplotypeCaller VCFs) 
(CS = “09”, “19”, or “29”)

Include in the final consensus set

  5) Genotypes that were present only in the QCed GATK-
HaplotypeCaller VCF (but were missing in the QCed Atlas V2 VCF) 
that met a GQ (genotype quality score) threshold were included in the 
final consensus set. (CS = “90”, “91”, or “92”)

Include after additional filtering

     a) For SNVs, the GQ threshold was set to the 0.1 
percentile (genotype-specific) based on genome-wide concordant 
genotype calls.

     b) For indels, the GQ threshold was set to the 1.0 
percentile (genotype-specific)

     c) The genotype specific GQ thresholds implemented 
were:

       i) WGS SNVs: GQ<7 for ‘0/0’ genotypes, GQ<88 
for ‘0/1’ genotypes and GQ< 25 for ‘1/1’ genotypes.

       ii) WGS indels: GQ < 14 for ‘0/0’ genotypes, 
GQ<98 for ‘0/1’ genotypes and GQ <30 for ‘1/1’ genotypes
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Figure 1. 
Diagrams of the Caller-specific QC and Consensus Calling Pipeline, including (a) an 

overview diagram of the process, (b) details of the caller-specific variant-level QC steps, and 

(c) details of the post-consensus variant-level QC steps.
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Figure 2. 
Cumulative distribution of genotype imputation rates for variants occurring 1–4 times as 

heterozygotes in the ADSP pedigrees. Panels A and B: full cumulative distributions for the 

cases of 1 (Panel A) and 4 (Panel B) heterozygotes per pedigree. Panels C and D provide 

detail for the variants with the lowest 5 percent of the imputation rate, for the cases of 1 

(Panel C) and 2 (Panel D) heterozygotes per pedigree. The variants with observed data after 

the QC protocol to establish concordant calls between the pipelines are indicated by the 

solid black line (Concordant), while the variants subsequently retained as having high 

quality in one of the two pipelines are indicated by the long-dashed purple line (Consensus). 

The information for each of the two contributing pipelines to the Consensus variants is also 

represented, with the Atlas pipeline represented by the dark red, dotted line, and the GATK 

pipeline by the medium-dash blue line.
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