
CH
EM

IS
TR

Y

Accurate molecular polarizabilities with coupled
cluster theory and machine learning
David M. Wilkinsa, Andrea Grisafia, Yang Yangb, Ka Un Laob, Robert A. DiStasio Jr.b,1, and Michele Ceriottia,1

aLaboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; and
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The molecular dipole polarizability describes the tendency of a
molecule to change its dipole moment in response to an applied
electric field. This quantity governs key intra- and intermolecu-
lar interactions, such as induction and dispersion; plays a vital
role in determining the spectroscopic signatures of molecules; and
is an essential ingredient in polarizable force fields. Compared
with other ground-state properties, an accurate prediction of
the molecular polarizability is considerably more difficult, as this
response quantity is quite sensitive to the underlying electronic
structure description. In this work, we present highly accurate
quantum mechanical calculations of the static dipole polarizabil-
ity tensors of 7,211 small organic molecules computed using
linear response coupled cluster singles and doubles theory (LR-
CCSD). Using a symmetry-adapted machine-learning approach,
we demonstrate that it is possible to predict the LR-CCSD molec-
ular polarizabilities of these small molecules with an error that
is an order of magnitude smaller than that of hybrid density
functional theory (DFT) at a negligible computational cost. The
resultant model is robust and transferable, yielding molecular
polarizabilities for a diverse set of 52 larger molecules (includ-
ing challenging conjugated systems, carbohydrates, small drugs,
amino acids, nucleobases, and hydrocarbon isomers) at an accu-
racy that exceeds that of hybrid DFT. The atom-centered decom-
position implicit in our machine-learning approach offers some
insight into the shortcomings of DFT in the prediction of this
fundamental quantity of interest.
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The last decade has seen great progress in the first princi-
ples evaluation of the structures, stabilities, and properties of

molecules and materials. Kohn–Sham density functional theory
(DFT) has played a pivotal role in this endeavor by providing
ground-state properties with an accuracy that is sufficient for
many useful applications at a manageable computational cost
(1–3). However, DFT is not equally accurate for every property
of interest. For instance, an accurate and reliable description of
the molecular dipole polarizability α, a tensor that describes how
the molecular dipole changes in the presence of an applied elec-
tric field E, can be quite difficult to obtain (4). This is primarily
due to the fact that α is a response property that is particularly
sensitive to the quantum mechanical description of the underly-
ing electronic structure. As such, nontrivial electron correlation
effects and basis set incompleteness error must be simultane-
ously accounted for when determining α. For these reasons and
in light of the fact that α is a fundamental quantity of interest
that underlies induction and dispersion interactions (5–7) and
Raman and sum frequency generation spectroscopy (8–11), and
represents a key ingredient in the development of next genera-
tion polarizable force fields (12–16), it is important to provide
benchmark values for α beyond the accuracy of DFT. In this
regard, linear response coupled cluster singles and doubles the-
ory (LR-CCSD) (17–19) has been shown to provide considerably
more accurate and reliable predictions for α when used in con-

junction with a sufficiently large (diffuse) one-particle basis set
(20–23). However, such a prediction is accompanied by a sub-
stantially larger computational cost (scaling with the sixth power
of the system size), which can become quite prohibitive even
when treating molecules with as few as 10− 15 atoms.

In the last few years, machine learning (ML) has gained trac-
tion as an alternative approach to the prediction of molecular
properties, substituting or complementing electronic structure
methods (24–26). In particular, it has been shown that accu-
racy on par with (or even better than) DFT can be achieved
in the prediction of many molecular properties (27, 28) and
that DFT (29) or coupled cluster (30) accuracy can be reached
more easily when using a less accurate but more computation-
ally efficient electronic structure method as a stepping stone.
The polarizability, however, poses an additional challenge to
ML. Due to its tensorial nature, the predicted α must trans-
form according to the symmetries of the SO(3) rotation group.
For rigid molecules, this is easily achieved by learning the com-
ponents of the tensor written in the reference frame of the
molecule (31, 32). However, to obtain a transferable model
that would also be suitable for flexible molecules—as well as
different compounds—this line of thought would require a cum-
bersome and inelegant fragment decomposition. To avoid these
complications, a symmetry-adapted Gaussian process regression
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(SA-GPR) scheme has recently been derived to naturally incor-
porate this SO(3) covariance into an ML scheme that is suitable
to predict tensorial quantities of arbitrary order (33). In this
paper, we present comprehensive coupled cluster-level bench-
marks for the polarizabilities of the ∼ 7, 000 small organic
molecules contained in the QM7b database (34). We use
these reference calculations to assess the accuracy of different
hybrid DFT schemes and train an SA-GPR–based ML scheme
(AlphaML) that can accurately predict the polarizability tensor
with nominal computational cost. We then test the extrapolative
prediction capabilities of AlphaML on a showcase dataset com-
posed of 52 larger molecules and demonstrate that this approach
provides a viable alternative to state-of-the-art and computa-
tionally prohibitive electronic structure methods for predicting
molecular polarizabilities.

Results
Electronic Structure Calculations. The QM7b database (26, 34, 35)
includes N = 7,211 molecules containing up to seven “heavy”
atoms (i.e., C, N, O, S, Cl) with varying levels of H satura-
tion. This dataset is based on a systematic enumeration of small
organic compounds (35) and contains a rich diversity of chemical
groups, making it a challenging test of the accuracy associated
with DFT and quantum chemical methodologies. DFT-based
molecular polarizabilities were obtained by (numerical) differ-
entiation of the molecular dipole moment, µ, with respect to
an external electric field E using the hybrid B3LYP (36, 37)
and SCAN0 (38) functionals. Reference molecular polarizabil-
ities were obtained using LR-CCSD. To account for basis set
incompleteness error, which can be even more important than
higher-order electron correlation effects in an accurate and reli-
able determination of α (21–23, 39), we used the d-aug-cc-pVDZ
basis set (39) for all calculations herein. Although this double-ζ
basis set has only a moderate number of polarization func-
tions, augmentation with an additional set of diffuse functions
almost always increases the convergence of α with respect to
aug-cc-pVDZ (21, 22, 39–41). The alternative choice of retain-
ing a single set of diffuse functions and simply increasing the
angular momentum by using the slightly larger aug-cc-pVTZ
basis set yields α values of comparable quality to d-aug-cc-
pVDZ (SI Appendix) (21, 22, 39–41), albeit with a significant
increase in the computational effort required to treat the entire
QM7b dataset. A more detailed description of the electronic
structure calculations performed in this work is in Materials
and Methods.

To enable comparisons between molecules of different sizes,
all error estimates (explicit expressions for which are given
in Materials and Methods) are computed based on molecular
polarizabilities divided by the number of atoms, ni , contained
within a given molecule. On the QM7b database, the popular
B3LYP hybrid DFT functional predicts α with a mean signed
error (MSE) of 0.259 a.u., a mean absolute error (MAE) of
0.302 a.u., and a root mean square error (RMSE) of 0.404
a.u. with respect to the reference LR-CCSD values. These
errors, which include both scalar and anisotropic contributions,
are quite substantial and correspond to 18.3% of the intrin-
sic variability within the QM7b database, defined as σCCSD =

[ 1
N

∑
i ‖α

(CCSD)
i −〈α(CCSD)〉‖

2

F/n
2
i ]1/2. The large MSE value

obtained with B3LYP indicates a systematic overestimation of
α by this functional (4, 42); results from the SCAN0 hybrid func-
tional show a substantially reduced MSE of 0.059 a.u. Despite
the smaller systematic overestimation of α in comparison with
B3LYP, the statistical errors obtained with SCAN0 are still quite
large, with computed MAE (RMSE) values of 0.217 (0.316) a.u.
From the ML point of view, the AlphaML model presented
herein performs almost equally well for B3LYP and SCAN0.
For this reason, we focus our discussion on the B3LYP and

LR-CCSD results, which will be referred to as DFT and cou-
pled cluster singles and doubles theory (CCSD), respectively,
throughout the remainder of the manuscript.

Improved SA-GPR. The formalism underlying the SA-GPR
scheme in general and the λ-SOAP (smooth overlap of atomic
positions) descriptors on which our model is based have been
introduced elsewhere (33) and are summarized in Materials and
Methods. In this work, we include several substantial improve-
ments that increase the accuracy and speed of the SA-GPR
model, and these are worth a separate discussion. For one, eval-
uation of the λ-SOAP representation is greatly accelerated by
choosing the most significant few hundred spherical harmonic
components (of several tens of thousands) using farthest point
sampling (FPS) (43). The calculation of the kernel in Eq. 1
can be carried out with essentially the same result as if all
components were retained but with a much lower computa-
tional cost. A second improvement is the generalization of the
λ-SOAP kernels beyond the linear kernels used in ref. 33. It
has been shown that, in many cases, taking an integer power
of the scalar SOAP kernel improves the performance of the
associated ML model. This can be understood in terms of the
order (two body, three body,. . .) of the interatomic correla-
tions that are described by different kernels (44, 45). In the
tensorial case, one should be careful, as the linear nature of
the kernel is essential to ensure the correct covariant behav-
ior. To include nonlinearity and increase the order of the model
without affecting the symmetry properties, we multiplied the
λ> 0 kernels by the scalar λ= 0 kernel raised to the power of
ζ − 1 as in Eq. 2. Finally, we combined multiple kernels com-
puted with different environment radii, rc, which have been
shown to be beneficial in the scalar case (30). Together, these
improvements halve the error on QM7b as discussed in detail in
SI Appendix.

Learning on the QM7b Database. These highly accurate reference
CCSD calculations and the SA-GPR scheme lay the foundation
for a transferable model to predict molecular polarizabilities.
In this first incarnation of the AlphaML model, we use the
reference DFT and CCSD calculations on the QM7b set for
training (34). As a first verification of its performance, we com-
puted learning curves for the DFT and CCSD polarizabilities of
the QM7b dataset. We used up to 5,400 structures for training
with subsequent assessment of the accuracy and reliability of the
AlphaML model in the prediction of α for the 1,811 structures
that were not included in the training set. The structures were
added to the training set according to their FPS order (43) (i.e.,
starting from the most diverse configurations). This procedure is
representative of an efficient learning strategy that aims to obtain
uniform accuracy with the minimum number of reference calcu-
lations (30). Using the best kernel hyperparameters (as described
in SI Appendix), we trained a model to learn the CCSD polariz-
abilities. We report ML errors in terms of the percentage of the
intrinsic variability of the CCSD dataset (σCCSD = 2.216 a.u. per
atom) so as to provide a direct measure of the learning perfor-
mance. As illustrated by the learning curves in Fig. 1, using up
to 75% of the QM7b database for training yields a 2.5% RMSE
with respect to σCCSD in predicting CCSD polarizabilities.

To get a clearer idea of the accuracy associated with these
ML-based predictions, one can compare these values against
hybrid DFT. Using the same metric, the intrinsic error of
DFT is 18% of σCCSD in the prediction of CCSD polarizabil-
ities. This demonstrates that an ML model based on SA-GPR
can yield polarizabilities with an accuracy that is approximately
one order of magnitude greater than DFT. At the same time,
the corresponding DFT polarizabilities can be learned with
an error of 3.2% of σCCSD. As seen in other cases (29, 30),
highly accurate quantum chemistry calculations are smoother
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Fig. 1. Learning curves for the per atom polarizabilities of the molecules
in the QM7b database calculated using either CCSD or DFT as well as
for the difference (∆) between the two. The testing set consists of 1,811
molecules, and the right-hand axis shows the RMSE as a fraction of the
intrinsic variability of the CCSD polarizability, σCCSD.

and slightly easier to learn than more approximate methods,
like DFT.

The AlphaML model can also be trained to evaluate the
correction between different levels of theory, a correction com-
monly referred to as ∆ learning that is often found to result
in much smaller error than learning the raw quantity itself (29,
30). For instance, the use of DFT as a baseline to learn CCSD
polarizabilities reduces the error by an additional factor of∼ 2×
relative to the direct learning of αCCSD (Fig. 1). ∆ learning
therefore provides a way to further reduce the prediction error
at the cost of performing a baseline DFT calculation. In SI
Appendix, we demonstrate that the performance of AlphaML is
rather insensitive to the details of the target electronic structure
method, showing similar accuracy for SCAN0 as that observed
for B3LYP.

Extrapolation to Larger Molecules. Our definition of the kernel
between two molecules as an average of environmental ker-
nels means that the polarizabilities predicted by AlphaML are
given as a sum of predicted polarizabilities for each environ-
ment (30). This feature allows one to predict α for larger
molecules. To test the behavior of AlphaML in this extrap-
olative regime, we trained this model on the entire QM7b
database and then predicted the polarizabilities in a show-
case dataset of 52 large molecules, which includes amino acids,
nucleobases, drug molecules, carbohydrates, and 23 isomers of
C8Hn (the molecule key is in SI Appendix). As discussed in
SI Appendix, many of these molecules are at the periphery
of the portion of chemical compound space spanned by the
QM7b dataset and therefore constitute a challenging test for
AlphaML.

In Table 1, we show the RMSE errors in predicting α for the
showcase molecules using AlphaML as well as the error made
when using DFT to approximate CCSD. Table 1 also breaks
down the error into the λ= 0 and λ= 2 components of α; with
an error in the anisotropic response comparable with that in the
trace, this demonstrates that AlphaML learns both components
with similar efficiency. As seen in the previous section, we again
note that using the AlphaML model to predict CCSD polariz-
abilities is more accurate than simply using DFT. However, the
use of DFT as the baseline in the ∆-learning sense leads to an
additional reduction of ∼ 20− 30% in the error. In SI Appendix,
we further discuss the behavior of the model when using the
SCAN0 functional, which is similar to that observed here for
B3LYP. While AlphaML predicts CCSD polarizabilities of the
showcase molecules with better than DFT accuracy, we observe
a substantial decrease in accuracy, which is to be expected

when the model is extrapolated to the larger molecules in the
showcase dataset.

We can investigate the performance of AlphaML in more
detail by analyzing the errors of individual molecules in the
showcase dataset. Fig. 2 shows that the errors are actually
very small for most molecules. Large errors occur predomi-
nantly for highly polarizable compounds, particularly those that
show a large degree of conjugation, such as long-chain alkenes
and the purine nucleobases. For these systems, the underly-
ing electronic structure is characterized by a high degree of
delocalization, which requires larger cutoffs and more complex
reference molecules to ensure accurate predictions. The ML pre-
dictions for the tensorial component of the polarizability, α(2),
tend to be slightly less accurate than the DFT reference except
for the highly polarizable alkenes, for which AlphaML dra-
matically outperforms DFT. Sulfur-containing structures, which
are poorly represented in QM7b, also exhibit comparatively
large errors.

The large discrepancy between DFT, CCSD, and AlphaML
observed for alkenes (like octatetraene) reflects the nonlocal
and collective nature of the underlying physics in these sys-
tems as well as the inherent structure of the AlphaML model.
For DFT and CCSD, the narrowing HOMO-LUMO (highest
occupied molecular orbital-lowest unoccupied molecular orbital)
gaps in conjugated hydrocarbons lead to near-metallic states,
which are known to exhibit strong multireference character (46).
As such, these systems represent a significant challenge for elec-
tronic structure methods (like DFT and CCSD) that are not
explicitly based on a multireference wavefunction. In practice,
this leads to divergent polarizabilities (47, 48), and methods like
CCSD are no longer reliable as the source of reference quan-
tum chemical data for ML. An ML framework like AlphaML,
which relies on local atomic environments to represent struc-
tures, tacitly disregards any collective (nonlocal) behavior that
extends beyond the range of the local domains and the size of
the molecules included in the training set. As shown in Fig. 3,
the per carbon polarizabilities predicted by AlphaML therefore
saturate to a constant value for the s-trans alkenes and acenes
that are larger than those included in the QM7b dataset (i.e.,
hexatriene and benzene, respectively). Although this is a limita-
tion when trying to learn collective and nonlocal physics, the local
structure of AlphaML is also instrumental for obtaining the accu-
rate and transferable predictions that we demonstrated on the
showcase dataset.

Even when it comes to challenging conjugated systems with a
vanishing HOMO-LUMO gap, the predictions of AlphaML are
stable and completely avoid the unphysical and divergent pre-
dictions of costlier (but far from reference) quantum mechanical
methods, like DFT and CCSD. For molecules with a sizable gap
(like C60), the nonlocality is less pathological, and AlphaML per-
forms remarkably well. For this prototypical nanotechnological

Table 1. RMSE in the prediction of the per atom polarizabilities
of 52 showcase molecules

Method RMSE RMSE (λ= 0) RMSE (λ= 2)

CCSD/DFT 0.573 0.348 0.456
CCSD/ML 0.244 0.120 0.212
DFT/ML 0.302 0.143 0.266
∆(CCSD-DFT)/ML 0.181 0.083 0.161

CCSD/DFT denotes the discrepancy between CCSD and DFT values, while
CCSD/ML and DFT/ML give the errors in predicting CCSD and DFT polar-
izabilities using AlphaML. ∆(CCSD-DFT)/ML gives the error in predicting
the differences between the CCSD and DFT polarizabilities. All ML predic-
tions are based on training on the full QM7b database. The total RMSE is
expressed in atomic units (a.u.) per atom and broken down into the errors
associated with the scalar (λ= 0) and tensorial (λ= 2) components of α.
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Fig. 2. RMSE made in approximating the λ= 0 (Lower) and λ= 2 (Upper)
components of the per atom polarizability in the showcase dataset. The x
axis corresponds to the numerical indices provided in the showcase molecule
key in SI Appendix, and the vertical lines show the partitioning of the
dataset into the different groups outlined in the same figure. Red squares
show the ML error, blue circles show the error made in using DFT to approx-
imate CCSD, and black crosses show the error made when ∆ learning the
CCSD correction with respect to DFT.

system, ML predictions are within 10% of DFT and CCSD
results and within the range of experimental values, despite the
extrapolation to a system size that is one order of magnitude
larger than the molecules in the training set.

Atom-Centered Environmental Polarizabilities. The atom-centered
structure of AlphaML provides a natural additive decomposi-
tion of α into a sum of local terms,

∑
i αi , which can be used

to better understand how different functional groups contribute
to the molecular polarizability. Unlike other methods for decom-
posing the polarizability, such as an atoms-in-molecules scheme
(52) or a self-consistent decomposition (53), the approach used
in this section does not require any additional calculations on
top of the molecular polarizability, as the atom-centered polar-
izabilities are obtained as a by-product of the local nature of the
SA-GPR scheme. When interpreting the αi , one should keep in
mind that each term corresponds to the contribution from the
entire atom-centered environment, and the way that the polar-
izability is split between neighboring atoms is entirely inductive,
reflecting the interplay between data, structure (as represented
by the kernels), and regression rather than explicit physico-
chemical considerations. For instance, a few atoms within the
showcase dataset (in particular, several H environments) have
αi with negative eigenvalues, which reflects the fact that they
reduce the dielectric response of the functional group to which
they belong.

With this in mind, one can recognize physically meaningful
features in the magnitude and anisotropy of the αi . Fig. 4 depicts
eight representative examples. Comparing saturated and unsatu-
rated hydrocarbons (e.g., 2,2-dimethylhexane, cis-4-octene, and
octatetraene), one sees that AlphaML predicts the contribu-
tion from the unsaturated carbon atoms to be large and very
anisotropic, which is consistent with the higher degree of elec-
tron delocalization along conjugated molecules. Similarly large
and anisotropic contributions are associated with aromatic sys-
tems as seen, for example, in guanine and the indole ring of
tryptophan. Oxygen atoms are associated with a very anisotropic

αi ; a large fraction of the polarizability of −OH and −COOH
groups is assigned to the environments centered around nearby
H and C atoms, but O atoms systematically contribute another
anisotropic term oriented perpendicularly to the highly polariz-
able lone pairs (e.g., fructose as well as the carboxyl group in
the amino acids). The sulfur-centered environments in cysteine
and methionine have the largest contribution to the total polar-
izability in the showcase set and exhibit a strongly anisotropic
response. All of these examples suggest that AlphaML can use
relatively local structural information to determine an atom-
centered decomposition of α that encodes nontrivial quantum
mechanical contributions from each functional group (or moiety)
contained within a given molecule. It is this ability to predict such
an environment-dependent decomposition of α that underlies
the observed better than DFT performance of AlphaML when
faced with the often insurmountable challenge of transferability
to a sector of chemical compound space that contains molecules
that are quite distinct and notably larger than those included
in the training set. A similar atom-centered decomposition can
also be performed in the context of ∆ learning, revealing the
molecular features that are associated with the most substantial
errors of the approximate methods. As shown in SI Appendix,
this approach reveals how the large discrepancy between DFT
and CCSD for alkenes is associated primarily with the extended
conjugate system.

Discussion
Polarizability calculations with traditional quantum chemical
methods have always implied a tradeoff between accuracy and
computational cost. While CCSD calculations give more accu-
rate predictions for the polarizabilities of molecules (especially
large molecules) than DFT with various functionals (4, 21), the
associated computational cost can be prohibitive. In our case,
the CCSD calculations for the largest molecules in the show-
case dataset required thousands of central processing unit (CPU)
hours and approximately 500 GB of RAM. In this paper, we have
demonstrated that the AlphaML framework, which combines
SA-GPR with λ-SOAP kernels and CCSD reference calcula-
tions on small molecules, allows us to sidestep these expensive
calculations and obtain results with an accuracy that almost

Fig. 3. Polarizability per C atom for the series of s-trans alkenes (from C6H8

to C22H24) and acenes (from benzene to pentacene) as well as fullerene (C60).
The reference CCSD results for anthracene and tetracene were taken from
ref. 49, and the reference CCSD result for C60 was taken from ref. 50. The
green squares (and error bars) indicate the experimental measurements for
C60 (51). Results are provided from DFT and CCSD calculations as well as the
corresponding AlphaML models.
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Fig. 4. Predicted atomic contributions to the total CCSD polarizability ten-
sor for a selection of showcase molecules. The ellipsoids are aligned along
the principal axes of αi , and their extent is proportional to the square root
of the corresponding eigenvalue. The principal axes are shown, and they
are colored based on whether the corresponding eigenvalues are positive
(black) or negative (red). The figure key (which is not drawn to scale) has
additional details.

always exceeds DFT but at a fraction of the computational cost.
Although this model was trained on a database of small organic
molecules, it can be used to predict larger compounds with an
accuracy that rivals DFT and can be systematically improved by
extending the training set. The atom-centered decomposition of
the ML predictions of α can be interpreted in terms of physic-
ochemical considerations, revealing for instance the large and
anisotropic contributions that originate from delocalized π sys-
tems. In doing so, however, one should keep in mind that these
contributions correspond to chemical environments rather than
an atoms-in-molecules decomposition scheme.

Having shown the promise of the AlphaML framework by
learning polarizabilities of small molecules, future work will
focus on extensions of the training set to include larger molecules
and oligomers, improvements in the accuracy of the underlying
reference calculations, incorporation of methods to estimate the
uncertainty in the predictions, as well as more efforts to include
collective and nonlocal physics into the model. The need for
these fundamental developments is underscored by an analysis
of the behavior of the challenging series of conjugated alkenes,
which are predicted by DFT and CCSD to have divergent
polarizabilities due to vanishing HOMO-LUMO gaps. These
improvements will make it possible to predict the polarizabil-
ity for increasingly complex molecular systems and eventually,
condensed phases. The availability of inexpensive atom-centered
estimates of the fully anisotropic α will be useful to design more
accurate polarizable force fields for atomistic simulations as well
as to computationally evaluate Raman and sum frequency gener-
ation spectroscopies, thereby improving the predictive power of
simulations and increasing the insight that can be obtained from
experiments.

Materials and Methods
First Principles Calculations. In this work, DFT calculations with the B3LYP
functional (36, 37) and all LR-CCSD calculations were performed with Psi4
v1.1 (54), while DFT calculations with the SCAN0 functional (38) were
performed with Q-Chem v5.0 (55). All of the molecular geometries used
for ML were taken from the QM7b database (34, 35). All 52 showcase
molecules (as well as the alkene series, acene series, and fullerene molecule
in Fig. 3) were relaxed following the protocol used for QM7b (34). All
DFT polarizabilities were computed with the finite-field method using a

central difference formula with a step size of δE = 1.8897261250× 10−5

a.u. All CCSD polarizabilities were calculated using LR-CCSD, except for
those of the eight largest molecules in the showcase dataset (which include
molecules 18, 19, 20, 21, 23, 25, 26, and 28 as listed in SI Appendix).
CCSD polarizabilities for these molecules were obtained using the (orbital
unrelaxed) finite-field method due to the prohibitively large computa-
tional resources (memory and disk) needed by LR-CCSD. The frozen core
approximation and direct scf type were used during all CCSD calculations.
In the cases where the finite-field method was used, CCSD polarizabilities
were obtained as α= ∂2U/∂E2. Additional details of the calculations are
given in SI Appendix. The polarizability data generated can be found in
Yang et al. (56).

Error Assessment. We use the Frobenius norm, defined as ‖α‖2
F =∑

i,j∈{x,y,z}α
2
ij , to assess the accuracy of a polarizability estimate α in a

way that is rotationally invariant and includes both scalar and anisotropic
components. Given two sets of polarizabilities, αi and α′i , for N struc-
tures (each containing ni atoms), we define the following quantities:
MSE≡ 1

N

∑
i(‖αi‖F −

∥∥α′i∥∥F )/ni ; MAE≡ 1
N

∑
i

∥∥αi −α′i
∥∥

F /ni ; and RMSE≡
[ 1

N

∑
i

∥∥αi −α′i
∥∥2

F
/n2

i ]1/2. Errors are defined on a per atom basis to simplify
the comparison between molecules of different sizes.

SA-GPR. The SA-GPR framework used herein to build an ML model for
the polarizability is based on the following steps. (i) Each polarizabil-
ity tensor, α, is decomposed into its irreducible (real spherical) compo-
nents: the scalar α(0) = (αxx +αyy +αzz)/

√
3 and the five-vector α(2) =

√
2
[
αxy ,αyz,αxz,

2αzz−αxx−αyy
2
√

3
,
αxx−αyy

2

]
. One can compute the RMSE sep-

arately on these two components, since ‖α‖2
F = |α(0)|2F + |α(2)|2F . (ii) λ-SOAP

vector components 〈αnlα′n′l′|X (2)
j,λµ〉 are computed for each environment

Xj and describe interatomic correlations within a prescribed cutoff radius,
rc, of the central atom j. The definition of these components is given in ref.
33. (iii) The base kernel between two environments, suitable to learn tensor
components of order λ, is then defined as

kλµj,µ′k ≡ kλµµ′ (Xj ,Xk) =
∑
{J}

〈Xj,λµ|J〉〈J|Xk,λµ′ 〉
?, [1]

where we use the shorthand {J} to indicate a subset of the possible
spherical harmonic components of the descriptors,

∣∣αnlα′n′l′ 〉 , that are
automatically selected with a farthest-point sampling procedure (43). (iv)
The linear SOAP kernel can describe atomic correlations up to three-body
terms. Many-body correlations can be introduced by normalizing it and
then raising it to an integer power. To preserve the linear nature of the
λ-SOAP kernels, which is crucial to enforce the correct symmetry properties,
we use

kλ,ζ
µµ′ (Xj ,Xk)← kλµµ′ (Xj ,Xk) k0

00(Xj ,Xk)ζ−1;

kλj,k← kλj,k
/√∥∥∥kλj,j

∥∥∥
F

∥∥∥kλk,k

∥∥∥
F
.

[2]

(v) For each component of α, we build a kernel ridge regression model with
weights wkµ that are determined by optimizing the loss

`
2

=
∑
µ,A∈N

∣∣∣α(λ)
µ (A)−

∑
k∈M
j∈A

wkµ′ (k
λ
j,k)µµ′

∣∣∣2 +σ
2wT KMMw, [3]

in which N is the training set, M is a (possibly sparse) set of representative
environments used as the basis, and KMM is the matrix of kernels between
representative environments. An online prediction tool for α, based on the
AlphaML framework, is also available at http://alphaml.org.
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