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Metabolic plasticity enables cancer cells to switch their metabolism
phenotypes between glycolysis and oxidative phosphorylation
(OXPHOS) during tumorigenesis and metastasis. However, it is still
largely unknown how cancer cells orchestrate gene regulation to
balance their glycolysis and OXPHOS activities. Previously, by
modeling the gene regulation of cancer metabolism we have
reported that cancer cells can acquire a stable hybrid metabolic state
in which both glycolysis and OXPHOS can be used. Here, to compre-
hensively characterize cancer metabolic activity, we establish a the-
oretical framework by coupling gene regulation with metabolic
pathways. Our modeling results demonstrate a direct association
between the activities of AMPK and HIF-1, master regulators of
OXPHOS and glycolysis, respectively, with the activities of three ma-
jor metabolic pathways: glucose oxidation, glycolysis, and fatty acid
oxidation. Ourmodel further characterizes the hybrid metabolic state
and a metabolically inactive state where cells have low activity of
both glycolysis and OXPHOS. We verify the model prediction using
metabolomics and transcriptomics data from paired tumor and adja-
cent benign tissue samples from a cohort of breast cancer patients
and RNA-sequencing data from The Cancer Genome Atlas. We fur-
ther validate the model prediction by in vitro studies of aggressive
triple-negative breast cancer (TNBC) cells. The experimental results
confirm that TNBC cells can maintain a hybrid metabolic phenotype
and targeting both glycolysis and OXPHOS is necessary to eliminate
their metabolic plasticity. In summary, our work serves as a platform
to symmetrically study how tuning gene activity modulates meta-
bolic pathway activity, and vice versa.
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Abnormal metabolism is an emerging hallmark of cancer
(1, 2). Unlike normal cells, cancer cells largely depend on

glycolysis to produce energy even in the presence of oxygen, re-
ferred to as the Warburg effect (3) or aerobic glycolysis. The up-
regulation of glucose transporters (GLUTs) (4) and glycolytic
enzymes, such as lactate dehydrogenase (LDH) and hexokinase
2, has been well documented in multiple types of cancer cells (2, 5).
Cancer cells can use aerobic glycolysis for rapid ATP production and
biomass synthesis to facilitate tumorigenesis and modulate their
metastatic potential (6). Moreover, the enhanced glycolytic activity of
cancer cells has been shown to be associated with increased therapy
resistance (7–9). Notably, the phenomenon of aerobic glycolysis has
also been observed in normal cells, such as rapidly proliferating
mouse and human lymphocytes (10, 11) and embryonic stem cells
(12, 13). These studies suggest that aerobic glycolysis may be a
common characteristic of many proliferative animal cells.
It has been becoming clear that in addition to aerobic gly-

colysis, oxidative phosphorylation (OXPHOS) can also play
critical roles in various types of cancer (14–17). For example, the
tumor progression and metastatic propensity of several triple-
negative breast cancer (TNBC) cell lines and patient-derived
xenograft models are largely affected by their energy de-
pendency on fatty acid oxidation (FAO). Pharmacologic repression

of FAO activity significantly inhibits in vivo tumor growth (14, 18).
The mouse basal BC cell line 4T1, which is part of an isogenic
model system, is supermetastatic and commonly used to simulate
the human stage IV BC (19). Compared with its isogenic non-
metastatic 67NR cells, 4T1 cells exhibit both enhanced OXPHOS
and increased glycolytic activities (20). Moreover, the circulating
tumor cells (CTCs) derived from 4T1 cells show significantly
higher mitochondrial respiration and biogenesis activities com-
pared with both its primary tumors and its lung metastases (15).
Notably, there is no observable decrease in glycolytic activity of
these 4T1 CTCs, indicating the coexistence of OXPHOS and
glycolysis. The association of high OXPHOS activity with high
metastatic potential has also been observed in mouse melanoma
B16-M4b cells and human cervical cancer SiHa-F3 cells (16). All
these indicate that cancer cells are able to utilize both glycolysis
and OXPHOS, depending on its circumstances. However, it is still
largely unknown how cancer cells orchestrate the metabolic
pathway activity through gene regulation to facilitate malignancy.
Mathematical modeling approaches have been employed to

help elucidate the aforementioned metabolic reprogramming in
cancer. Constraint-based models including flux-balance analysis
(FBA) based on conservation of mass (21, 22) have been the
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most widely used approaches to simulate cancer metabolism
(23, 24). Applications include quantifying the extent of aerobic
glycolysis of the NCI-60 cell lines (25), characterizing their pri-
mary uptake pathways (26), and identifying the change of their
metabolic states upon gene knockdown and/or drug treatment (27).
In addition to characterizing the metabolic flux change in can-
cer cells, modeling efforts have also been made to identify anoma-
lous gene activity involved in cancer metabolism. Such studies
include modeling the effects of reactive oxygen species (ROS)
and antioxidants on hypoxia-inducible factor 1 (HIF-1), a master
regulator of glycolysis (28), and our previous work modeling the
interplay between HIF-1 and 5′ AMP-activated protein kinase
(AMPK), a master regulator of OXPHOS and mitochondrial
biogenesis (29). These computational works offer a quantitative
and dynamical perspective of cancer metabolism mostly focusing
on either metabolic pathway activity or gene activity. However,
the alteration of the metabolic activity is coupled with the change
in gene activity, and vice versa. For example, HIF-1, which is
often stabilized in cancer cells due to hypoxia, promotes glyco-
lytic activity by up-regulating the expression of GLUT genes,
such as GLUT1, and glycolytic enzyme genes, such as pyruvate
kinase isozyme M2 (PKM2) (30). Up-regulation of PKM2 in turn
promotes HIF-1 transactivation and the products of glycolysis,
such as lactate, further stabilize HIF-1, thus forming self-
enforcing feedback loops of HIF-1 activity (31). Thus, to com-
prehensively characterize cancer metabolic reprogramming, a
mathematical modeling framework integrating gene regulation with
metabolic pathways is urgently needed.
Previously, to decipher the genetic interplay between glycolysis

and OXPHOS, we developed a mathematical model focusing on
a core regulatory circuit, composed of AMPK, HIF-1, and ROS
(29). Computational modeling of this circuit showed that cancer
cells can robustly acquire three stable steady states—W (HIF-
1high/pAMPKlow), O (HIF-1low/pAMPKhigh), and W/O (HIF-
1high/pAMPKhigh)—corresponding to a glycolysis phenotype, an
OXPHOS phenotype, and a hybrid metabolic phenotype, in which
cancer cells use both glycolysis and OXPHOS. Here, the AMPK
activity is represented by the level of phosphorylated AMPK
(pAMPK) at threonine-172 of the α subunit. The emergence of the
hybrid metabolic phenotype of cancer cells from our modeling
analysis has been supported by recent experimental evidence (14–
17, 20). We argued that the hybrid metabolic phenotype exhibits
metabolic plasticity to adapt to varying microenvironments and
hence tends to be more aggressive relative to cells in a more gly-
colysis or OXPHOS phenotype (17).
Here, to capture the coupling of gene activity and metabolic

pathway activity, we extend our AMPK:HIF-1:ROS model by
coupling it to three distinct metabolic pathways, glycolysis, glu-
cose oxidation, and FAO. Unlike traditional FBA, our model
captures gene regulation and pathway activity and their inter-
actions via chemical rate equations. The extended model eluci-
dates the detailed association of AMPK and HIF-1 activities with
metabolic pathway activities for each stable state. High AMPK
activity associates with high OXPHOS pathway activity (glucose
oxidation and/or FAO) and high HIF-1 activity associates with
high glycolysis activity. Particularly, the hybrid metabolic state
W/O is characterized by HIF-1high/pAMPKhigh and high activity
of both glycolysis and OXPHOS (glucose oxidation and/or
FAO). Our predicted association of AMPK/HIF-1 activity with
metabolic pathway activity is confirmed by analyzing well-
annotated metabolomic and transcriptomic data from a BC pa-
tients’ cohort. This utilizes metabolic pathway activity signatures
developed in the present work as well as our published AMPK
and HIF-1 signatures (29). This result was further validated in
human invasive breast carcinoma and hepatocellular carcinoma
(HCC) using RNA-sequencing (RNA-seq) data from The Can-
cer Genome Atlas (TCGA). For direct experimental validation,
we use two TNBC cell lines, SUM159-PT and MDA-MB-231,

and confirm that metastatic TNBC cells can acquire a stable
hybrid metabolic phenotype. We further show that repressing the
glycolytic activity activates AMPK and enhances OXPHOS activ-
ity, and conversely repressing mitochondrial function up-regulates
multiple glycolysis genes and increases glycolytic activity. Finally,
a combination of glycolytic and OXPHOS inhibitors that poten-
tially eliminates the existence of the hybrid metabolic phenotype
exhibits maximum reduction of proliferation and clonogenicity of
these TNBC cells. In summary, through integrating mathemati-
cal modeling, bioinformatics, and experiments we demonstrate
a direct association of the AMPK/HIF-1 activity with metabolic
pathway activity and investigate the existence of the aggressive
hybrid metabolic phenotype.

Results
Coupling the AMPK:HIF-1:ROS Circuit with Glycolysis/OXPHOS
Pathways. We constructed the metabolic regulatory network
from an extensive literature survey featuring important gene
regulation and energy pathways and their cross-talk (Fig. 1). The
details of the network construction can be found in SI Appendix,
section 1. To create a computational model which can capture the
basic principles of the coupling between gene regulation and
metabolic pathways, we coarse-grain the extensive regulatory
system (Fig. 1) into a minimum network consisting of the AMPK:
HIF-1:ROS core regulatory circuit and the three metabolic
pathways, glycolysis, glucose oxidation, and FAO (Fig. 2). AMPK
and HIF-1 form mutually inhibitory feedback loops and AMPK
reduces while HIF-1 increases NOX-derived ROS (noxROS),
which in turn activates both AMPK and HIF-1 (29). We now extend
this AMPK:HIF-1:ROS model by explicitly including the metabolic

Fig. 1. A comprehensive regulatory network of glycolysis and OXPHOS. The
ovals represent genes. Red ovals highlight the master regulators AMPK and
HIF-1. Green ovals represent downstream target genes of the master regu-
lators and oncogenes. Orange ovals represent the enzyme genes. Yellow
rectangles represent metabolites. Black arrows represent excitatory regula-
tion and black bar-headed arrows represent inhibitory regulation. Purple
solid lines represent the chemical reactions in metabolic pathways and
purple dotted lines represent the transportation of metabolites.
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pathways. The effective self-activation of HIF-1 is through its in-
teraction with the glycolytic pathway and the effective self-inhibition
of AMPK is due to its interaction with OXPHOS processes. One
critical component of our modeling is the direct consideration of
glucose levels and acetyl-CoA levels. Glucose is the competing re-
sources for glycolysis and glucose oxidation and acetyl-CoA, as the
only fuel entering the TCA cycle, is the common intermediate of
both glucose oxidation and FAO. The uptake rate of glucose is
regulated by AMPK and HIF-1 and the utilization rate of acetyl-
CoA for the TCA cycle is restricted by the mitochondrial capacity,
which is regulated by AMPK. The detailed formulation of the
mathematical model representing the dynamics of pAMPK, HIF-1,
mitochondrial ROS (mtROS), noxROS, ATP, glucose, and acetyl-
CoA together with the rates of glycolysis, glucose oxidation, and
FAO is provided in Materials and Methods. To reconcile the dif-
ferent time scales of gene regulation and metabolic flux, we always
assume that the metabolite concentration and the pathway activities
are in a steady state at certain levels of pAMPK and HIF-1 since
metabolic processes are much faster than gene regulation. We
propose that our coarse-grained network captures the key
features of the more comprehensive set of interactions in-
dicated in Fig. 1 and in particular is sufficient to explain im-
portant experimental observations on the coupling of gene
activity and metabolic pathway activity.

Genetic and Metabolic Characterization of Each Metabolism Phenotype.
First, we analyze the mathematical equations that were derived to
simulate the coarse-grained network using two sets of parameters
corresponding to normal and cancer cells, respectively. Cancer cells
often have higher mtROS production rate due to reprogrammed

mitochondria (16) and more stabilized HIF-1 due to the typically
hypoxic conditions. Therefore, the value of the parameters gRmt

representing the production rates of mtROS during OXPHOS
(glucose oxidation and FAO) is taken to be larger and the value of
the parameter kH representing the degradation rate of HIF-
1 smaller for cancer relative to normal cells. The values of the
other parameters are unchanged. We will consider in more detail
the effects of mtROS production rate and HIF-1 degradation rate
on cancer metabolic plasticity in a later section.
To identify the robust stable metabolic states enabled by the

regulatory network (Fig. 2), we utilize a parameter randomization
approach. The overall strategy involves randomizing the modeling
parameters for each simulation and collecting all stable steady so-
lutions for statistical analysis, by which the most significant solution
patterns can be identified (32, 33). As expected, the solution pat-
terns are conserved even in the presence of large parameter per-
turbations due to restraints from the network topology (i.e.,
extensive cross-talk of regulatory proteins and energy pathways).
We consider 1,000 sets of model parameters and for each set the
value of each parameter, except for the fixed values of mtROS
production rate and HIF-1 degradation rate that distinguish cancer
cells from normal cells, is randomly sampled from (75%p0,
125%p0), where p0 is the baseline value. We collect all of the stable-
state solutions and use unsupervised hierarchical clustering analysis
(HCA) to identify the patterns present in the solution set. HCA
shows that the stable-state solutions form three large clusters; one is
characterized by high pAMPK/mtROS/G1/F and low HIF-1/
noxROS/G2 (G1 represents the glucose oxidation rate, F repre-
sents the FAO rate, and G2 represents the glycolysis rate), corre-
sponding to an OXPHOS state; one is characterized by high HIF-1/
noxROS/G2 and low pAMPK/mtROS/G1/F, corresponding to a
glycolytic state; and one is characterized by high pAMPK/mtROS/
G1/F and high HIF-1/noxROS/G2, corresponding to a hybrid
metabolic state (Fig. 3A and SI Appendix, Fig. S1).
We also visualized the three clusters by projecting the stable-state

solutions onto the first and second principal components (PC1 and
PC2) through principal component analysis (PCA) of all solutions
(Fig. 3B), onto the pAMPK and HIF-1 axes, and onto the G1, G2,
and F axes (Fig. 3C). These results indicate that cells in the W state
mostly use glycolysis for ATP production, cells in the O state mainly
use OXPHOS (including glucose oxidation and FAO) for ATP
production, and cells in the hybrid W/O state can utilize all three
metabolic pathways to generate ATP (Fig. 3C). Thus, the modeling
analysis demonstrates an association of high AMPK activity with
high OXPHOS activity, and high HIF-1 activity with high glycolytic
activity. This was conjectured to be the case in our previous work
which, however, did not include any explicit analysis of the meta-
bolic processes. Similarly, we performed an analogous analysis for
the normal cells. However, the hybrid metabolic state is rarely
observed among the stable-state solutions from 1,000 sets of ran-
domized parameters (SI Appendix, Fig. S2).

The Effects of HIF-1 Degradation Rate and mtROS Production Rate in
Modulating Cancer Metabolic Phenotypes. The modeling frame-
work can be utilized to analyze the effects of various kinds of
perturbations on cancer metabolic phenotypes. In this section,
using the HIF-1 degradation rate and the mtROS production
rate as two examples, we will show how changing these two
variables would modify cancer metabolism phenotype. When
studying the effect of HIF-1 degradation, we keep the mtROS
production rate fixed, and vice versa.
To analyze the effect of the HIF-1 degradation rate, three

values of kH, representing relatively high, moderate, and low
degradation rate of HIF-1, are selected. For each value of kH, we
randomly sampled all other parameters using the aforemen-
tioned randomization procedure. Again, we collect all stable-
state solutions from 1,000 sets of parameters and use HCA
and PCA to classify the solutions. We find that increasingly

Fig. 2. The metabolic regulatory network, coupling the core AMPK:HIF-1:
ROS circuit with three metabolic pathways. AMPK and HIF-1 are the master
regulators of OXPHOS and glycolysis. Both AMPK and HIF-1 can promote
glucose uptake. The intracellular glucose can be used by glycolysis and
glucose oxidation. Both glucose oxidation and FAO can generate acetyl-CoA
to fuel the TCA cycle and consequently the production of ATP via ETC.
mtROS and ATP can in turn regulate the activity of AMPK and HIF-1. Here,
the black solid arrows/bar-headed arrows represent regulatory links. The
purple dotted arrows represent the metabolic pathways.
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stabilized HIF-1, represented by a lower degradation rate, enables a
higher percentage of the hybrid metabolic and glycolytic states and
lower percentage of the OXPHOS states (Fig. 4A). Similarly, we
performed an analogous analysis to analyze the effect of mtROS
production rate. We find that a higher mtROS production rate
enables a higher percentage of the hybrid metabolic and OXPHOS
states and a lower percentage of the glycolytic states (Fig. 4B).
Interestingly, although both stabilization of HIF-1 and elevated
production of mtROS can promote the hybrid metabolic state, their
effects on the glycolysis and OXPHOS state are opposite. The re-
sults here are indicative of the fact that a hybrid metabolic state is
rarely observed in normal cells and this appears to be due to both
the unstable HIF-1 and relatively low production rate of mtROS in
normal cells relative to cancer cells. Another interesting observa-
tion is the emergence of a cluster characterized by low activities of
AMPK and HIF-1 and low rates of glycolysis and OXPHOS, re-
ferred to as the “low-low” cluster. This state appears especially
when the degradation rate of HIF-1 is high and/or the production
rate of mtROS is low (Fig. 4). In the section Evaluating Metabolic
Pathway Activity by Enzyme Gene Expression, a subpopulation
of single BC cells with the low-low characterization is identified
and the significance of such a quiescent metabolic phenotype
is discussed.

Evaluating Metabolic Pathway Activity by Metabolite Abundance. To
test the predicted genetic and metabolic characterization of
differing cancer metabolism phenotypes, we wish to compare the
AMPK/HIF-1 activity and the metabolic pathway activity using
metabolomics and transcriptomics data from BC patients’ sam-

ples. Note, however, that the active form of AMPK is its phos-
phorylated form (pAMPK) and the most important property of
HIF-1 is protein stability; neither of these features can be di-
rectly captured by the mRNA expression of AMPK and HIF-1.
In the previous work, we developed AMPK and HIF-1 signatures
to quantify the activity levels of AMPK and HIF-1 by evaluating
the expression of their downstream target genes (a total of 33
AMPK downstream genes and 23 HIF-1 downstream genes)
(29). The AMPK and HIF-1 signatures were derived by per-
forming PCA on the gene expression data independently for
AMPK- and HIF-1–downstream genes, from which the first
principal components (PC1s) are used to quantify the activity of
AMPK and HIF-1. The AMPK and HIF-1 signatures have been
shown to capture the key metabolic features of multiple types of
tumor samples from TCGA, such as invasive breast carcinoma,
HCC, and lung adenocarcinoma (LUAD). Similar findings were
also observed in the single-cell analysis of LUAD (29). Particu-
larly, a significantly strong anticorrelation between the AMPK
activity and the HIF-1 activity has been observed across the
aforementioned tumor samples and single cells, where there is
no such clear correlation observed between AMPK and HIF-
1 gene expression (SI Appendix, Figs. S3 and S4).
Here we apply the AMPK and HIF-1 signatures to quantify

the AMPK and HIF-1 activity of 45 human BC samples and
45 corresponding adjacent benign breast tissue samples (34) (see
Materials and Methods for more details). The BC samples show
significantly higher HIF-1 activity and lower AMPK activity on
average relative to the adjacent benign breast tissues (Fig. 5A,
Left), indicating the enhanced glycolytic activity in the BC sam-
ples. Moreover, the cancer samples are more stretched in the
space of AMPK and HIF-1 signatures, with some samples
exhibiting very high HIF-1 activity and some samples exhibiting
very low HIF-1 activity relative to benign tissues, suggesting
heterogeneity in cancer metabolic activities (Fig. 5A, Left).
Moreover, a strong anticorrelation between AMPK and HIF-
1 activity is identified across the BC samples, which is consis-
tent with our previous results (29).
Our model directly connects these regulatory activities to actual

metabolic flux. To test our approach, we need to characterize
metabolic pathway activity. We first consider using metabolite
abundance. HCA were performed on BC samples and/or benign
tissue samples based on the abundance of major metabolites in-
volved in glycolysis, TCA and FAO (SI Appendix, Fig. S5). The full
list of metabolites used here can be found in SI Appendix, Table S1.
The clustering result shows that relative to the benign tissues BC
samples have higher abundance of most metabolites (SI Appendix,
Fig. S5), and among BC samples the samples exhibit either high
abundance of most metabolites or low levels of almost all metab-
olites (SI Appendix, Fig. S6). There are no signs of specific meta-
bolic states. These results suggest that using the static metabolite
abundance may not be informative in evaluating the metabolic
pathway activity. Since most of the metabolites are pathway inter-
mediates, their abundance may not be indicative of the pathway
activity since both active metabolic flux (active production) or
stalled metabolic flux can cause the accumulation of an in-
termediate. However, if the metabolite is the end product of a
metabolic pathway, its abundance should be indicative of the
pathway activity. Since lactate is the end product of glycolysis, we
can use its abundance to evaluate the glycolytic activity. The BC
samples clearly show higher average abundance of lactate relative
to the benign tissues (Fig. 5A, Right). This indicates higher glycolytic
activity in cancer tissues and is consistent with the predictions by the
AMPK and HIF-1 signatures.
The 45 BC tissues are further classified into three groups

based on their AMPK and HIF-1 activities using k-means clus-
tering (Fig. 5B, Left). Among the three groups, tumor samples
characterized with highest HIF-1 activity, labeled as W, exhibit
highest abundance of lactate, tumor samples characterized with

Fig. 3. Modeling prediction of the association between AMPK/HIF-1 activity
and metabolic pathway activity. (A) HCA of the stable-state solutions from
1,000 sets of parameters. Each row represents one stable-state solution, re-
ferred to as one sample here, and each column represents the levels of a reg-
ulatory protein, metabolite, or the rates of one metabolic pathway. In A, F
represents FAO rate, Rmt represents mtROS level, A represents pAMPK level, G1

represents glucose oxidation rate, Rnox represents noxROS level, H represents HIF-
1 level, and G2 represents glycolysis rate. The solutions can be clustered into three
main groups, referred to as clusters O,W/O, andW, as marked by different colors
in the dendrogram. (B) PCA of the clustered samples in A. (C, Top) The pAMPK
and HIF-1 levels of the clustered samples in A. (C, Bottom) The metabolic
pathway activities of the clustered samples in A. The colors representing
different clusters, O, W/O, and W, are consistent with those used in B.
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highest AMPK activity, labeled as O, exhibit lowest abundance
of lactate, and tumor samples characterized with both AMPK
and HIF-1 activities, labeled as W/O, show intermediate levels of
lactate (Fig. 5B, Right).
Motivated by the ability of lactate abundance to distinguish

different metabolic states, we also searched for other metabolites
that exhibit significantly differential levels between BC samples
and benign tissue samples. Such metabolites include phosphoe-
thanolamine, glutamate, fumarate, and cystine in addition to
lactate (see the volcano plots in SI Appendix, Fig. S7). Phos-
phoethanolamine shows the most differential abundance be-
tween BC and benign tissues (log2 tumor/normal = 11.16) and its
enrichment in BC has been frequently observed while poorly
studied (35, 36). Glutamate enrichment that is often due to the
overexpression of glutaminase is a characteristic of BC (37).
Accumulation of fumarate, referred to as an oncometabolite, has
been shown to trigger epithelial–mesenchymal transition in renal
cancer (38). Last, but not least, cystine enrichment in BC sam-
ples identified here is reminiscent of the result that cystine
deprivation can induce rapid programmed necrosis in the basal-
like BC cells (39). We also perform an analogous analysis to
identify the significantly differentially enriched metabolites
among groups W, W/O, and O, and such metabolites include
glutamate and lactate. Lists of the significantly differentially
enriched metabolites are provided in SI Appendix, Tables S2–S4.

All told, however, there is no simple way to accurately estimate
metabolic pathway activity directly from metabolite abundance.

Evaluating Metabolic Pathway Activity by Enzyme Gene Expression.
To more directly evaluate the metabolic pathway activities, we
develop a metabolic pathway scoring metric by evaluating the
gene expression of key enzymes involved in specific metabolic
pathways. The assumption here is that higher metabolic pathway
activity would require higher levels of enzymes functioning in
that pathway. With this assumption, a total of 14 enzyme genes
of FAO, 10 enzyme genes of TCA, and 8 enzyme genes of gly-
colysis were selected as the signature genes to evaluate the ac-
tivities of OXPHOS and glycolysis. The full list of all enzyme
genes used here can be found in Materials and Methods. To
unbiasedly test for the association of the AMPK and HIF-
1 activities with the metabolic pathway activities, we ensured
that the genes used in constructing the AMPK and HIF-
1 signatures do not overlap with the genes comprising the met-
abolic pathway scoring metric. The metabolic pathway scoring
metric is defined as the average gene expression of relevant
enzymes for each pathway. A detailed formulation of this metric
can be found in Materials and Methods.
First, we use the metabolic pathway scoring metric to quantify

the pathway activities of the 45 BC patients’ samples. We per-
formHCA on the microarray data for the enzyme genes and classify

A B

Fig. 4. The effects of the HIF-1 degradation rate (A) and the mtROS production rate (B) on metabolic phenotypes. (A, Top) HCA of the stable-state solutions
(referred to as samples here) of 1,000 sets of parameters with the degradation rate of HIF-1 ðkHÞ being 0.45 h−1, 0.25 h−1, and 0.05 h−1 (from left to right). (A,
Middle) Projection of the clustered samples at the top onto the PC1 and PC2 generated by the wild-type samples with the degradation rate of HIF-1 being 0.25 h−1

(referred to as WT-PC1 and WT-PC2). (A, Bottom) The fractions of the metabolic states, O, W/O, and W, corresponding to the top. The analysis was repeated three
times and error bars were added. (B, Top) HCA of the stable-state solutions of 1,000 sets of parameters with the production rate of mtROS ðgRmtÞ being 30, 50, and
80 μM/min (from left to right). (B, Middle) Projection of the clustered samples in the corresponding top onto the PC1 and PC2 generated by the wild-type samples,
with the production rate of mtROS being 50 μM/min. (B, Bottom) The fractions of the metabolic states, O, W/O, and W, corresponding to the top. The analysis was
repeated three times and error bars were added. The middle figures in A and B are the samewith the parameters kH =  0.25h−1 and gRmt = 50 μM/min, representing
the wild type. Z-scores of the stable-state solutions were used for clustering analysis and PCA. The solutions of all scenarios here were normalized using the mean
and SD of the wild type.

Jia et al. PNAS | February 26, 2019 | vol. 116 | no. 9 | 3913

SY
ST

EM
S
BI
O
LO

G
Y

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

SE
E
CO

M
M
EN

TA
RY

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816391116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816391116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1816391116/-/DCSupplemental


the samples into three groups with the most significant gene ex-
pression patterns; group W contains samples that have high
expression of glycolytic enzyme genes and low expression of
OXPHOS enzyme genes, group O contains samples that have
high expression of OXPHOS enzyme genes and low expression
of glycolytic enzyme genes, and group W/O contains samples
that have high expression of both OXPHOS and glycolytic en-
zyme genes, indicating the use of both metabolism phenotypes
by the tumor (Fig. 6A, Left). Then, we calculate the pathway
scores for each group. The glycolysis score shows a significantly
decrease from group W, to group W/O to group O, and the
FAO score of groups O and W/O is significantly higher than
that of group W (Fig. 6A, Right). We then evaluate the activity
of AMPK and HIF-1 of each sample by the AMPK and HIF-
1 signatures. Strikingly, members of group W characterized by
high expression of glycolytic enzymes show high HIF-1 activity
and members of group O characterized by high expression of
TCA and FAO enzymes show high AMPK activity and, finally,
members of group W/O characterized by high expression of
both glycolysis and OXPHOS enzyme genes show both AMPK
and HIF-1 activities (Fig. 6A, Right). Importantly, although
there are only 45 samples analyzed, a distinct gene expression
pattern of enzymes is clearly observed and strongly associated
with the AMPK/HIF-1 activities, as we predicted using our
model.
We further extended the analysis of pathway activity and

AMPK/HIF-1 activities using patient data from TCGA. We used
HCA to classify 1,100 invasive breast carcinoma samples (Fig.
6B, Left) and 373 HCC samples (Fig. 6C, Left) into three groups
respectively based on the aforementioned enzyme gene expres-
sion patterns and calculated their pathway scores. Consistent
with what we found in the 45 BC samples, TCGA analysis also
allows for the identification of three groups (W, O, and W/O).

Since we have data from a relatively large number of samples,
the three metabolic groups of invasive breast carcinoma and
HCC samples exhibit more significant differences, especially
among the FAO and glycolysis scores (Fig. 6 B and C, Right). As
predicted, invasive breast carcinoma and HCC samples with high
glycolysis score showed high HIF-1 activity, samples with high
FAO score showed high AMPK activity, and samples with high/
intermediate scores of FAO and glycolysis exhibited both AMPK
and HIF-1 activities (Fig. 6 B and C, Right). All these confirm the
modeling-predicted association of AMPK/HIF-1 activity with
pathway activities.
We further validated the association of the AMPK/HIF-1 ac-

tivity with pathway activity at the single-cell level. We looked into
the single-cell RNA-seq data of 317 BC cells (40), which are
classified into a W/O cluster and a low-low cluster (Fig. 6D, Left),
containing cells having high and low expression of both glycolytic
and OXPHOS enzyme genes, respectively. Cells in the W/O
cluster exhibit significantly higher FAO, TCA, and glycolysis
scores compared with cells in the low-low cluster (Fig. 6D, Right
and SI Appendix, Fig. S8D). As predicted, cells in the W/O cluster
exhibit both high AMPK and high HIF-1 activity and cells in the
low-low cluster exhibit low activity of both (Fig. 6D, Right). To
compare the metabolic state of these BC single cells with benign
breast tissues, we projected these BC cells to the AMPK/HIF-
1 axes generated by the 45 BC samples and 45 adjacent benign
tissue samples (SI Appendix, Fig. S9). A consistent AMPK/HIF-
1 activity characterization is observed for cells in the W/O cluster
and low-low cluster. Intriguingly, some cells in the low-low cluster
exhibit even lower HIF-1 activity relative to benign tissues (SI
Appendix, Fig. S9). These results confirm the association of the
AMPK/HIF-1 activity with pathway activity at the single-cell level
and also demonstrate the presence of single-cell hybrids.
In summary, although the AMPK and HIF-1 activity and the

metabolic pathway activity were evaluated independently using
different sets of genes, the strong correlation observed at both
the tumor level and the single-cell level supports the prediction
of the model regarding the genetic and metabolic characteriza-
tion of each metabolic phenotype.

Experimental Validation of the Coupling of AMPK/HIF-1 Activity with
Metabolic Pathway Activity in Metastatic Cancer Cells. To further
validate the predictions regarding the coupling of gene activity
and metabolic pathway activity in cancer cells, we used various
metabolic inhibitors to perturb the glycolysis and/or FAO activity
and analyzed the change in AMPK and HIF-1 activity in BC
cells. First, we show that the metastatic TNBC cells MDA-MB-
231 and SUM-159-PT, that have a significant dependency on
mitochondrial FAO (14), exhibit a hybrid metabolic phenotype
with both high OXPHOS and high glycolysis, as measured by
Seahorse respiration analysis (Fig. 7 A and B). When these TNBC
cells were treated with the mitochondrial complex V inhibitor oli-
gomycin or the FAO inhibitor etomoxir (ETX), which prevents the
entry of fatty acid into mitochondria by inhibiting the FAO rate-
limiting enzyme CPT1, oxygen consumption rate (OCR) was
sharply decreased in both MDA-MB-231 and SUM-159-PT cells
(Fig. 7 A and B). Interestingly, oligomycin- or ETX-mediated re-
duction in respiration resulted in a simultaneous increase in gly-
colysis represented by extracellular acidification rate (ECAR). This
confirmed the metabolic plasticity of these cells.
To analyze how altering metabolic pathway activity affects the

gene activity, we first use the model (Fig. 2) to simulate how
repressing the glycolytic pathway affects AMPK activity. In-
creasing inhibition of glycolysis first excludes the existence of the
hybrid metabolic state, and then the glycolytic state, and finally
only the OXPHOS state remains (Fig. 7C). In other words, the
cell populations are expected to automatically switch to in-
creased OXPHOS via increased average pAMPK levels upon
glycolytic inhibition. We also analyze how repressing the electron

B

A

Fig. 5. Association of the AMPK/HIF-1 activity with lactate abundance in
human breast tumor samples. (A, Left) Evaluating the AMPK and HIF-
1 activities of BC patients’ samples (n = 45) and the corresponding normal
samples (n = 45). (A, Right) Box plot for lactate abundance in tumor and
normal samples (P < 0.0001). (B, Left) Strong anticorrelation of AMPK and
HIF-1 activity of tumor samples (Pearson correlation, r = −0.67, P < 0.0001).
The standard k-means clustering analysis was applied to group the tumor
samples into the W, O, and W/O states. (B, Right) Box plot for
lactate abundance of samples in the W, O, and W/O states (PW-W/O < 0.05,
PW/O-O < 0.01).
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transport chain (ETC) affects HIF-1 activity. Increasing in-
hibition of ETC first excludes the existence of the hybrid state,
and then the OXPHOS state, and finally only the glycolysis state
remains (Fig. 7D). To test the model prediction, we used TNBC
metastatic cell models SUM-159-PT, MDA-MB-468, and MDA-
MB-231. Cells were treated with a glycolytic inhibitor, 3-
bromopyruvate (3BP), in low- and high-glucose medium. We
found that AMPK was activated, that is, the levels of pAMPK
were up-regulated by 3BP treatment, especially in the high-
glucose condition (Fig. 7E and SI Appendix, Fig. S10). Combi-
nation therapy with the FAO inhibitor ETX partially abolished
the 3BP-induced up-regulation of pAMPK (SI Appendix, Fig.
S10). When the mitochondrial function was inhibited using ETC
or FAO inhibitors, the expression of the glycolysis-relevant
genes, including GLUT1, LDHA, and c-Myc, was significantly
up-regulated, indicating the increased glycolytic activity at the
population level (Fig. 7F). These experimental results support
the model prediction and indicate that cancer cells have the
metabolic plasticity to switch between glycolysis and OXPHOS
as a compensatory strategy in response to metabolic drugs.
To further understand the functional significance of various

metabolism phenotypes in the tumor properties, we performed
proliferation assays and clonogenic assays using SUM-159-PT
and mouse metastatic basal BC 4T1 cells. While the glycolytic
inhibitors 3BP and 2-deoxyglucose (2-DG) showed minor in-
hibition in their clonogenic potential but not in proliferation,

their combination with ETX caused a major reduction in both
the proliferation and clonogenic potential of both of the cell
lines (Fig. 7 G and H). This suggests that disrupting the survival
potential of either tumors or individual cells with hybrid meta-
bolic status requires targeting both metabolic pathways.

Discussion
For a long time, aerobic glycolysis has been regarded as the
dominant metabolic phenotype in cancer. However, there has
recently been increasing experimental work demonstrating a
critical role of OXPHOS and mitochondrial biogenesis in tu-
morigenesis and metastasis. Apparently, cancer cells are able to
adjust their metabolism phenotypes to adapt to the microenvi-
ronment. In this regard, we showed that cancer cells can acquire
a stable hybrid metabolic state by a demand-sensitive cross-talk
of regulatory proteins and energy pathways (29).
In this study, we established a theoretical framework (Fig. 2)

that couples the gene regulatory circuit with metabolic pathways
to explore the genetic and metabolic interplay between glycolysis
and OXPHOS. The model predicts a direct association of high
AMPK activity with high OXPHOS activity and high HIF-
1 activity with high glycolysis activity. To validate this pre-
diction, we developed signatures to quantify the activity of
metabolic pathways and could therefore show the association of
the pathway activity with the AMPK and HIF-1 activities, eval-
uated by our previously defined AMPK and HIF-1 signatures. By

A B

DC

Fig. 6. Association of the AMPK/HIF-1 activity with the metabolic pathway activity in 45 BC samples (A), 1,100 invasive breast carcinoma samples from TCGA
(B), 373 HCC samples from TCGA (C), and 317 single BC cells (D). (A–C, Left) Average linkage HCA of enzyme gene expression (microarray data for A and RNA-
seq data for B and C) of patient samples. The similarity metric used here is based on Pearson correlation. Each row represents a patient sample and each
column represents the expression of one enzyme gene. Three major enzyme gene states, O, W/O, and W, are identified and highlighted by different colors in
the dendrogram. The cutoff values to get these clusters are 0.04 for A, 0.1 for B, and 0.06 for C. (Right, Top) Box plots for the FAO (F) and glycolysis (G2) scores
of the clustered patient samples. For 45 BC samples: FAO score, pO−W=O =0.28, pW−W=O = 0.12, pO−W = 0.32; glycolysis score, pO−W=O < 0.0001, pW−W=O < 0.001,
pO−W < 0.0001. For invasive breast carcinoma: FAO score, pO−W=O < 0.0001, pW−W=O < 0.0001, pO−W < 0.0001; glycolysis score, pO−W=O < 0.0001, pW−W=O < 0.0001,
pO−W < 0.0001. For HCC: FAO score, pO−W=O < 0.01, pW−W=O < 0.0001, pO−W < 0.0001; glycolysis score, pO−W=O < 0.0001, pW−W=O = 0.34, pO−W < 0.0001. (Right,
Bottom) The AMPK and HIF-1 signatures of the clustered patient samples. Here, each hollow dot represents one patient sample. (D, Left) Average linkage HCA
of the RNA-seq data of enzyme genes of single BC cells. The enzyme genes whose expression was detected in more than 150 single cells (approximately half of
the total) were used to do clustering. The similarity metric used here is based on Pearson correlation. Each row represents a single cell and each column
represents the expression of one enzyme gene. Two major enzyme gene states—W/O and low-low—are identified and highlighted by different colors in
the dendrogram. The cutoff value to get these two clusters is 0.009. (Right, Top) Box plots for the F and G2 scores of cells in the W/O and low-low clusters.
FAO score, P < 0.0001; glycolysis score, P < 0.0001. (Right, Bottom) The AMPK and HIF-1 signatures of the single cells in the W/O cluster and the low-low
cluster. For the heat maps in A–D, the names of the columns are listed as the names of the metabolism pathways and the full list of enzyme genes can be
found in SI Appendix, Table S8. The TCA score of each case is shown in SI Appendix, Fig. S8. For all box plots here, P values for a balanced one-way ANOVA
are calculated.
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applying the pathway signatures and the AMPK/HIF-1 signa-
tures, we confirmed their association and the existence of the
hybrid metabolic phenotype at both the tumor level and the
single-cell level. Furthermore, we performed experiments in
TNBC using MDA-MB-231 and SUM-159-PT cells, which stably
maintain a hybrid metabolic phenotype. Inhibiting the glycolytic
activity in these TNBC cells activates AMPK. With the use of
selective inhibitors, we show that cells in the hybrid metabolic
phenotype exhibit maximum proliferation and clonogenicity
relative to cells in a more glycolytic or more OXPHOS phenotype.
Our work couples gene regulation with metabolic regulation to
elucidate cancer metabolic plasticity, through integrating modeling,
data analysis, and experiments.
The hybrid metabolic phenotype, characterized by high HIF-1/

AMPK activities and high glycolysis/OXPHOS (glucose oxida-
tion and FAO) activities, enables for tumors and even for indi-
vidual cancer cells the metabolic plasticity to utilize various kinds
of nutrients, such as glucose and fatty acid. It allows the cells to

efficiently produce energy through multiple metabolism path-
ways and meanwhile synthesize biomass for rapid proliferation
using by-products from glycolysis. In addition, the hybrid meta-
bolic phenotype maintains the cellular ROS at a moderate level
so that cancer cells can benefit from ROS signaling (41) and still
avoid DNA damage due to excessive ROS (42). Moreover, the
hybrid metabolic phenotype may be specifically associated with
metastasis as supported by the experimental studies in highly
metastatic mouse 4T1 BC cells (15, 20), B16-M4b melanoma
cells (16), human SUM-159 and MDA-MB-231 TNBC cells (14),
and SiHa-F3 cervix squamous cell carcinoma cells (16). Also,
hybrid states may be preferentially associated with the survival
and propagation of therapy-resistance cancer stem cells (43–45).
As we show in Fig. 7, a combination of the glycolytic and
OXPHOS inhibitors effectively eliminates the tumor survival
potential of hybrid cells. Dual inhibition of glycolysis (by 2-DG)
and OXPHOS (by metformin) has been shown to effectively
repress tumor growth and metastasis across multiple preclinical

A

C D

E

F

G

H

B

Fig. 7. TNBC cells exhibiting a hybrid metabolic phenotype that requires treatment with both glycolytic and OXPHOS inhibitors. (A) Seahorse XF analysis
suggesting that the metastatic TNBC cells MDA-MB-231 and SUM159-PT exhibit a hybrid metabolic phenotype. While addition of the respiratory inhibitor
oligomycin decreased the mitochondrial respiration (OCR, solid lines), it immediately increased the glycolysis (ECAR, dotted lines). (B) Fold change in OCR and
ECAR after FAO inhibitor ETX treatment in SUM159-PT cells. (C) Bifurcation diagram of pAMPK levels in response to inhibition of the glycolytic pathway (G2).
λG,G2 represents the strength of inhibition of G2. The smaller the λG,G2, the stronger the inhibition. (D) Bifurcation diagram of HIF-1 levels in response to
inhibition of ETC. λETC represents the strength of inhibition of ETC. The smaller the λETC, the stronger the inhibition. More details to calculate D can be found in
SI Appendix, section 5. (E) Western blotting analysis of AMPK and pAMPK after the cells were treated with 3BP for 24 h in high-glucose (4.5 g/L) or low-
glucose (1 g/L) medium. (F) Cells were treated with the mitochondrial ETC complex I inhibitor rotenone (10 nM), the complex III inhibitor antimycin-A (10 μM),
the complex V inhibitor oligomycin (5 μg/mL), or ETX (100 μM) for 24 h. Expression of glycolytic genes (GLUT1, LDHA, and c-Myc) was determined by qPCR.
Glycolytic and OXPHOS inhibitors inhibited the cell proliferation (G) and the colony formation (H) in SUM159-PT and mouse metastatic basal BC 4T1 cells. Use
of both glycolytic and OXPHOS inhibitors effectively eliminates the colony-formation potential of SUM159-PT and 4T1 cells. All data are presented as the
means ± SE. *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed t test).
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cancer models (46). Moreover, the hybrid metabolic phenotype
has recently been observed in immune cells. The regulatory
T cells using both glycolysis and FAO exhibit more successful
expansion than the conventional T cells using primarily glycolysis
(47). Future work should develop in more detail the nature of
the hybrid metabolic phenotype and its coupling with other
hallmarks of cancer, such as metastasis and stem-like properties.
Another intriguing result is the emergence of a low-low meta-
bolic state with the characteristic feature of low AMPK/HIF-
1 activity and low OXPHOS/glycolysis activity, especially when
the HIF-1 degradation rate is high or mtROS production rate is
low, as predicted by the model (Fig. 4) and shown by gene ex-
pression data analysis (Fig. 6D). This metabolically inactive state
has been observed in bacterial persister cells (48) and its sig-
nificance in cancer is worthy of future study.
We found that enzyme gene expression performs better than

metabolite abundance in evaluating metabolic pathway activity.
This may be due to the fact that in metabolic processes chemical
reactions are much faster than gene regulation and consequently
gene expression is more “stable” than metabolite abundance. In
addition, most metabolites are reaction intermediates and their
accumulation is not particularly indicative of the level of pathway
activity. We note that intermediate metabolite concentrations
also do not enter into other approaches such as FBA (discussed
below). In this regard, the end products of metabolic pathways
are expected to be more informative, and this is indeed what we
have shown.
It is important to point out that there are other well-

established methodologies such as metabolomics and FBA to
quantitatively measure and simulate metabolism. Metabolomics
utilizes cellular metabolite profiling to infer cellular metabolic
activity. To interpret metabolomics data, systems biology ap-
proaches have been applied to identify causative mechanisms
underlying the observed metabolite profiles (49). As we have
already stated, this inference could be problematic. Alterna-
tively, FBA is a widely used method to predict the steady-state
flux distribution of metabolites that satisfies the imposed con-
straints and optimizes an independently chosen objective func-
tion such as maximizing biomass production. FBA is often
computationally inexpensive and can be adapted to analyze the
effect of specific reactions on the objective function via reaction
deletion or inhibition (21, 22). Under many circumstances this is
a reasonable strategy. However, the predictions of FBA depend
on the imposed constraints, constraints which may not be an
accurate characterization of what the coupled genetic system is
attempting to impose (21). Our approach, although at the mo-
ment much more coarse-grained than a full FBA analysis, allows
the cell to make its own decisions about how to direct its met-
abolic fluxes based on its own available information, with no
extra assumptions needed.
In this work, we focused on the genetic and metabolic in-

terplay of glycolysis and OXPHOS (FAO and glucose oxidation).
It is worth noting that glutamine oxidation, which is often driven
by the oncogene MYC, can also play a critical role in regulating
tumor growth and metastasis (50, 51). Other HIF isoforms, such
as HIF-2, which plays an important role in regulating lipid me-
tabolism in clear cell renal cell carcinoma (52), could be in-
tegrated into the modeling framework in future to analyze the
effect of various HIF isoforms in regulating cancer metabolism.
Moreover, abnormal metabolism, as a hallmark of cancer, in-
volves not only cancer cells. The surrounding glycolytic cancer-
associated fibroblasts, the stromal cells which often dominate the
tumor microenvironment, can provide energy-rich metabolites to
promote OXPHOS activity and anabolic metabolism of cancer
cells (53). These multicellular aspects, although beyond the
scope of this work, are definitely worthy of further investigation
combining both theoretical and experimental efforts.

Materials and Methods
Formulation of the Mathematical Model. The generic deterministic equations
representing the temporal dynamics of pAMPK, HIF-1, mtROS, and noxROS
are given by

dx=dt =gxf1 − kxf2,

where gx and kx represent the basal production and degradation rates of
component x and f1 and f2 are two functions representing the regulation of
x’s production and degradation due to the cross-talk between x and other
components. Since the chemical reactions in metabolism processes are much
faster than the gene regulation, we assume the metabolite concentrations
and the metabolic pathways are in the equilibrium state at a certain level of
pAMPK and HIF-1. The uptake of glucose is regulated by AMPK and HIF-1.
The intracellular glucose is shared by glucose oxidation and glycolysis. The
production of acetyl-CoA is from glucose oxidation and FAO. The generation
of ATP takes place from all three metabolic pathways studied here. The
detailed modeling procedure can be found in SI Appendix, sections 2 and 3
and the parameter values can be found in SI Appendix, Table S5.

The Metabolic Pathway Scoring Metric. The metabolic pathway score is de-
fined as

SP =
1
n

Xn

i=1

z-scoreðxiÞ,

where xi represents the expression of enzyme gene i and n represents the
total number of genes analyzed for pathway P.

The genes used to evaluate the FAO are ECHS1, HADH, ACAA1, ACAA2,
CD36, SLC25A20, IVD, ACADS, GCDH, ACADVL, ACADSB, ACAD8, ACAD9, and
ACAD10 (a total of 14 genes). The genes used to evaluate TCA are ACO2,
IDH1, OGDH, SDHA, SDHC, FH,MDH1, CS, PC, and PDHA1 (a total of 10 genes).
The genes used to evaluate glycolysis are HK1, GPI, PFKM, TPI1, GAPDH,
PGAM2, ENO1, and PKM (a total of eight genes). A detailed explanation of
the selection of these enzyme genes can be found in SI Appendix, section 4.

Forty-Five BC Samples and 45 Benign Tissue Samples. Sixty-seven human BC
samples and corresponding adjacent benign breast tissue samples are pro-
vided in ref. 34. The microarray data and metabolite data of 45 BC samples
and their paired adjacent benign tissue samples are selected for analysis in
the present study. For other paired BC and benign samples, the AMPK and
HIF-1 downstream gene expression of either BC or benign sample is missing.
The sample ID used in this study is listed in SI Appendix, Table S6. Analysis
has also been performed on all samples with available AMPK and HIF-1 gene
expression data and lactate abundance. The analysis results are shown in SI
Appendix, Figs. S11 and S12, which are consistent with the results presented
in Fig. 5.

Experimental Design.
Cell culture and chemicals. Human BC cell line MDA-MB-231 and MDA-MB-
468 cells were from the American Type Culture Collection; SUM-159-PT cells
from Asterand Bioscience were provided by Venkata Lokesh Battula, The
University of Texas MD Anderson Cancer Center, Houston, TX, and 4T1 cells
were provided by Sendurai A. Mani, The University of Texas MD Anderson
Cancer Center. Cells were cultured in DMEM supplemented with 100 μg/mL
of streptomycin, 100 U/mL of penicillin, and 10% heat-inactivated FBS
(Genedepot). ETX (Tocris), 2-DG (Sigma), and 3BP (Sigma) were dissolved
according to the manufacturer’s instructions.
Cell respiratory assay. The XF24 extracellular flux analyzer (Seahorse Biosci-
ences) was used to measure the OCR and ECAR using the procedure described
before (14, 54). Metabolic inhibitors used were oligomycin (500 nM final
concentration) and ETX (100 μM final concentration). After the assay was
completed, viable cells in each well were counted using a cell counter and
the cell counts used to normalize the values (54).
Cell proliferation assay. Cell proliferation was analyzed by the sulforhodamine
B (SRB)-based colorimetric assay (55). Briefly, cells were fixed with 5% tri-
chloroacetic acid to terminate reaction, and 0.4% SRB (Sigma) in 1% acetic
acid was added to each well. After 30-min incubation, the plates were
washed with 1% acetic acid, and dyes were dissolved by 10 mM Tris buffer.
Then, the absorbance density values were read by Infinite M200 PRO reader
(510 nm). Experiments were performed in triplicate.
Clonogenic assay. Clonogenic assay was performed with minor modification to
the previously published protocol (56). Briefly, cells (1 × 103 per well) were
seeded into each well of a six-well plate in triplicate. After overnight culture,
the media with the drug was changed every 3 d for 2 wk. Cells were rinsed
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with PBS, fixed in fixation solution (10% methanol, 10% acetic acid, and
80% H2O) for 10 min, and stained with 0.5% crystal violet (20% methanol
and 80% H2O) for 30 min. Crystal violet was solubilized with 10% acetic acid
for 15 min and quantified by absorbance at 590 nm and colonies were
interpreted according to the absorbance.
RNA isolation and qPCR. Total RNA was isolated using mRNeasy extraction kit
(Qiagen) and cDNA was amplified using primers for GLUT1, LDHA, and c-Myc
(SI Appendix, Table S7) in a qPCR System (MX3000P; Stratagene) with SYBR
Green Supermix (Bio-Rad). The relative mRNA was quantified using β-actin
mRNA expression.
Western blotting. Cells were washed with ice-cold PBS and cell lysates were
prepared in RIPA buffer containing phosphatase inhibitors and protease
inhibitors (Gendepot). Cell lysates were centrifuged at 20,800 × g for 15 min
at 4 °C, and supernatants were collected. Protein were separated by SDS/
PAGE gel and transferred onto nitrocellulose membranes (Bio-Rad). The
membrane was blocked with a 5% skim milk solution and incubated with

anti–phospho-AMPK, anti-AMPK, and anti–β-actin antibodies (Cell Signaling)
and detected using the ClarityTM western ECL substrate kit (Bio-Rad). Fig-
ures are presented with β-actin as the loading control for pAMPK.
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