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Dengue is a climate-sensitive mosquito-borne disease with in-
creasing geographic extent and human incidence. Although the
climate–epidemic association and outbreak risks have been
assessed using both statistical and mathematical models, local
mosquito population dynamics have not been incorporated in a
unified predictive framework. Here, we use mosquito surveillance
data from 2005 to 2015 in China to integrate a generalized addi-
tive model of mosquito dynamics with a susceptible–infected–
recovered (SIR) compartmental model of viral transmission to estab-
lish a predictive model linking climate and seasonal dengue risk. The
findings illustrate that spatiotemporal dynamics of dengue are pre-
dictable from the local vector dynamics, which in turn, can be pre-
dicted by climate conditions. On the basis of the similar epidemiology
and transmission cycles, we believe that this integrated approach and
the finer mosquito surveillance data provide a framework that can be
extended to predict outbreak risk of other mosquito-borne diseases
as well as project dengue risk maps for future climate scenarios.
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As one of the most important mosquito-borne diseases in the
world, dengue fever is currently affecting almost one-half of

the world’s population (1). Dengue is a climate-sensitive disease,
with prominent effects caused by temperature and precipitation
through both direct and indirect pathways (2, 3). For example,
temperature determines the extrinsic incubation period directly
(4, 5). Additionally, population dynamics of Aedes aegypti and
Aedes albopictus, the most important vectors for viral trans-
mission between humans, are strongly dependent on climate
conditions (2). There are four distinct serotypes of dengue virus
(1), all of which cocirculate in Asia, Africa, and the Americas.
Recovery from infection provides lifelong immunity to each
specific serotype but only partial immunity to others (1). Antibody-
mediated enhancement during reinfection of heterologous sero-
types can cause severe hemorrhagic fever.
Since the first post-World War II dengue outbreak in China in

1978, the affected area has expanded from Hainan and Guang-
dong Provinces to other coastal and inner regions (6). Recently,
unprecedentedly severe dengue outbreaks occurred in China,
with 45,230 cases being reported in Guangdong Province in 2014
(3) and around 200 cases in Shandong Province in north China in
2017. The spatiotemporal expansion of dengue incidence (Fig. 1)
is an increasing cause of public health concern and a significant
economic burden both globally and in China.
Empirical environment–pathogen–host associations have been

explored in many studies but are inconsistent among different
locations and time periods (2, 7, 8). In addition, global vector
distribution and risk prediction cannot be downscaled spatially and
temporally without the incorporation of local vector dynamics and
their link to environmental conditions (9). Monitoring of local

mosquito abundance on finer spatiotemporal scales is, therefore, of
great importance to understand the climate–epidemic interactions
and the associated heterogeneities in transmission potential and
outbreak risk, which could be used to inform local control strategies
and predict future threats. Despite Aedes mosquitos being a major
threat to human wellbeing, there is a surprising scarcity of time
series data on abundance. In 2005–2016, a standardized mos-
quito monitoring program was carried out by the Chinese Centre
for Disease Control and Prevention across 44 major cities at risk
for dengue reemergence.
We combine statistical and mathematical approaches to

investigate the link between climate and dengue transmission.
Generalized additive models (GAMs) have previously proven
useful to elucidate the nonlinear statistical relationship between
vectors, human incidence, and climate conditions (3). However,
mechanistic aspects of transmission have not been incorporated
into these statistical analyses. The current challenge is thus to
link the statistical models with mechanistic epidemiological
models to estimate key epidemiological parameters, such as
spatiotemporal variation in the basic reproductive ratio, as well
as forecast future outbreak risks in the face of changing envi-
ronmental conditions (10). We use an integrated modeling ap-
proach that links climate-based influences on mosquito abundance
to vectored transmission among humans. More precisely, the
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long-term mosquito surveillance data from China are incorporated
in a generalized additive time series model to establish a predictive
climate–mosquito association using
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where Mi,j is the mosquito abundance in month i in city j. The
parameter ai,j is the overall intercept, and bðLonj,LatjÞ is a two-
dimensional smooth function accounting for spatial heterogene-
ity. The mean temperature and the number of precipitating days
in the last month [cðTi−1,  jÞ and dðPi−1,  jÞ, respectively] are used to
incorporate 1-mo lag correlation between mosquito density and
meteorological variables. Area is the categorical factor that clas-
sifies cities into north (>32° N), middle (28° N to 32° N), and
south (<28° N) China to represent the differing effects of pre-
cipitation on mosquito density across areas. The «i,  j represents
model error with an autoregressive structure to account for the
serial dependence in time series data.
The climate-driven variation in mosquito density is posited as

a proxy for transmission rate of dengue in an epidemiological
susceptible–infected–recovered (SIR) model described by the
following equations:

dS
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dR
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where S, I, and R are the numbers of susceptible, infectious, and
recovered humans, respectively. N is human population size, andM

_

is the biweekly mosquito density estimated using the GAM statisti-
cal model; 1/γ is the mean infectious period, and β′(t) is the per
mosquito vector efficiency. We allow for smooth seasonal variation
in β′(t) to accommodate factors, such as seasonal variation in mos-
quito age structure. When incorporated in a mechanistic compart-
mental model, we find a correspondence between predicted and
observed outbreak trajectories of most major dengue outbreaks
across multiple years and cities; the analysis reveals important
climate-driven variation in dengue’s basic reproductive ratio
in space and time. We thus clarify the extent to which the syn-
thesis of mosquito surveillance data and an integrated model-
ing framework can capture and predict dengue human cases.
Our findings demonstrate that the long-term city-level mosquito
surveillance data are reliable for inferring dengue cases and

have potential for projecting future risk in the face of a changing
environment.

Results
Climate–Mosquito Associations. We found a significant association
between mosquito density and local climate conditions in the
previous month, with somewhat differing precipitation–abun-
dance associations among the three regions of China (Fig. 2).
The precipitation–abundance association is generally increasing in
all areas. The nonlinear association in the northern and middle
regions indicates that precipitation is of the greatest impact around
15 d/mo (F1.85, 31.8 = 25.89, P < 0.05), whereas the approximately
linear relationship (F1, 31.8 = 25.22, P < 0.05) indicates that all
precipitation leads to increased mosquito abundance in the south-
ern region. The overall dryer climate in the northern area results in
a lower number of precipitating days and hence, a greater un-
certainty in estimates of the partial effect of precipitation on mos-
quito density. We also found a nonlinear but generally increasing
association between mean temperature in the previous month and
mosquito density (F1.97, 31.8 = 229.09, P < 0.05).
The statistical model captures the dynamics of the observed mos-

quito abundance across 26 selected cities throughout the 2006–2015
period (SI Appendix, Fig. S1) and reveals strong seasonality and
geographical variability (SI Appendix, Fig. S2). More specifically,
there is a general increase in abundance from July to October,
reaching the peak magnitude around August. However, the extent of
the surge of mosquitos differed among cities, with the most prominent
increase in the southern and eastern areas (i.e., Guangdong, Hainan,
Zhejiang, and Shandong Provinces). We incorporated biweekly vari-
ation in mosquito density during 2005–2015 for the eight represen-
tative cities in our mathematical model (SI Appendix, Fig. S3).
The 1-mo lag association between local weather condition and

mosquito abundance was further validated by the comparison of al-
ternative assumptions. The findings (SI Appendix, Table S1) demon-
strate that local weather conditions in the contemporary month
and 2 mo ago do not have a significant impact on mosquito

Fig. 1. Spatial and temporal distribution of dengue human incidence in
2005–2015. (A) Times series of the dengue human incidence in China (on the
logarithmic scale) is projected to (B) case numbers and distinguished by color
according to the magnitude in each city.

Fig. 2. Partial effect from temperature and precipitation on mosquito
density. The potential nonlinear effects of the number of precipitating days
in (A) north, (B) middle, and (C) south China and (D) mean temperature in
the previous month on mosquito density are quantified using GAM. Results
of the significance test are also shown for each partial effect of climate
predictor on mosquito density.
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density, which verifies the correspondence between mosquito
abundance and weather condition in the last month.

Predicting Human Incidence. To link mosquito abundance to human
transmission, we assume a seasonal compartmental SIR model for
which the transmission rate is driven by vector abundance. The
fitted incidence matches the dynamics of observed human cases well
(Fig. 3 and SI Appendix, Fig. S4). Our climate-driven models thus
accurately characterize human risk across a range of magnitudes in
different years and cities, including the large outbreak in Guangz-
hou in 2014. In addition, the inferred annual cycle of epidemic
dynamics among most cities is similar in terms of vector efficiency
and basic reproductive ratio during the 10-y period. Precisely, the
analysis further reveals seasonality in the per mosquito transmission
rate, reaching a maximum between the middle of July and late
September across most cities (SI Appendix, Fig. S5). Notably, sea-
sonal variation in R0 shows that the epidemic season (when R0 >
1) lasts for 4–5 mo, typically starting in May (9th to 11th biweek)
and ending in the middle of September to October (19th to 21st
biweek) depending on year and city (Fig. 4). Despite the generally
concordant patterns, there is evidence of comparatively higher

vector efficiency in Shantou and a shorter epidemic period/less
probability of widespread transmission in Shenzhen, even when
differences in mosquito abundance are accounted for. It is also
worth noting that the relative effect of mosquito abundance and
vector efficiency in regulating transmission risk is distinct across
years and cities (SI Appendix, Fig. S6). Specifically, mosquito
abundance is the dominant driver of human incidence before 2013
in Guangzhou, Foshan, and Xishuangbanna. Conversely, increase in
per mosquito transmission rate seems to drive the increase in risk
during 2013–2014. In particular, transmission risk in Guangzhou in
2014 is shaped by significant increase in vector efficiency, indicating
a role of factors other than local weather conditions in mediating
transmission and inducing that particularly explosive outbreak.
To test our model’s ability to perform out-of-sample predic-

tions, we used models trained on the 2005–2014 portion of the
data to predict the 2015 outbreaks. There is generally a close
match between the predicted and observed dengue cases where
the overall trajectory and relative magnitudes of outbreaks in
different cities are captured (Fig. 3 and SI Appendix, Fig. S4).
The validation of our proposed SIR mechanism that local weather

conditions drive dengue dynamics through their impact on mosquito

Fig. 3. Observed and predicted dengue human cases across various cities between 2005–2015. The observed number of human cases in outbreak years (the
gray shaded area) during 2005–2014 is used for model simulation and parameter estimation. The model was reinitialized using a plausible range of infectious
periods at the beginning of each outbreak year. The median estimates of human cases (red lines) and corresponding confidence intervals (red shaded area)
for both simulation and forecasts were compared with observed data (black lines) on the logarithmic scale.
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abundance with a 1-mo lag was done through comparison with the
performance of the alternative hypotheses and mechanisms. Our
climate–epidemic model has a better root mean square error
(RMSE) than the null model, where mosquito abundance was not
incorporated (SI Appendix, Fig. S7). This finding demonstrates that a
“vector-free” model with a simple spline-fitted transmission rate
cannot accurately capture the complex interactions at the climate–
mosquito–virus interface. Therefore, an alternative hypothesis that
assumes a direct impact of climate factors on transmission rate does
not perform well in characterizing dengue transmissions. Addition-
ally, statistical testing verifies the significant outperformance of the
time-dependent vector model over the alternative constant vector
efficiency (SI Appendix, Table S2). That is, seasonal variation
of mosquito abundance alone cannot fully characterize the
mosquito–human interactions as well, which is presumably due
to the seasonality in human/mosquito activity patterns as well as
shifts in vector age structure (11).

Discussion
In our study, long-term mosquito surveillance data from many
Chinese cities are incorporated in the analysis of a vector-borne
human infection. The seasonality of R0 generally follows the
climate-driven dynamics of mosquito abundance, which remain at a
higher level from May/June to September/October. This finding
clarifies how local mosquito abundance combined with various
other seasonal factors may cause explosive dengue risk to humans.
Our findings further highlight the importance of city-level mosquito
surveillance data integrated with a synthetic mathematical frame-
work to successfully predict dengue risk.
Our integrated modeling approach improves inference on dengue

transmission at the climate–epidemic interface. Moreover, the sta-
tistical model allows prediction of the temporal dynamics of mosquito
abundance in locations where no or only partial monitoring is avail-
able. The improved mosquito estimates not only make up for the
surveillance bias but also, allow prediction of seasonal dynam-
ics of human cases when used to force an SIR compartmental
model. The seasonality in transmission rate is likely to reflect the
effects of multiple factors and complex interactions at the mosquito–
human interface that impact dengue risk through heterogeneous

mechanisms at various spatial–temporal scales (12). More specif-
ically, we found that local weather conditions directly regulate
adult mosquito density through variation in precipitation and
temperature with a roughly 1-mo lag. However, effects of other
climate and nonclimate factors on dengue risk may be exerted over
longer periods of time and across other spatial scales. For example,
previous studies have documented a significant coherence between
the interannual dynamics of El Niño–Southern Oscillation-related
climate anomalies and dengue incidence in countries, such as
Thailand, Mexico, and some island nations of the South Pacific
(13–16). Some nonclimatic drivers, such as human movements,
have also been documented to mediate exposure risk to vectors,
dengue transmission rates, and spatial patterns at finer scales (17,
18). The validation of our proposed modeling framework further
indicates that the complex interactions underlying dengue trans-
mission can only be accurately characterized by considering mos-
quito abundance and seasonality in vector efficiency. The latter
plausibly comes about because of the extrinsic incubation period as
well as adult mosquito age structure variations throughout the
year. This model’s outperformance in inferring dengue risk may
partially be explained by the multiple ways that climate influences
transmission. Put another way, by independently simulating the
nonlinear variation in mosquito abundance and vector efficiency,
the multiple sources of seasonality are better characterized, leading
to better inference on human risk. In contrast, alternative models
that assume either a direct climate impact on transmission or a
constant vector efficiency are not adequate for predicting the in-
teractions at the climate–vector–dengue interface. Notably, the
outperformance of this proposed climate–mosquito–epidemic
mechanism in driving dengue dynamics should not be interpreted
as the consistent pathway but should be verified spanning different
transmission settings and spatiotemporal scales.
Some limitations should be taken into consideration when inter-

preting our studies. Themed around climate–mosquito associations,
our inference on dengue risk should be interpreted as an outbreak
potential caused by local climate and mosquito conditions. This is
because current mosquito control strategies are increasingly effective
in reducing the risk of human infections (1), particularly after the
occurrence of the big outbreak in Guangzhou in 2014. Such controls
will alter the suitable transmission condition and potential trans-
mission bounds set by climate alone. The human risk is also
likely underestimated, because asymptomatic infections are not
included in our analysis. Therefore, additional research is
needed to quantify the relative contribution of other determi-
nants of risk in modulating transmission condition and human
risk in each city to make more accurate forecasts across different
geographical locales. Additionally, potential bias in mosquito
surveillance may affect the spatiotemporal surveillance of mos-
quito abundance. The large variation in mosquito abundance
within cities reflects both the seasonality of the mosquito pop-
ulation and the role of mosquito surveillance in guiding control
strategies. Specifically, seasonal dynamics of mosquito density
follow the fluctuation of local climate conditions, with peak
abundance in the summer. The heterogeneous control strategies
across cities and specific surveillance sites may lead to anoma-
lous fluctuations in mosquito density (SI Appendix, Fig. S2).
Generally, southern cities are of higher risk and hence, have
more intensified prevention and control routines, whereas
northern cities tend to have moderate controls only after the
occurrence of outbreaks. Likewise, mosquito abundance in newly
selected surveillance sites may be higher due to a lack of previous
interventions. Moreover, the selection of 1-mo lag in weather–
abundance association is dependent on the mosquito lifecycle.
In light of the lower proportion of explained deviation and a
higher generalized cross-validation criteria (GCV) value com-
pared with the 1-mo lag model, the additional incorporation of
meteorological factors in contemporary month and 2 mo ago
does not have significant impact on mosquito abundance.

Fig. 4. The dynamics of R0 during 2005–2014. The median estimates and the
corresponding 5th and 95th quantile intervals represent the seasonality of
the human-to-human basic reproductive rate in each city in 2005–2014.
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With this study, we have demonstrated that variation in local cli-
mate conditions, through their impact on mosquito abundance,
provides a plausible mechanism for explaining the observed dengue
dynamics in China—a mechanism that we have reason to assume is a
general one. Mosquito surveillance on a finer scale and local weather
conditions are thus of the utmost importance for predicting outbreak
risks and optimizing local control and prevention strategies as well as
projecting outbreak risk into the future.

Methods
Dengue Human Cases. Case-level records of dengue human data from January
2005 to December 2015 in China were obtained from the China National
Notifiable Disease Surveillance System. The associated information of each
case, including age, sex, occupation, date of onset, and description about
travel or contact history, was also collected. Biweekly human cases were
summarized for the mathematical modeling analysis.

Mosquito Surveillance Data. Mosquito surveillance of both A. aegypti and A.
albopictus from January 2005 to December 2015 was implemented by the
Chinese Center for Disease Control and Prevention using light traps. The
selection of representative trap sites was based on local mosquito breeding
ecosystems, epidemic areas, and feasibility of surveillance, and sites included
households, residential areas, parks, construction sites, and hospitals. Spe-
cifically, a light trap was placed at the sheltered site away from light and
∼1.5 m above the ground. The light was on, and surveillance was performed
at night from 1 h before sunset to 1 h after sunrise. Traps were collected daily,
and mosquitoes were collected for subsequent analyses, including the iden-
tification of species, sexing, and total count. Since A. aegypti is the dominant
species in most cities (SI Appendix, Table S3), we aggregated the number of
the two species, with the assumption of similar viral transmission ability of the
two. The monthly number of mosquitoes was transformed to monthly mos-
quito density (unit: number of mosquitoes per trap). The number of moni-
tored cities increased from 32 to 44 during 2006–2015, among which the
observed mosquito density in 26 cities was greater than zero. These were used
for additional statistical modeling (SI Appendix, Fig. S8).

Local Meteorological Variables. Daily mean temperature and precipitation
data during 2005–2015 were obtained from the China Meteorological Data
Sharing Service System (data.cma.cn; last accessed January 29, 2018). The
obtained meteorological dataset was processed into monthly mean tem-
perature and the number of precipitating days (number of days with pre-
cipitation over 1 mm/d) (19) to reconstruct the mosquito density in the
statistical analysis.

Statistical Analysis. GAMs with a negative binomial distribution and
autoregressive error term were used to study the association between
local weather conditions and mosquito population dynamics according to
Eq. 1. The analyses were implemented using the mgcv package in R.
Based on the lifecycle of the mosquito, we posited a 1-mo lag between
adult mosquito abundance and meteorological variables. That is, we
assumed that the adult mosquito density is related with a time lag to the
premature stages, which are directly influenced by meteorological factors.
Therefore, the mean temperature and the number of precipitating days in the
last month [i.e., cðTi−1,  jÞ and dðPi−1,  j ,by =AreaÞ] were used to predict mos-
quito density in the current month. In light of the differential impact of
precipitation in different climate regions in China (20–22), a smooth function
with a categorical indicator (i.e., Area) was chosen for precipitation to allow
for a heterogeneous precipitation–abundance association. Specifically, 26
mosquito surveillance sites were located in the east monsoon area where
regional climate was greatly influenced by precipitation and temperature,
with the strongest seasonality in the middle and lower reaches of the Yangtze
River (28° N to 32° N). Therefore, we assigned surveillance sites to three dif-
ferent climate subareas: the north (>32° N), middle (28° N to 32° N), and south
(<28° N) China.

We first calibrated the model and obtained empirical climate–mosquito as-
sociations using both monthly mosquito density and meteorological data at 26
surveillance sites during 2006–2015. This association was then interpolated to
get the biweekly mosquito estimates for the period of 2005–2015, which were
sequentially used as the proxy of transmission rate among humans in the
mathematical model (see below). To further validate the assumption of a 1-mo
lag in weather–abundance association, model performance with alternative
assumptions (i.e., mosquito abundance is correlated to the weather condition in
the contemporary month or the last 2 mo) was evaluated and compared using
the GCV. The alternatives provided weaker fits.

The epidemical SIRmodel used for this study simulates dengue transmission
among humans. The model is described by the SIR equations (Eqs. 2–4).

The mean infectious period, 1/γ, was taken as a random constant from the
uniform distribution of 14–18 d as the extrinsic incubation period and the
average intrinsic incubation periods 8–12 and 6 d. β′(t), the per mosquito
transmission rate or the vector efficiency, is the time-dependent scaling
factor linking the estimated mosquito density with transmission among
humans, β(t). More specifically, our modeling framework was implemented
with the assumption that the variation of mosquito density over time is
highly linked to and can be used as a proxy for the dynamics of transmission
among humans. Hence, the transmission rate among humans and human-

to-human basic reproductive ratio are calculated as βðtÞ= β’ðtÞM̂ and
R0 = βðtÞM=γ, respectively. On the basis of the complex interactions at the
mosquito–human interface, we used a spline function with three degrees of
freedom to estimate the seasonality in vector efficiency, β′(t).

The numbers of human cases in outbreak years (or years with prominent
magnitude of human cases) during 2005–2014 in eight representative cities
(SI Appendix, Fig. S9) were selected for SIR model simulation and parameter
estimation. With the assumption of a homogeneous susceptibility in the
entire population and no underreporting of cases, we reinitialized the
model 500 times with different γ values at the beginning of each outbreak
year to simulate human incidence. The median estimates of all simulations
using the varying γ values are presented. Based on the similarity in local
biological and ecological conditions cross-years, dynamics of vector effi-
ciency in 2015 were assumed to follow the general dynamic pattern of those
during the previous outbreak years in each city. Therefore, the 10-y aver-
aged dynamics of β′(t) obtained from model simulation and estimated
mosquito abundance were used to forecast human dengue cases in 2015.

The performance of the SIR model was quantified by the rootmean squared
error. Additionally, the relative effect ofmosquito density and vector efficiency
on dengue risk was evaluated by the correlation between the fluctuation of R0,
mosquito abundance, and vector efficiency. Precisely, 10-y averaged values of
R0, mosquito abundance, and efficiency were subtracted to estimate the
fluctuation at each biweek relative to the long-term dynamic pattern in a city.
The relative contribution of the fluctuation of mosquito abundance and effi-
ciency was subsequently identified by univariate and multivariate correlation
analyses. To validate the proposed mechanism that local weather conditions
drive dengue dynamics through their impact on mosquito abundance, we
further compared our model with two alternative models—one assuming a
direct link between weather and dengue and the other assuming no season-
ality in vector competence (constant β′). Both alternative models had poorer
performance according to their RMSEs.

Data Availability. Daily mean temperature and precipitation data are avail-
able from the China Meteorological Data Sharing Service System (data.cma.
cn). The dengue human data and mosquito surveillance data are available
from the corresponding authors on request. Requests for materials should
be addressed to B.X., Q.L., or N.C.S.

ACKNOWLEDGMENTS. We thank Anna Mazzarella for improving the English
of this manuscript. This research was supported by National Basic Research
Program of China (973 Program) Grant 2012CB955504; National Key Research
and Development Plan, China Grants 2016YFC1200802 and 2016YFC1200803;
and the Centre for Ecological and Evolutionary Synthesis of the University
of Oslo.

1. WHO (2017) Dengue and serve dengue. Available at https://www.who.int/en/news-room/
fact-sheets/detail/dengue-and-severe-dengue. Accessed January 29, 2018.

2. Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmission: Evidence and
implications. Environ Health Perspect 121:1264–1272.

3. Xu L, et al. (2017) Climate variation drives dengue dynamics. Proc Natl Acad Sci USA 114:
113–118.

4. McLean DM, et al. (1974) Vector capability of Aedes aegypti mosquitoes for Cal-
ifornia encephalitis and dengue viruses at various temperatures. Can J Microbiol
20:255–262.

5. Watts DM, Burke DS, Harrison BA,Whitmire RE, Nisalak A (1987) Effect of temperature on the
vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152.

6. Lai S, et al. (2015) The changing epidemiology of dengue in China, 1990-2014: A
descriptive analysis of 25 years of nationwide surveillance data. BMC Med 13:100.

7. JohanssonMA, Cummings DAT, Glass GE (2009)Multiyear climate variability and dengue–El
Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and
Thailand: A longitudinal data analysis. PLoS Med 6:e1000168.

8. Johansson MA, Dominici F, Glass GE (2009) Local and global effects of climate on
dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3:e382.

3628 | www.pnas.org/cgi/doi/10.1073/pnas.1806094116 Li et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806094116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806094116/-/DCSupplemental
http://data.cma.cn/
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806094116/-/DCSupplemental
http://data.cma.cn/
http://data.cma.cn/
https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue
https://www.pnas.org/cgi/doi/10.1073/pnas.1806094116


9. Messina JP, et al. (2015) The many projected futures of dengue. Nat Rev Microbiol 13:

230–239.
10. Beatty M, et al.; WHO-VMI Dengue Vaccine Modeling Group (2012) Assessing the

potential of a candidate dengue vaccine with mathematical modeling. PLoS Negl

Trop Dis 6:e1450.
11. Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in Anopheles

mosquitoes. Malar J 3:13.
12. Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:

888–900.
13. Brunkard JM, Cifuentes E, Rothenberg SJ (2008) Assessing the roles of temperature,

precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region.

Salud Publica Mex 50:227–234.
14. Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño

on the synchronous dengue epidemics in Thailand. PLoS Med 2:e106.
15. Hales S, Weinstein P, Souares Y, Woodward A (1999) El Niño and the dynamics of

vectorborne disease transmission. Environ Health Perspect 107:99–102.

16. Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the El Niño
Southern Oscillation. Clim Res 19:35–43.

17. Stoddard ST, et al. (2013) House-to-house human movement drives dengue virus
transmission. Proc Natl Acad Sci USA 110:994–999.

18. Stoddard ST, et al. (2009) The role of human movement in the transmission of vector-
borne pathogens. PLoS Negl Trop Dis 3:e481.

19. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim
19:4605–4630.

20. Zhang R, Wu B, Han J, Zuo Z (2013) Effects on summer monsoon and rainfall change
over China due to Eurasian snow cover and ocean thermal conditions. Climate
Change—Realities, Impacts over Ice Cap, Sea Level and Risks, ed Singh BR (InTech,
Rijeka, Croatia), pp 227–250.

21. Ding R, Ha K, Li J (2010) Interdecadal shift in the relationship between the East Asian
summer monsoon and the tropical Indian Ocean. Clim Dyn 34:1059–1071.

22. Qian W, Ding T, Hu H, Lin X, Qin A (2009) An overview of dry-wet climate variability
among monsoon-westerly regions and the monsoon northernmost marginal active
zone in China. Adv Atmos Sci 26:630–641.

Li et al. PNAS | February 26, 2019 | vol. 116 | no. 9 | 3629

EC
O
LO

G
Y


