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Objective: To determine the effects of varying doses of orally administered BPA on indices of
glucose metabolism.

Methods: Eleven college students (21.0 = 0.8 years; 24.2 + 3.9 kg/m?) were randomized in a double-
blinded, crossover fashion separated by >1 week to placebo (PL), deuterated BPA at 4 pg/kg body weight
(BPA-4), and deuterated BPA at 50 wg/kg body weight (BPA-50). Total BPA, glucose, insulin, and
C-peptide were assessed at baseline, minutes 15, 30, 45, 60, and every 30 minutes for 2 hours in response
to a glucose tolerance test.

Results: There was a significant condition X time interaction for total BPA (P < 0.001) such that BPA
increased more rapidly in BPA-50 than BPA-4 and PL (P = 0.003) and increased more rapidly in BPA-4
than PL (P < 0.001). There were no significant condition X time interactions on glucose, insulin, and
C-peptide. Significant condition main effects were observed for glucose such that BPA-50 was signif-
icantly lower than PL (P = 0.036) and nearly lower for BPA-4 vs PL (P = 0.056). Significant condition
main effects were observed such that insulin in BPA-50 was lower than BPA-4 (P=0.021), and C-peptide
in BPA-50 was lower than BPA-4 (t15 = 3.95; Tukey-adjusted P = 0.003). Glucose, insulin, and C-peptide
areas under the curve for the 3-hour profile were significantly lower in BPA-50 vs PL (P < 0.05).

Conclusion: Orally administered BPA protocol appeared feasible and has immediate effects on glucose,
insulin, and C-peptide concentrations.
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The prevalence of diabetes is well established, affecting >29 million Americans with 90% to
95% of these individuals diagnosed with type 2 diabetes [1], and linked to several health risks
including insulin resistance [2, 3] and cardiovascular disease [4]. Clearly, diet, physical
activity, and genetics play roles in the etiology of type 2 diabetes, but only explain 30% to
60% of variance [5]. Emerging data suggest the mass industry-produced chemical bisphenol
A (BPA) may play a role in type 2 diabetes and obesity rates [6—17]. BPA exposure is
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Environmental Protection Agency; HOMA-IR, homeostasis model assessment of insulin resistance; OGTT, oral glucose tolerance
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widespread, with an estimated 93% of the US population with detectable urine levels [18].
The National Health and Nutrition Examination Survey, Nurses’ Health Study II, and other
cross-sectional data have shown associations between urinary BPA concentrations and type 2
diabetes [16, 17, 19, 20], prediabetes [21], insulin resistance [22], and hemoglobin A, [23].
BPA appears related to diabetes risk factors independent of weight status and obesity, which
has also been correlated with urinary BPA levels in some but not all studies [19, 23]. Animal
and in vitro data suggest that BPA has estrogenic activity [7] and disrupts several pathways
in the pathogenesis of type 2 diabetes including decreased insulin sensitivity [24], dysre-
gulation of glucose metabolism [25], altered B-cell and hepatic cell functioning [14, 25], and
altered adiponectin release from adipose tissue [26].

Animal feeding studies have shown that long-term consumption of BPA induces glucose
intolerance, insulin resistance, and ultimately type 2 diabetes [6, 24]. However, in humans,
evidence linking BPA exposure with diabetes risk is mainly associative in nature [20, 23].
Previous well-controlled studies have determined the pharmacokinetics of oral consumption
of BPA [27-29]. To our knowledge, only one other human study examined the effects of oral
BPA consumption on indices of glucose metabolism in men and postmenopausal women
without diabetes and showed that BPA consumption of 50 pg/kg body weight (BW) sup-
pressed insulin and C-peptide concentrations in response to glucose infusion [30]. The ob-
jective of this pilot study was to determine the effects of varying doses of orally administered
BPA on indices of glucose metabolism in nonobese adults using a randomized, double-
blinded, crossover design.

1. Materials and Methods
A. Participants

Eleven (eight female and three male) young college students from California Polytechnic
State University in San Luis Obispo, CA, were recruited by voluntary approach or flier on
campus (Table 1) from 1 September 2016 to 1 March 2018. Eligibility included: (1) 19.7 to 29.9
(but <30) kg/m? BMI; (ii) 20 to 23 (but <50) years old; (iii) nonsmoking; and (iv) English
speaking. Exclusion criteria, assessed by a health history questionnaire, included: (i) type 2 or
type 1 diabetes; (i1) cardiovascular disease or any other metabolic disease/complication; (ii1)
hypertension; and (iv) pregnancy or planned pregnancy. There was no previous history of
obesity or other chronic disease and no family history of obesity, diabetes, or cardiovascular
disease (assessed by questionnaire). The Institutional Review Board at California Poly-
technic State University approved the study, and all participants gave verbal and written
consent. This study was carried out in accordance with the Code of Ethics of the World

Table 1. Participant Characteristics

Variable Range
N 11 (8 female, 3 male)
Age, y 21.0 (0.8) 20-23
Height, m 1.7 (0.1) 1.6-1.8
Weight, kg 70.6 (10.0) 59.0-95.2
BMI, kg/m? 24.0 (3.4) 19.7-29.9
Weight status, n (%)

Normal weight 7 (64)

Overweight 4 (36)
Hispanic/Latina, yes/no, n (%)

Yes 4 (36)

No 7 (64)

Data are mean (SD) unless otherwise indicated.
Abbreviation: BMI, body mass index.
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Medical Association (Declaration of Helsinki). Participants were compensated $30 for
completing each trial for a total of $90.

B. Experimental Protocol

After eligibility was determined, participants completed a demographic questionnaire, and
weight was collected on digital scale and height by stadiometer. This study adhered to the
Consolidated Standards of Reporting Trials (CONSORT) guidelines for reporting randomized
trials [31], using a randomized, double-blinded, balanced, crossover study design. The study
statistician developed the within-subject randomizations with condition allocations designed
as A, B, and C and then provided concealed envelopes to research staff. All research staff
administering BPA to participants and collecting data were blinded to condition allocation.
Participants arrived at the research center facilities in the morning after an overnight fast (10
hours) to minimize the effects of recent dietary intake on blood and urine BPA [27]. In the
morning after the overnight fast, participants consumed 8 ounces of water in a nonplastic
container. Participants completed a gastrointestinal distress questionnaire [32] and sub-
jective appetite response questionnaire using a visual analog scale [33]. A catheter was then
placed into a forearm vein, and a fasting blood sample was collected. Participants were then
randomized, in a double-blinded, balanced, crossover fashion to oral consumption of: (i)
placebo (PL), (i1) 4 ng/kg BW of deuterated 6-BPA (d6-BPA; BPA-4), and (ii1) 50 wg/kg BW of
d6-BPA (BPA-50). Participants rotated through all three conditions with a minimum of
1 week among the three visits. Participants were fed a vanilla wafer cookie containing the
corresponding dose of PL, BPA-4, and BPA-50 using d6-BPA (d6-BPA; CDN Isotopes, Pointe-
Claire, Quebec, Canada), similar to previous pharmacokinetic studies [27, 29], adjusted for
BW. Single-dosing solutions (10 mg/mL) for BPA-4 and BPA-50 were prepared by dissolving
d6-BPA in absolute 95% ethanol (Acros Organics, Janssen Pharmaceutical, Beerse, Belgium).
For PL, d6-BPA was not included in the ethanol solution. To maintain blinding, a research
assistant not involved in any other aspect of this study made the dosing solutions, which were
correspondingly labeled A, B, and C. Six to 8 hours before each condition trial, aliquots were
passed twice through a sterile microfilter to aid in removal of bacteria and placed onto a
vanilla wafer cookie (18 calories, 2.6 g carbohydrate, 0.8 g fat, and 0.1 g protein), allowing the
ethanol to dry. The doses of BPA selected in the proposed study were chosen to be consistent
with safe doses established by the European Food Safety Authority and the US Environ-
mental Protection Agency (EPA). According to the European Food Safety Authority [34] and
the US EPA [35], a BPA value of 50 pg/kg BW-day (50,000 ng/kg-day) is the tolerable daily
intake and reference dose considered safe dose throughout a lifetime, although recently the
European Food Safety Authority has lowered this dose to 4 wg/kg BW-day [36] extrapolated
from animal data. Blood samples, gastrointestinal distress questionnaire, and subjective
appetite ratings using a visual analog scale were collected at baseline (prior to consumption of
the vanilla wafer cookie), minutes 15, 30, 45, and 60, and then every 30 minutes for the next
2 hours in response to a 75-g oral glucose tolerance test (OGTT; Fisher Scientific, Houston, TX)
under each of the three conditions. The primary outcome measures were serum total BPA,
glucose, insulin, C-peptide, proinsulin, 17B-estradiol, and triglyceride concentrations. Sec-
ondary outcomes measures were gastrointestinal distress and subjective appetite ratings.
Based on CONSORT guidelines, there were no participant harms or unintended effects of the
three conditions on participants. Besides the vanilla wafer cookie and 75-g glucose drink,
participants were not provided any other food during the conditions.

C. Biochemical Analyses

Venous blood samples were collected in sterile syringes and transferred to vacutainers
containing sodium fluoride and potassium oxalate for analysis of glucose, EDTA for analysis
of insulin, C-peptide, and proinsulin, and serum for analysis of total BPA, 178-estradiol, and
triglycerides. All samples were refrigerated centrifuged (4°C) at (3000g) for 15 minutes, and
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plasma/serum was aliquoted into polystyrene tubes and stored at —80°C until analysis.
Quantitative assessment of total BPA (Detroit R&D, Inc., Detroit, MI) [37], insulin (Thermo
Fisher Scientific, Grand Island, NY) [38], C-peptide (Mercodia, Uppsala, Sweden) [39],
proinsulin (Mercodia) [40], and 17B-estradiol (Thermo Fisher Scientific) [41] were de-
termined by competitive or sandwich ELISA kits. BPA analysis was consistent with Good
Laboratory Practice methodological protocols [42—44] that included direct testing of blood
collection and storage apparatus, controls with high and low concentrations (range 1 pg/mL to
100,000 pg/mL), and triplicate sample analysis. The limit of detection for total BPA using the
ELISA kit was 0.5 ng/mL. We assessed total BPA in storage apparatus and in the 75-g glucose
drink using the established Centers for Disease Control and Prevention protocol [45, 46] by
using online solid-phase extraction coupled to HPLC-isotope dilution tandem mass spec-
trometry with peak focusing as described previously [47]. Total BPA concentrations were
nondetectable in all storage apparati and in the 75-g glucose drink. Glucose and triglyceride
concentrations were assessed using a glucose oxidase method and triglyceride reagent
(Analox Instruments Ltd, Stourbridge, United Kingdom).

D. Calculations

Glucose, insulin, C-peptide, proinsulin, 178-estradiol, and triglyceride concentrations were
used to calculate areas under the curve using the trapezoidal method. Homeostasis model
assessment of insulin resistance (HOMA-IR) and Matsuda Index were calculated as pre-
viously described [48].

E. Statistical Analysis

JMP Pro 13.2.1 (SAS Institute, Cary, NC) was used for statistical analysis of data. Summary
statistics are reported as mean (SD) for participant characteristics, and for clarity purposes,
figures are presented as geometric mean without SEs for all outcome measures. Geometric
means and asymmetric SEs for all serum/blood markers and raw data for gastrointestinal
distress as well as a CONSORT checklist for randomized trials are deposited in the Digital
Commons at California Polytechnic State University data repository and freely available for
download [49]. All other data are available from the corresponding author upon e-mail re-
quest. Nondetectable BPA concentrations were assigned the limit of detection of 0.05 ng/mL
[50]. All outcome measures were not normally distributed and were log transformed prior to
analysis. A linear mixed model (repeated measures) was used to examine condition, time, and
condition X time effects on serum total BPA, glucose, insulin, C-peptide, proinsulin, 1783-
estradiol, and triglycerides, adjusting for the covariates study-entry BMI and sex. In sec-
ondary analysis for glucose, insulin, and C-peptide only, significance was further explored by
comparing the conditions at each single time point in response to the OGTT (minutes 60, 90,
120, 150, 180) using an analysis of covariance. For area under the curve variables, HOMA-IR,
and Matsuda Index responses, a linear mixed model for the crossover design was used to
compare the responses across conditions, adjusting for the covariates study-entry BMI and
sex. A significance level of @ = 0.05 was used. Reported P values are unadjusted unless
otherwise noted as Tukey honestly significant difference adjusted. All participants completed
all three conditions with no missing data.

Our sample size was based on previous pharmacokinetic BPA [27, 29] studies to distin-
guish three different serum total BPA conditions. Using a total BPA concentration max of
270 ng/mL after consumption of 50 to 100 wg/kg BW of d6-BPA [27, 29], with 11 subjects we
had >99% power to detect a 256 ng/mL total BPA concentration maximum difference be-
tween oral consumption of 50 pg/kg BW of d6-BPA (BPA-50) and PL using a two-sided ¢ test.

2. Results

Serum total BPA maximum concentration of 158 = 50 ng/mL for BPA-50 occurred at 63 *+
11 minutes and a maximum concentration of 25 * 16 ng/mL for BPA-4 at 60 = 13 minutes.
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For serum total BPA concentrations, there was a significant condition main effect and in-
teraction (Fp 15 = 46.07, P < 0.001; and F14 175 = 8.20, P < 0.001, respectively). In particular,
total BPA concentrations in the BPA-50 condition compared with both PL. and BPA-4 in-
crease more rapidly at minutes 30 through 180 (Fig. 1) (t175=7.65, P < 0.001; and t,75 = 3.65,
P =0.003, respectively). Also, BPA-4 increased more than PL at the same time points (P <
0.001). These data suggest that we were successful at administering BPA at different doses to
increase serum total BPA concentrations.

There was no significant condition X time interaction for glucose, insulin, C-peptide,
proinsulin, 17B-estradiol, and triglyceride concentrations (P > 0.05; Figs. 2 and 3).
However, a significant main effect for condition was observed for glucose, indicating that
glucose was significantly lower in the BPA-50 vs PL (t,5=2.71; Tukey-adjusted P=0.036) and
nearly significant vs BPA-4 (t5 = 2.49; Tukey-adjusted P=0.056; Fig. 2A). Time-slice post hoc
unadjusted comparisons of glucose concentrations across treatment conditions were sig-
nificantly different at time 120 (¥ 951 = 3.88; P=0.022) and time 150 (F3 951 = 3.42; P=0.034).
In particular, glucose concentrations at time 120 were lower in BPA-50 vs PL (tg5; = 2.76; P=
0.006) and suggestively lower vs BPA-4 (tg5; = 1.73; P=0.084). Glucose concentrations at time
150 was suggestively lower in BPA-50 vs PL (tg5; = 1.76; P=0.079) and not evidently different
in BPA-4 vs PL (tg5; = 0.78; P =0.430). A significant condition main effect was also observed
for insulin (Fy 15 = 3.56; P=0.050), indicating lower insulin concentrations in BPA-50 vs BPA-
4 (t15 = 2.53; Tukey-adjusted P = 0.021; Fig. 2B). For C-peptide concentrations, there was a
significant condition main effect (Fy 15 = 7.84; P = 0.004) such that BPA-50 was significantly
lower than BPA-4 (t;5 = 3.95; Tukey-adjusted P=0.003; Fig. 2C), but not vs PL (t;s=1.71; P=
0.228). For proinsulin, 178-estradiol, and triglyceride concentrations, there were no sig-
nificant condition main effects or condition by time interactions (P > 0.05; Fig. 3A-3C).

BPA area under the curve was significantly lower in BPA-50 vs PL. and BPA-4 (P < 0.001;
Table 2), and BPA-4 was significantly lower than PL (P < 0.001; Table 2). Glucose, insulin,
and C-peptide area under the curve was significantly lower in BPA-50 vs PL and insulin area
under the curve only vs BPA-4 (P < 0.020; Table 2). There was no significant proinsulin, 173-
estradiol, and triglyceride area under the curve difference (P > 0.05) between conditions
(Table 2). There was no significant difference (P < 0.05) among PL, BPA-4, and BPA-50 in
HOMA-IR (least square mean *+ SEM: 2.07 + 0.26, 2.20 * 0.26, and 2.19 * 0.26, re-
spectively; P = 0.91) and Matsuda Index (5.28 = 0.51, 4.97 = 0.51, and 5.97 * 0.51, re-
spectively; P = 0.28).

There was no significant condition by time interaction or main effect (P > 0.05) in gas-
trointestinal distress [49] or subjective appetite ratings (data not shown).
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Figure 1. Serum BPA concentrations in response to orally administered PL, BPA-4, and BPA-
50. Values are geometric mean. *BPA-50 significantly (P < 0.05) different than PL. and BPA-4 at
all time points; $BPA-4 significantly (P < 0.05) different than PL and BPA-50 at all time points.
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Figure 2. (A) Plasma glucose concentrations, (B) insulin concentrations, and (C) C-peptide
concentrations in response to orally administered PL, BPA-4, and BPA-50. Values are
geometric mean. *BPA-50 condition significantly different than PL condition (P < 0.05);
$BPA-50 condition significantly different than BPA-4 condition (P < 0.05).

3. Discussion

The objective of this pilot study was to determine whether varying doses of orally admin-
istered BPA altered indices of glucose metabolism. Findings demonstrated the feasibility of a
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Figure 3. (A) Plasma proinsulin concentrations, (B) 17B-estradiol concentrations, and (C)
triglyceride concentrations in response to orally administered PL, BPA-4, and BPA-50.
Values are geometric mean.

randomized crossover design, varying dose exposure to BPA, and testing direct effects on
indices of glucose metabolism in humans. Although there were no noteworthy condition X
time interactions on indices of glucose metabolism, considerable condition main effects
suggested that orally administered BPA at 50 pg/kg BW compared with PL or orally ad-
ministered BPA at 4 pg/kg BW surprisingly lowered glucose, insulin, and C-peptide con-
centrations. Additionally, calculated areas under the curve for glucose, insulin, and C-peptide
were significantly lower with orally administered BPA at 50 pg/kg BW compared with PL.
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Table 2. Calculated Areas Under the Curve for the 3-H Profile

PL BPA-4 BPA-50 P Value
BPA AUC (ng/mL - min) 56 (12, 258) 571 (126, 2580)° 10,676 (2319, 49,151)° <0.001
Glucose AUC (mmol/L - min) 1088 (978, 1210)° 1068 (960, 1188)*° 998 (897, 1110)° 0.017
Insulin AUC (WIU/mL - min) 6036 (5263, 6922) 6044 (5271, 6932)° 5120 (4464, 5871)° 0.011
C-peptide AUC (pmol/L - min) 201,637 (171,134, 237,576)* 210,018 (178,247, 247,451)° 181,016 (153,632, 213,280)° 0.003
Proinsulin AUC (pmol/L - min) 3143 (2510, 3935) 3078 (2458, 3854) 3339 (2667, 4181) 0.749
Estradiol AUC (pg/mL - min) 8744 (5161, 14,814) 9608 (5621, 16422) 8913 (5261, 15,102) 0.873
TG AUC (mmol/L - min) 172 (137, 217) 160 (127, 201) 165 (131, 208) 0.612

Data are geometric mean (95% CI).

Abbreviations: AUC, area under the curve; Estradiol, 178-estradiol; TG, triglyceride.

@bWithin each row, geometric means not sharing a similar letter are significantly different (Tukey adjustment, P <
0.05).

Although these data need to be interpreted with some caution given the relatively small
sample size, they provide evidence in humans that orally administered BPA at the US EPA-
approved safe dose [35] may have an immediate effect on altering indices of glucose
metabolism in humans. These data, which are consistent with the previous human and
animal studies [6, 30], provide evidence that the estrogen-mimic BPA may potentially have at
least some role in B-cell functioning and insulin resistance.

Previous observational studies have shown positive associations between BPA and indices
of glucose metabolism and type 2 diabetes incidence [23, 51, 52]. For example, Tai and Chen
[62] found that urinary BPA levels in the third and fourth quartiles, compared with the
reference quartile, were significantly associated with increased HbA;. (0.46% and 0.44%
increase, respectively), fasting glucose levels (0.092 mmol/LL and 0.075 mmol/L increase,
respectively), and doctor-diagnosed type 2 diabetes in men. However, these studies were
strictly associative in nature, and well-controlled experimental studies are needed to de-
termine the direct effect of orally administered BPA on indices of glucose metabolism and
insulin resistance. To our knowledge, only one other human study and one animal study had
assessed the immediate effects of a single oral administration of BPA [6, 30]. Recently,
Stahlhut et al. [30] showed in men and postmenopausal women without diabetes that oral
BPA consumption of 50 pwg/kg BW lowered insulin and C-peptide concentrations in response
to glucose infusion. Similarly, Alonso-Magdalena et al. [6] showed that in mice, consumption
of 10 pg/kg BW of BPA had an acute effect and significantly reduced glycemia (blood glucose
concentrations) with a concomitant increase in insulin concentrations. However, after 4 days
of injection of 100 wg/kg BW of BPA (double the high dose used in the current study), mice
drastically increased glycemia and became hyperinsulinemic. Our results are consistent with
these studies, showing that immediate oral administration of BPA (50 ng/kg BW) lowered
glucose, insulin, and C-peptide concentrations and reduced calculated areas under the curve
for these variables. Surprisingly, there was no concomitant reduction in proinsulin. Previous
studies have found that in individuals without diabetes, only 10% of proinsulin is converted to
insulin and may take =3 hours to observe notable changes in proinsulin [53, 54]. Longer-term
(i.e., >1 day) human studies are needed to examine whether an initial acute decline in glucose
and insulin is followed by a pattern of elevated glucose and insulin concentrations as seen in
the prior mouse study [6].

Previous pharmacokinetic studies in humans have shown that BPA is rapidly metabolized
and absorbed with serum total BPA concentrations peaking at ~1 hour after consumption of
BPA and the majority of BPA recovered in urine within 24 hours [27-29, 55]. In the current
study, we took advantage of these pharmacokinetic study design models and performed an
OGTT at peak BPA levels ~60 minutes after consumption of BPA, all the while assessing
glucose, insulin, and C-peptide concentrations. Even though these previous studies have
shown that <1% of BPA consumed is unconjugated (bioactive) [27—29], our data and others
[30] suggest that the increase in serum total BPA concentrations still has an immediate effect
on glucose, insulin, and C-peptide concentrations and calculated areas under the curve.
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In the current pilot study, the observed changes in glucose, insulin, and C-peptide con-
centrations in response to an OGTT and calculated areas under the curve at the US EPA
reference dose have clinical implications, as this is the “safe” dose of BPA exposure
throughout a lifetime [35]. These data, which are consistent with the one other human and
animal study, provide evidence that the estrogen mimic BPA may ultimately play at least
some role in insulin resistance. In support, previous animal data have shown that B-cells
isolated from BPA-treated mice for 8 days had a greater release of insulin in response to high
glucose [56]. In the current study, we used an OGTT, which has clinical advantages; however,
hepatic glucose production and muscle insulin sensitivity are not directly measured. Future
human studies are needed to determine potential mechanisms using gold standard mea-
surements (e.g., hepatic glucose production via stable isotope infusion, euglycemic-
hyperinsulinemic clamp technique, and glucose rate of disposal) through which BPA may act
to impact insulin resistance.

Previous human studies have assessed the pharmacokinetics of a single oral consumption
of BPA, with a total BPA serum concentration maximum of ~4 ng/mL for each microgram of
BPA ingested per kilogram of BW (150 to 270 ng/mL) occurring at ~60 minutes [27-29]. The
current study used a very similar orally administered BPA dosing protocol, and, although the
study was not intended to assess pharmacokinetics, we similarly observed total BPA con-
centration maximum of 159 ng/mL occurring at ~60 minutes, with no reported gastroin-
testinal distress (assessed by questionnaire) or unintended participant harms (based on
CONSORT guidelines). The recent oral BPA consumption study by Stahlhut et al. [30] and
previous pharmacokinetic studies [27—29] also reported no side effects of BPA consumption.
Thus, taken together, these data suggest that in humans, an orally administered BPA
protocol, at varying doses, is feasible with no reported side effects. Future large-scale clinical
trials are needed to determine the effects of BPA on glucose metabolism and cutoffs needed
for human exposure.

There are notable strengths and limitations of the current pilot study. We experimentally
tested a randomized, doubled-blinded, balanced trial, consistent with CONSORT guidelines
[31], examining varying doses of orally administered BPA on indices of glucose metabolism.
We chose to assess total serum BPA (and not unconjugated BPA) with a commercially
available ELISA kit that is historically not as reliable [57]. However, the total BPA con-
centrations observed in the current study were consistent with other pharmacokinetic
studies by Thayer et al. [27] and Volkel et al. [29]. Additionally, this study was not specifically
designed to assess the pharmacokinetics of BPA, which have been reported elsewhere
[27—29]; rather, an objective was to determine the feasibility of recruiting participants in an
orally administered BPA protocol on indices of glucose metabolism in which the ELISA total
BPA kit was able to distinguish among the three conditions (Fig. 1). Also, even though
participants consumed d6-BPA, we assessed total BPA in serum for only 3 hours and did not
determine the pharmacokinetics in serum or urine throughout the ensuing days. Thus, it
remains unclear whether the observed changes in glucose, insulin, and C-peptide would
persist over several days or induce a relative insulin resistance. Finally, we recruited a
relatively small, convenient sample of young, nonobese college men and women, and our
results are not able to tease apart potential weight status differences and sex differences and
may not be generalizable to individuals with higher baseline BPA exposure [19, 20].

4. Conclusion

An orally administered BPA protocol on indices of glucose metabolism appeared feasible in
humans with no reported gastrointestinal distress, side effects, or unintended participant
harms. Furthermore, results from this pilot study and others [30] provide suggestive evidence
that orally administered BPA at the US EPA-approved [35] safe dose of 50 ng kg BW has
immediate effects on indices of glucose metabolism in young, nonobese adults. Future larger-
scale clinical randomized trials are needed to confirm these findings using gold standard
measurements (e.g., hepatic glucose production via stable isotope infusion and insulin
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sensitivity via hyperinsulinemic-euglycemic clamp technique) and determine the effects of
repeated consumption of BPA over several days in humans.
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